
Int J Adv Manuf Technol (2016) 82:419–433
DOI 10.1007/s00170-015-7313-x

ORIGINAL ARTICLE

Managing inventory levels and time to market in assembly
supply chains by swarm intelligence algorithms

Luis A. Moncayo–Martı́nez1 · Adán Ramı́rez–López1 · Gustavo Recio2

Received: 9 January 2015 / Accepted: 13 May 2015 / Published online: 11 June 2015
© Springer-Verlag London 2015

Abstract The proposed work addresses the problem of
placing safety stock under the guaranteed-service model
when a set of supplying, manufacturing and delivery stages
model the production system. Every stage has a set of
options that can perform the stage and every option has an
associated cost and time. Hence, the problem is to select an
option per stage that minimises the safety stock and lead
time at the same time. We proposed solving the problem
using two swarm intelligent meta-heuristics, Ant Colony
and Intelligent Water Drop, because of their results in solv-
ing NP-hard problems such as the safety stock problem. In
our proposed algorithm, swarms are created and each one
selects an option per stage with its safety stock and lead
time. After that, the Pareto Optimality Criterion is applied to
all the configurations to compute a Pareto front. A real-life
logistic network of the automotive industry is solved using
our proposed algorithm. Finally, we provided some multi-
objective performance metrics to assess the performance of

� Luis A. Moncayo–Martı́nez
luis.moncayo@itam.mx

Adán Ramı́rez–López
adan.ramirez@itam.mx

Gustavo Recio
grecio@inf.uc3m.es

1 Department of Industrial Engineering and Operations,
Instituto Tecnológico Autónomo de México (ITAM),
Mexico City, Mexico

2 Computer Science and Engineering Department,
Carlos III University of Madrid,
Madrid, Spain

our approach and carried out a statistical analysis to support
our conclusions.

Keywords Safety stock · Swarm intelligent · Automotive
industry

1 Introduction

A production system could be modelled as a set of stages
that must be carried out in order to assemble the final
product.

In this work, we divided the production system into
supplying, manufacturing and delivery stages that can be
conducted by one or more options, i.e. every stage has dif-
ferent ways to accomplish its task. The supplying stages are
components required to produce both subassemblies and the
final products, and every option could be a supplier or sourc-
ing point. In manufacturing stages, the subassemblies and
final products are assembled. Thus, an option to achieve the
assembly task could be a single workstation, manufacturing
cell or an assembly line. The delivery stages are the cus-
tomers who ask for a final product, and the different options
are the ways to deliver the product to the final customer, e.g.
standard or expedited delivery.

Every option that can perform a stage has a time and
cost associated, e.g. in a supplying stage, every supplier who
can provide the part quotes a cost and lead time. Decid-
ing what options to select at each stage and the amount
of safety stock to place to deliver the products to the cus-
tomer at the guaranteed-service time is called supply chain
(SC) configuration [13]. This decision is not trivial since the
decision maker selects the set of options that minimise both
the safety stock cost and lead time, simultaneously. Accord-
ing to the concept of cost-responsiveness efficient frontier,

mailto:luis.moncayo@itam.mx
mailto:adan.ramirez@itam.mx
mailto:grecio@inf.uc3m.es

420 Int J Adv Manuf Technol (2016) 82:419–433

which refers to the ability to meet short lead times at the
lower possible costs, the cost is inversely proportional to the
lead time [6]. Safety stock cost represents the second largest
element of logistics costs in companies (the first one is
transportation costs) and short lead time is needed to reduce
both inventory levels and time to market.

Once the problem of choosing an option per stage is
solved, the amount of safety stock (placed in every stage,
to meet the guaranteed-service time) is computed. This
time is the time in which a stage must serve its succes-
sive stages to allow them meeting their service time, thus
in delivery stages it is the time in which customers must
receive their products. The problem of placing safety stock
under guaranteed-service time model has been proved to be
NP-hard [16].

The contribution of this work is to develop a two-part
algorithm to solve the problem of both selecting an option
per stage and placing safety stock to minimise inventory
cost and lead time, simultaneously. The two problems are
NP hard. Thus, the problem of selecting is solved using
either of these meta-heuristics: ant colony optimisation
(ACO) and intelligent water drop (IWD). Due to their results
in efficiently solving combinatorial problems [9, 28, 33], an
algorithm based on dynamic programming [13] solves the
safety stock placing problem once the meta-heuristic has
selected one option per stage. Unlike the existing literature,
this work includes the minimisation of both safety stock
costs and lead time.

The paper is organised as follows: Section 2 presents a
literature review related to safety stock under guaranteed
service time inventory models and supply chain configu-
ration. Section 3 outlines theory about swarm intelligence,
specifically about ACO and IWD. Section 4 contains details
about the proposed algorithm, and Section 5 describes a
real life logistics network that is used to test the proposed
algorithm. The results are described in Section 6. Finally,
Section 7 provides some conclusions and future work.

2 Literature review

The network design configuration is one of the most impor-
tant strategic decisions in industry due to its long-lasting
effect on companies. Traditionally, this problem is reduced
to minimising costs all over the three levels of decision mak-
ing. Those costs include opening/closing facilities, operat-
ing, locating, pricing, fulfilment, and transportation [11].
Other factors encompass risk management [12], tax issues
[32], and environmental concerns [30]. The techniques used
to solve those models range from linear deterministic mod-
els to nonlinear stochastic ones and the most used solution

techniques include traditional operational research methods
and genetic algorithms [5].

Traditionally, the logistic chain is represented by a set of
nodes that represent the facilities, and the links are the flow
of components from one node to others [5, 11, 12, 30, 32].
In this work, the nodes are supplying, manufacturing and
delivery stages, and the links are the relationships among
stages, e.g. in a delivering stage, all its linked preceding
stages must have been carried out to achieve the delivering
task.

In relation to inventory management, in the literature,
there are two approaches to set inventory levels over multi-
stages. In the first one, called stochastic service, backorders
are allowed because of the uncertain nature of the time
in which the supplier provides components. Although the
stochastic inventory problem is difficult, researchers and
practitioners have studied it widely [2]. On the other hand, in
the second approach called guaranteed-service time (GST),
every stage must serve all its succeeding stages just in the
promised time. Therefore, the problem is not to generate
backorders but to set the amount of safety stock.

One of the first works to apply the staged representation
was used to configure an SC for new products [13, 14] with
just one option per stage and one cost objective. This objec-
tive includes safety and in-transit inventory costs, under
GST model, as well as the Cost of Goods Sold (CoGS). A
dynamic programming (DP) algorithm is used to solve the
problems. A genetic algorithm solves both the selection and
safety stock problems to minimise inventory cost and CoGS
[15].

An extension of the problem includes resource con-
straints, thus every option that can perform a stage has a
limited capacity [17]. The solution technique used to solve
the problem is project scheduling. Another proposed exten-
sion includes variability in demand and stages’ lead time; in
this case, fuzzy sets [31] and Bender’s decomposition [23]
are the solution tools. When demand and standard deviation
are unknown, an algorithm based on bass model assesses the
impact of demand dynamics during new product diffusion
on the configuration of SC [1].

Other approaches minimise more than one objective. In
[22], the costs of safety stock (under GST) and CoGS are
minimised as well as subjective objectives such as align-
ment of business practices and financial objectives. This
approach does not minimise the lead time (LT) or time
to market. On the other hand, in [20, 21], an ant colony
algorithm is proposed to minimise the CoGS and LT, simul-
taneously. In [19], the safety stock cost and LT are min-
imised. They solved one theoretical instance but there is
no statistical evidence of the performance of the proposed
approach.

Int J Adv Manuf Technol (2016) 82:419–433 421

In this work, the algorithm in [19] is modified and
another is proposed to compare the solution sets. Moreover,
a statistical analysis is carried out to prove the efficiency of
both meta-heuristics in minimising both the safety inventory
cost and LT, simultaneously; subject to select one option per
stage and placing safety stock under GST models.

3 Problem formulation

3.1 The supply chain configuration problem

The graph G = {N, L} models the SC configuration
problem, where the set of nodes N = {1, . . . , i, . . . , I }
represent the set of supplying, manufacturing and deliver-
ing stages where I is the total number of them. The set
of links represents the relationships between two stages
L = {(1, i), (i, i′), ..., (i, I)}. Each stage i has a set of
options (Oi) that can carry out every stage, thus Oi =
{1, . . . , j, . . . , Ji} where Ji is the total number of options at
stage i, see Fig. 1.

In the SC configuration problem, every option j ∈ Oi

has a time tij and cost cij associated. For any option j and j ′
than can perform a stage i, either of these situations could
happen: tij < tij′ if cij ≥ cij′ or tij ≥ tij′ if cij < cij′ . In words,
when the option j can perform a stage faster than option
j ′, the cost of j is bigger than the cost of j ′. Alternatively,
when the option j can perform a stage cheaper than option
j ′, the time of j is longer than the time of j ′.

Therefore, the problem of SC configuration is to select
an option j per stage i given that the safety stock and lead
time at the delivering stages are minimised, simultaneously.
The time and cost of the selected option to perform a stage
are Ti and Ci, respectively.

The lead time (LTi) at each stage is the time of the
selected option Ti plus the maximum lead time LTi′ of
stages i′ that preceded i, as shown below:

LTi = Ti + max
i′|(i′,i)

{LTi′ } (1)

Fig. 1 Representation of the Supply Chain Configuration Problem

3.2 Safety stock problem

In the problem of safety stock, the aim is to set the amount
of inventory in every stage i given that customers receive
products just in a promised or guaranteed service time �.
In this problem, it is assumed that demand is bounded to
guarantee 100 % service. The total demand in any ι period is
d(ι) = μι+ zσ

√
ι if demand is normally distributed [27]. A

base stock inventory policy is assumed, thus the base stock
level B is set to B = d(ι). If the demand for a period of
time is μι, the resulting safety stock is B − μι = zσ

√
ι, i.e.

demand in ι consecutive periods is no more that z standard
deviations above its mean.

Each stage i quotes a guaranteed-service time πi in which
stage i must serve its successor stages i′ | (i, i′). In deliver-
ing stages, it is the time � in which customers must receive
the products, i.e. πi = � ∀ i ∈ D. On the other hand, pre-
ceding stages i′ | (i′, i) must serve i just in the inbound
service time λi (see Fig. 2).

λi +Ti is the maximum time in which the stage can serve
its successor stages, i.e. a stage can supply other stages after
it has waited to be served λi and the stage has finished per-
forming its task Ti. Nonetheless, the stage must serve other
stages just in πi, thus the net time to serve is λi + Ti − πi

[13]. Therefore, the consecutive period ι of the base stock
policy is ι = λi +Ti −πi. In this problem, ι is called the days
of inventory required to accomplish the guaranteed-service
time. Hence, the safety stock cost (SSC) for each stage is:

SSC =
I∑

i=1

ωKizσi

√
λi + Ti − πi (2)

where ωKi is the holding cost per unit per time period
(ω = inventory holding cost percent per year and Ki =
cumulative unit cost at stage i) and z is the number of
times the standard deviation σ is above the mean, i.e. z

is the percentage of time that safety stock covers demand
variation [13]. For example, if the percentage is 0.95, z

= 1.645.

Fig. 2 Inventory levels under guaranteed-service time

422 Int J Adv Manuf Technol (2016) 82:419–433

So, as to model the problem, a binary variable yij is used
to select an option per stage. Therefore,

yij =
⎧
⎨

⎩

1, if stage i performs stage i

0, otherwise
(3)

Formally, the problem is modelled as follows

Min SSC =
I∑

i=1

ωKizσi

√
λi + Ti − πi (4)

Min LT = max
i∈D

{LTi} (5)

subject to
Ji∑

j=1

yij = 1, ∀ i ∈ N (6)

Ji∑

j=1

cijyij − Ci = 0, ∀ i ∈ N (7)

Ji∑

j=1

tijyij − Ti = 0, ∀ i ∈ N (8)

Ti + max
i′|(i′,i)

{LTi′ } = LTi, ∀ i ∈ N (9)

Ci +
∑

i′|(i′,i)
Ki′ = Ki, ∀ (i′, i) ∈ L (10)

λi + Ti − πi ≥ 0, ∀ i ∈ N (11)

λi′ − πi ≥ 0, ∀ i | (i, i′) ∈ L (12)

πi ≤ Ω, ∀ i ∈ D (13)

λi, πi ≥ 0 and integer, ∀ i ∈ N (14)

The first objective (4) is the safety stock cost (SSC) and
the second one (5) is the maximum lead time at each deliv-
ery stage. This time stands for the maximum lead time (LT)

in which products are delivered to customers [21], thus Eq. 5
minimises the longest time taken by the network to deliver
products to customers.

Equation 6 guarantees that one option per stage is
selected. Equations 7 and 8 set the cost and time of the
selected option to perform the stage. Therefore, Eqs. 6, 7
and 8 configure the SC.

Equation 9 sets the lead time for every stage i and Eq. 10
is the cumulative cost (Ki) at stage i. Ki is the time of
the selected option Ti plus the cumulative cost of preceding
stages i′ of stage i.

Equation 11 guarantees that the days of inventory are
equal or greater than zero. For two stages, linked by (i, i′),
the guaranteed service time (πi) of stage i must be greater
than or equal to inbound service time (λi′) of stage i′ (12),
i.e. πi ≤ λi′ . At delivering stages, the guaranteed-service
time πi ∀ i ∈ D is greater than or equal to guaranteed-
service time Ω (or promised service time) quoted to cus-
tomers. Equations 11, 12 and 13 set the amount of safety

stock per stage to deliver products to customers at the
promised service time Ω .

4 Swarm intelligence

Swarm behaviour is one of the main characteristics of many
species in nature, e.g. flocks of birds, schools of fish, and
colonies of ants. Every element in the swarm follows sim-
ple rules but collectively, the swarm is capable of achieving
complex tasks, such as finding the shortest distance between
nest and food in case of ant colonies or building sophis-
ticated nests as wasps. A characteristic of a swarm is its
ability to adapt itself to environmental changes that allow
swarms to be robust enough and to keep alive despite
changes in their environment. The strength of the swarm lies
in the cooperation of every individual element by means of
a communication’s system, such as the pheromones in ant
colonies. This communication’s system among elements in
the swarm forms the “collective intelligence” that is known
as swarm intelligence (SI) [4].

Researchers in optimisation theory have developed many
techniques based on the decentralised communication sys-
tem that simulates the behaviour of swarms. One of the most
successful examples is Ant Colony Optimisation (ACO)
that was introduced to solve combinatorial problems, early
in 1990s. The advantages of SI-based techniques over tra-
ditional ones are their robustness and flexibility that are
required to deal with increasingly complex problems in
practice and theory [3]; e.g. travelling salesman problem,
scheduling, vehicle routing and nurse rostering.

4.1 Ant colony optimisation metaheuristic

The foraging behaviour of ant colonies is the main element
of the ACO meta-heuristic. The aim of the colony is its sur-
vival (by bringing food from the forage area to the nest)
rather than the individual survival of ants. Ants achieve their
goal by finding the shortest path between the nest and food
area. They communicate to each other using a chemical sub-
stance called pheromone that could be reinforced by other
ants or evaporated by the environment.

When an ant leaves the nest, it looks for a food source
randomly. Ants can smell pheromones deposited by other
ants while looking for the food area. In nature, an ant
both tends to choose the path that has a strong smell of
pheromones and reinforces the amount of pheromones of
the selected path according to the quantity and quality
of food [3]. On the other hand, if ants do not reinforce
pheromones in a path for some time, pheromones evapo-
rate. As ants take longer to travel in long paths, pheromones
are not reinforced at the same rate as in short paths. Hence,
pheromones are highly concentrated in short paths. In this

Int J Adv Manuf Technol (2016) 82:419–433 423

way, the pheromones guide the path selection process of
ants that will look for food.

Dorigo and colleagues [8] proposed ACO meta-heuristic
based on the behaviour of real ant colonies. A graph G =
{N, L} represents the problems. N is the set of nodes i and
L is the set of links (i, i′). A solution (S) of the problem
is a set of solution components that can be either nodes
or links; e.g. if the solution to the problem is a subset of
links that form a Hamiltonian path (as in the travelling
salesman problem), a solution to the problem is a sequence
S = 〈

. . . , (1, i), (i, i′), . . .
〉
. So, as to simulate the com-

munication system, a pheromone matrix T is used. It is
usually associated with the solution components, e.g. T =[
. . . , τ(1,i), τ(i,i′), . . .

]
means that ants deposit pheromones

(τ) over the links. In the beginning, the solution is empty
S = 〈〉 and the pheromone matrix T takes a given initial
value.

An artificial ant (A) constructs a solution by adding a
solution component at a time. The selection of it, at each
step, is performed probabilistically based on the amount of
pheromones. The transaction probability pi,i′ is defined as
the probability that ant A chooses to go to node i, if A is
currently at node i.

pi,i′ =
[
τ(i,i′)

]α [
η(i,i′)

]β
∑

(i,l)∈Ni

[
τ(i,l)

]α [
η(i,l)

]β , (15)

where η(i,i′) is the heuristic information provided by a
different source from ants, e.g. either cost or time to go
from i to i′; α and β are parameters that weight the relative
importance of the pheromones and heuristic value, respec-
tively, and Ni is the neighbourhood of node i that is defined
as Ni = {

(i, i′) | (
i, i′

) ∈ L
}
. Notice that the solution s

is feasible, thus constraints are not violated every time a
node is added to the solution. When an ant finishes build-
ing a solution, the value of the objective function f (s) is
computed.

The following step in ACO is to update the amount of
pheromones according to f (S). This part depends on the
version of ACO but the Ant System [8] implements the
most general pheromone update rule. Firstly, the pheromone
evaporation process takes place. The objective is to allow
ants to exploit new paths (or sequences) to avoid the
fast convergence of the algorithm to sub-optimal solutions.
Therefore, pheromone evaporation is a useful way to avoid
stagnation by enabling the algorithm to forget “bad” deci-
sions. In ACO, an update evaporation rule (16) is used to
evaporate pheromones. This rule depends on the evapora-
tion factor ρ ∈ (0, 1], which is the desired number of
pheromones to evaporate.

τ(i,i′) ← (1 − ρ) τ(i,i′), ∀ (i, i′) ∈ L (16)

Secondly, each ant A deposits pheromones over the
selected solution components. The number of pheromones
depends on the quality of the solution generated
f (S).

τ(i,i′) ← τ(i,i′) +
∑

A

Δτ(i,i′), ∀ (i, i′) ∈ L (17)

where Δτ(i,i′) is the amount of pheromones ant A

deposits. It is defined as follows:

Δτ(i,i′) =
⎧
⎨

⎩

1
f (SA)

, if i ∈ SA

0, otherwise
(18)

According to Eq. 18, the shorter the path (i.e. the
lower the value of f (SA)), the more pheromones the links
(i, i′) ∈ SA receive. As a general rule, the links that are
used frequently and belong to short paths, receive more
pheromones. Hence, those links are more likely to be
selected in future iterations of the algorithm.

4.2 Intelligent water drop

The intelligent water drop (IWD) algorithm simulates the
movement of natural water drops that flow into rivers, lakes
and seas [24, 26]. The main idea behind IWD is that streams
find optimum paths to reach the goal of travelling from a
source of water to the sea, given that the environment does
not allow the free movement of water drops. Based on the
nature, the gravitational force pulls each water drop to the
earth’s centre in a straight line but a river is full of twists and
turns. Hence, with no obstacle, the water drop must follow a
straight path from the water source to the destination. Each
water drop flowing in a river has two characteristics: veloc-
ity and capacity of carrying an amount of soil. Moreover,
the water drop can transfer soil from the river bed because
of its velocity. Faster water drops can collect and transfer
more soil than slower ones.

The velocity and the soil of a water drop increase when it
flows from one point to another. At the same time, the soil of
the river bed decreases between the two points. The velocity
increments depend on the amount of soil in the path; thus,
the velocity increases more in a path with low soil. As a
general rule, water drops prefer crossing paths with low soil
because they allow water drops to move faster and to attain
a higher velocity; thus , water drops collect more soil from
that path.

In IWD algorithm, every artificial water drop (W) trav-
els from the water source to destination in discrete steps.
Therefore, a graph G = {N, L} can represent the prob-
lem. A node is the water source and another is the
destination.

424 Int J Adv Manuf Technol (2016) 82:419–433

When a drop moves from node i to node i′, the drop’s
velocity increases (Δvi,i′) nonlinearly proportional to the
inverse of the soil (si,i′) between i to i′, as follows.

Δvi,i′ = av

bv + cv

(
si,i′

)2α
(19)

where av, bv, cv and α are positive parameters set by
the user. At the same time, the soil of the drop is increased
by removing some soil of the path linking i and i′. This
increment (Δsi,i′) is nonlinearly and inversely proportional
to the time (ti,i′) a water drop spent to pass from i and
i′.

Δsi,i′ = as

bs + cs
(
ti,i′

)2β
(20)

where as, bs, cs and β are positive parameters set by the
user. The time ti,i′ is equal to ti,i′ = ηi,i′

vw
, where ηi,i′ is the

local heuristic function that measures the undesirability of
a water drop to pass from i and i′ and vw is the water drop
velocity.

The amount of soil removed from the path si,i′ is:

si,i′ ← ρosi,i′ − ρnΔsi,i′ (21)

where ρo and ρn are positive numbers between zero and
one. The amount of soil gathered by the water drop sw and
its velocity (vw) are shown below:

sw ← sw + Δsi,i′

vw ← vw + Δvi,i′ (22)

The process of selecting one node i′ while the drop is at
i is based on a probabilistic function (pi,i′).

pi,i′ =
1

ε+gi,i′∑
(i,l)∈Ni

1
ε+gi,l

(23)

where ε is a small positive number to prevent a possible
division by zero, Ni is neighbourhood of node i defined as
Ni = {

(i, i′) | (
i, i′

) ∈ L
}
, and gi,i′ is used to shift the soil

si,i′ of the path joining nodes i and i′ toward positive values
[25], as follows:

gi,i′ =
⎧
⎨

⎩

si,i′, if min(i,l)∈Ni

{
si,l

} ≥ 0

si,i′ − min(i,l)∈Ni

{
si,l

}
, otherwise

(24)

As a general rule, this function prefers a path (i, i′)
with less soil than with more soil. The IWD algorithm
builds solutions using a parametrised probabilistic model
and the parameters are updated after each iteration in order
to compute high quality solutions.

5 Proposed swarm optimisation based algorithm

The proposed algorithm is divided into four parts. Firstly,
the chosen swarm intelligence based algorithm selects
one option to perform a stage, i.e. every agent (ant or
IWD) “visits” each node i and chooses the option j that
carries out the task represented by the node. Secondly,
the dynamic programming algorithm is used to place the
amount of safety stock that enables the SC to deliver
products just in the guaranteed service time. Thirdly, the
algorithm both computes the values of the two objec-
tives functions (Eqs. 4 and 5) and applies the Pareto
Optimality Criterion (POC) to all the solutions to deter-
mine the set of non-dominated solutions P . Finally, the
swarm-based algorithm modify the environment according
to the solutions that belong to the set of non-dominated
solutions.

Algorithm 1 outlines our swarm-based approach. The
number of iterations X and agents W is set; notice that an

Algorithm 1 Proposed Swarm-based Algorithm

Require: G = {N, L}, Oi , Ω

Ensure: P

1: set the number of iterations X

2: set the number of agents W

3: initialise all parameters
4: select ACO or IWD based algorithm
5: for do x = 1 to x = X do
6: for do w = 1 to w = W do
7: For all i ∈ N do
8: select an option j ∈ Oi to carry out stage i

(Sect. 5.1), insert j to Sw

9: if IWD true then
10: local update (Sect. 5.4)
11: end if
12: end for
13: place safety stock to guarantee the service time

(Sect. 5.2)
14: compute SSC and LT , i.e. Sw(LT , SSC) =

〈. . . , j, . . .〉
15: end for
16: compute the set of non-dominated solutions NDx (Sect.

5.3)
17: if x = X then
18: return NDX (this is the algorithm solution)
19: else
20: global update (Sect. 5.4)
21: end if
22: end for

Int J Adv Manuf Technol (2016) 82:419–433 425

agent can be either an ant in ACO or a drop in IWD. The
parameters that must be initialised are ω, z, T , ρ, si,j, sw,
vw, ρo, ρn, α, β and S = 〈〉.

In the case of ACO, the pheromones lie on the options j

that can perform the stage i, thus τ(i,j) stands for the amount
of pheromones over j that can perform i. On the other hand,
in the case of IWD, s(i,j) stands for the amount of soil in the
option j that can perform stage i.

5.1 Selection algorithm

The aim of the selection algorithm, shown in Algorithm 2, is
to select one option j to perform the stage i. When this algo-
rithm selects one option, an agent (either an ant or a drop)
performs the selection task. In line 1, Algorithm 2 computes
the stage’s neighbourhood Oi. It is the set of options that
can perform stage i.

If the ACO-based algorithm carries out the task of
selecting an option, the Algorithm 2 (lines 2–7) gets the
pheromone matrix M . Each element τ(i,j) of M is the
amount of pheromones deposited in the option j | j ∈ Oi.
For all options in Oi, Eq. 15 computes the probability (pi,j)

that the agent selects option j to perform stage i. The heuris-

tic value, used in pi,j, is defined as η(i,j) = e
1
tij

+ 1
cij , i.e. the

time and cost of the option j .

Algorithm 2 Selection Algorithm

Require: i, Oi = {1, . . . , j, . . . , Ji}
Ensure: j

1: compute the stage neighbourhood, Oi =
{1, . . . , j, . . . , Ji}

2: if ACO true then
3: get pheromone matrix M = [

. . . , τ(i,j), . . .
]

4: for all j ∈ Ni do
5: compute pi,j (Eq. 15)
6: end for
7: else
8: get sij ∀ i, j

9: for all j ∈ Ni do
10: compute pi,j (Eq. 23, 24)
11: end for
12: end if
13: set a random number, rndNumber ∈ (0, 1)

14: set j = 1
15: while rndNumber > 0 do
16: rndNumber− = pi,j

17: j + +
18: end while
19: return option j to perform stage i (Eq. 6 is solved).

If the agent is a water drop, Eqs. 23 and 24 compute
the option to perform the stage (lines 7–12 in Algorithm
2). Hence, sij is the amount of soil in option j | j

∈ Oi.
One criterion that ants may use in order to choose one

option is to select the option with the highest probability
pi,j, but this could lead to stagnation. In order to cope with
this problem, a random–based proportional rule (lines 13–
18 in Algorithm 2), based on pi,j, is used by the agents to
select an option. This rule states that the higher the value
of the probability pi,j, the more attractive an option j is
selected by the agent to perform the stage. Finally, the
algorithm solves Eq. 6 (line 19).

Once an option has been selected for every stage (lines
7–13 in Algorithm 1), the cost (Ci) and time (Ti) of the
selected options are known, thus Eqs. 7 and 8 are solved
as well as the cumulative cost Ki (9) and the lead time LTi

(10).

5.2 Place safety stock

Graves and Willems [13] introduced the dynamic program-
ming (DP) algorithm to place safety stock; thus, Eqs. 11, 12
and 13 are solved at the end of it. A detailed explanation of
this algorithm appears on [18] and [27].

So, as to set the safety stock levels to deliver product on
the guaranteed-service time, each stage is labelled as ki. It
is an index that states the position of i in the set of labelled
stages U = {1i′, . . . , ki, . . . , Ii′′ }. In order to label a stage, it
must have just one upstream or downstream stage, i.e. stage
i has the position ki if there is just one (i′, i) ∈ L or one
(i, i′) ∈ L, see Algorithm 3 (lines 1–7).

Algorithm 3 requires that each stage has exactly one adja-
cent stage with a higher index because a stage could have
more than one upstream and/or downstream stages.

If the stage i′ is downstream from stage i (i.e. (i, i′) ∈ L),
the decision to be made is the guaranteed-service time πi of
stage i. The expected cost is denoted θπ

i (π). On the other
hand, if (i′, i) ∈ L, the decision to be made is the inbound
service time λi of stage i, thus θλ

i (λ) stands for the expected
cost.

To know the value of θπ
i (π) and θλ

i (λ), Eq. 25 computes
the expected holding cost at stage i, see Algorithm 3 (lines
8–16).

Θi (π, λ) = ωKizσi

√
λ + Ti − π

+
∑

(i′,i)∈L|ki′<ki

min
0≤q≤λ

{
θπ

i′ (q)
}

+
∑

(i,i′)∈L|ki′<ki

min
π≤p≤Γi′−Ti′

{
θλ

i′ (p)
}

(25)

426 Int J Adv Manuf Technol (2016) 82:419–433

The first term is the holding cost at stage i. So, as to com-
pute it, the days of inventory must be equal or greater than
zero, thus constraint (11) guarantees it.

The second term is the minimum holding cost of all
the upstream stages i′ from i, given that the index ki′ of
upstream stages i′ is less than the index ki of stage i, (Algo-
rithm 3, lines 10–12). Notice that the value of the guaranteed
service time of the upstream stages πi′ is known, thus the
inbound service time λi of stage i is πi′ = λi according to
constraint (12). Hence, the optimum value of λi is the value
of πi′ where the holding cost is minimised, see line 11 in
Algorithm 3.

The third term is the minimum holding cost of the down-
stream stages i′ from i, given that the index ki′ of upstream
stages i′ is less than the index ki of stage i, (Algorithm 3,
lines 13–15). In this case, the inbound service time λi′ is
known, thus the optimum value of πi is equal to λi′ (see con-
straint 12), where the holding cost of downstream stages is
minimised.

Finally, the minimum value of the safety stock placement
cost is known when θλ

I (λ) is evaluated for ki = Ii (see line
17 in Algorithm 3). The optimum value is the minimum
value of θλ

I (λ) found in line 18 Algorithm 3.
The optimal values of λ and π for all stages is found by

“backtracking” similar to Wagner–Whitin algorithm [7].

Algorithm 3 Safety stock placement

Require: ωi , Ki , zi , σi , Ti

Ensure: minimum safety stock cost (θλ
I (λ)), λi , πi

1: set k ← 1 and set U = {}
2: while N �= {} do
3: select i ∈ N such that there is just one (i′, i) ∈ L or

just one (i, i′) ∈ L

4: label i with index ki and insert ki to U

5: remove i from N

6: set k ← k + 1
7: end while
8: for k = 1 to k = I − 1 do
9: get stage i at position k, i.e. ki

10: for all(i′, i) ∈ L | ki′ < ki do
11: evaluate θλ

i (λ) = minπ {Θi (π, λ)}, for λ =
0, 1, . . . , Γi − Ti

12: end for
13: for all (i, i′) ∈ L | ki′ < ki do
14: evaluate θπ

i (π) = minλ {Θi (π, λ)}, for π =
0, 1, . . . , Γi

15: end for
16: end for
17: evaluate θλ

I (λ) = minπ {Θi (π, λ)} for λ =
0, 1, . . . , ΓI − TI

18: choose the λ that minimises θλ
I (λ), λ = 0, 1, . . . , ΓI

−TI

5.3 Compute the non-dominated solutions

In this part of the proposed algorithm, there are W solutions
or logistics network designs. Each solution Sw(LT , SSC) =
〈. . . , j, . . .〉 has an LT (5) and an SCC (4) associ-
ated as well as a set of selected options to perform
stages. As the proposed algorithm minimises two objec-
tives, we applied the Pareto Optimality Criterion to deter-
mine which solutions are “better” than others. As a result,
Algorithm 4 returns a set of non-dominated solutions ND =
{. . . , Sw, . . .}. A non-dominated solution is a solution that
cannot be improved in any of the objectives. Formally,
a solution s = {s1, . . . , sH } dominates another solution
s′ = {s′

1, . . . , s′
H }, represented for s � s′, if and only if

s is partially less than s′, i.e. ∀ h ∈ {1, . . . , H } , sh ≤
s′
h ∧ ∃ h ∈ {1, . . . , H } : sh < s′

h [29]. Hence, a solution
s belongs to the set of non-dominated solutions if there is
no solution s′ that dominates s, i.e. ND := {

s | ¬∃ s′, s′
� s}.

As the proposed algorithm minimises two objec-
tives, the solution Sw(LT , SCC) dominates the solution
Sw′(LT ′, SCC′) if and only if (LT ≤ LT ′) ∧ (SCC ≤
SCC′) and (LT < LT ′) ∨ (SCC < SCC′). So, as to
include a solution to the non-dominated solutions set, the
solution must not be dominated by other solutions, see
Algorithm 4.

5.4 Update environment

5.4.1 IWD-based algorithm

In the basic IWD algorithm, the link between two nodes
contains a certain amount of soil. However, in our algorithm,
the options than can perform a stage contain a large amount

Algorithm 4 Non-dominated Solutions Set

Require: ∀ Sw(LT , SSC) = 〈. . . , j, . . .〉
Ensure: ND = {. . . , Sw, . . .}

1: for w = 1 to w = W do
2: get Sw(LT , SSC)

3: for w′ = 1 to w′ = W do
4: get Sw′(LT ′, SSC′)
5: if (LT ≤ LT ′) ∧ (SCC ≤ SCC′) and (LT <

LT ′) ∨ (SCC < SCC′) then
6: Sw � Sw′
7: end if
8: end for
9: if ¬∃ Sw′ | Sw′ � Sw then

10: insert Sw in ND
11: end if
12: end for

Int J Adv Manuf Technol (2016) 82:419–433 427

of soil, i.e. the soil increments Δsi,j (20) stand for the
amount of soil in option j that can perform stage i and
si,j (21) is the amount of soil deposited in option j . In
the same way, the Δvi,j (19) stands for the drop’s velocity
increments when the drop chooses the option j to perform
stage i.

In the case of IWD, there are two types of environ-
mental updates. The first one is a local update procedure
that takes place every time a drop selects an option to per-
form a stage. In this procedure, the amount of soil in both
the options and the drop decreases as well as the drop’s
velocity increments. The second one, called global update,
carries out the process of updating the soil of the options
that form a non-dominated solution, thus, the set of non-
dominated solutions must be computed before running the
global update procedure.

Algorithm 5 (lines 1–5) describes the local update proce-
dure in detail, see Algorithm 1 lines 7–12.

So, as to run the global update procedure, the non-
dominated solution set NDx = {. . . , Sw, . . .} has been
computed; thus, it is an input to update environment proce-
dure (Algorithm 5 line 7).

The global update procedure, Algorithm 5, lines 8–10,
removes an amount of soil of the selected option in a non-
dominated solution using Eq. 26.

si,j = (1 −ρn)si,j +ρn

2sw

|N | (|N | − 1)
, j ∈ Sw, Sw ∈ NDx

(26)

where |N | is the number of stages.

5.4.2 ACO-based algorithm

In ACO meta-heuristic, there is just a global update process
taking place once all ants have built a solution. Our pro-
posed algorithm evaporates an amount of pheromones of the
selected options in a non-dominated solution.

The set of non-dominated solutions is input to this part
of the algorithm (Algorithm 5 line 7). Firstly, the algorithm
gets the pheromone matrix which represents the amount of
pheromones in all the options for all the stages. Secondly,
an amount of pheromones evaporates from all the options
using Eq. 16, so as to avoid stagnation. Finally, the algo-
rithm deposits an amount of pheromones in options that
belong to a non-dominated solution, see Algorithm 5 lines
11–13.

6 Experimental application

So, as to prove our proposed algorithm, we carried out a
study in a company that assembles fixed brakes and clutch

Algorithm 5 Update Enviroment

Require: the selected option j to perform stage i

Ensure: updated environment
1: if localUpdate = true then
2: get si,j , sw, and vw

3: compute the increments Δvi,j (Eq. (19)) and �si,j
(Eq. (20))

4: remove an amount of soil from the option j to
perform stage i, si,j (Eq. (21))

5: update water drop’ soil (sw) and velocity (vw) (Eq.
(22))

6: else
7: get the set of non-dominated solutions, NDx =

{. . . , Sw, . . .}
8: If IWD = true then
9: update the soil of the selected options j | j ∈

Sw, Sw ∈ NDx (Eq. (26))
10: else
11: get the pheromone matrix T = [

. . . , τ(i,j), . . .
]

12: evaporate pheromones of all options (Eq. (16))
13: deposit pheromones of the selected options j |

j ∈ Sw, Sw ∈ NDx (Eq. (17))
14: end if
15: end if

pedals modules. The company is located in the business
automotive cluster in Northeast Mexico and manufactures
twenty different modules for customers such as Nissan,
Ford, GM, Mazda, Fiat, etc.

Figure 3 depicts the actual logistic network for one of the
best selling-products of the company. Table 1 shows the data
related to the cost and time per stage. Although the logistics
network is the actual one, we modified the information in
Table 1 as the company requested.

Most of the process encompasses stages of cutting, fold-
ing and welding components obtained from external suppli-
ers. The final product (i = 27) is produced when the main

Fig. 3 Real-life application

428 Int J Adv Manuf Technol (2016) 82:419–433

Table 1 Real-life application data

Stage Name Option Time Cost Stage Name option time cost

(i) (j) (tij) (cij) (i) (j) (tij) (cij)

1 84135 1 10 20.25 13 Cutting 1 0 0.39

2 5 13.34 2 1 0.24

3 7 18.04 14 99661 1 5 2.17

4 6 10.23 2 7 2.07

2 99661 1 5 2.17 3 3 2.58

2 10 0.98 15 285534 1 40 0.77

3 2 6.45 2 30 2.33

4 1 8.08 3 35 2.58

3 Cutting 1 0 0.45 16 Painting 1 0 5.96

2 1 0.30 2 1 3.87

3 5 0.28 17 285579 1 30 7.92

4 Cutting 1 0 0.55 2 35 8.98

2 1 0.23 3 25 6.56

5 99662 1 15 4.04 18 Folding 1 0 1.86

2 10 6.34 19 Cutting 1 0 0.25

3 20 2.35 20 293483 1 60 4.94

6 Folding 1 0 0.74 2 30 8.45

2 1 0.80 3 20 10.34

3 2 0.50 21 Bushing Insertion 1 0 0.66

7 285699 1 100 4.55 22 Welding 1 0 4.05

2 80 5.55 23 285552 1 80 0.73

3 60 6.23 2 60 0.24

4 75 6.23 24 Pedal Pad Insertion 1 0 1.16

8 Welding 1 0 4.46 25 285573 1 50 2.96

2 1 4.00 2 55 2.50

3 2 3.45 3 45 2.05

9 Cutting 1 0 0.32 26 Main Bracket 1 0 32.71

2 1 0.25 2 1 25.54

10 Joining 1 0 2.04 3 2 10.56

2 1 2.00 27 Pivot Bolt Insertion 1 0 1.76

3 2 1.86 2 1 1.05

4 3 0.90 3 2 0.98

11 99675 1 10 23.61 28 Functional Tests 1 0 0.83

2 8 25.45 2 1 0.45

3 12 13.24 29 Shipping 1 1 0.75

12 Arm Yokes Union 1 0 4.31 2 3 3.45

2 1 4.01

3 2 3.98

Int J Adv Manuf Technol (2016) 82:419–433 429

Fig. 4 Non-dominated sets of
the 15 runs

bracket (i = 26) and the pedal pad (i = 24), as well as
two other components (i = 23, 25), are joined. After the
final product is inspected (i = 28), it is sent to an overseas
customer (i = 29).

A worker in a manufacturing cell assemblies a yoke-
arm (i = 12) by cutting, folding and welding a set of
components and sub-assemblies. After the yoke arm is
painted (i = 16), another worker inserts a clevis bolt in
it (i = 21) and two other components to finally assemble
the pedal pad (i = 24). In a separate manufacturing cell,
two folding and welding sub-assemblies form a main bucket
(i = 26).

The experiments were carried out in a Linux-based
Lenovo T530 computer with 4 GB RAM memory and an
Intel Core i7 (2.90 GHz) processor. Each algorithm is run
15 times and the statistical analysis is presented in the
following section.

0

2

4

6

8

10

12

ACO IWD

Sp
ac
in
g
(×
10

3)

Algorithm

Quartiles
Median

Fig. 5 Spacing metric (S)

The parameters to compute the safety stock costs are
inventory holding cost of 45 % (ω = 0.45) and the
percentage of times that safety stocks cover demand is 0.98,
i.e. z = 2.06. The demand of this particular SKU is 145 and
the standard deviation is 80.

The parameters to run the ACO-based algorithm are set
as follows: the number of colonies is 20 each one with 100
ants, the relative importance of pheromones is set to α = 1,
the value of the relative importance of the heuristic value
is β = 1, the evaporation factor is ρ = 0.5. Using those
values, the ACO algorithm obtains better results as reported
in [8, 20, 21].

The IWD-based algorithm is run using 20 rivers each one
with 100 drops. The constant to compute the velocity incre-
ments are av = 100, bv = 1 and cv = 1. The parameters of
the local and global updating parameters are ρo = 0.05 and
ρn = 0.05, see [10].

2

3

4

5

6

7

8

ACO IWD

A
re
a
(×
10

6)

Algorithm

Quartiles
Median

Fig. 6 Hyper-area metric (H)

430 Int J Adv Manuf Technol (2016) 82:419–433

0

5

10

15

20

25

ACO IWD

C
PU

T
im

e
(s
ec
)

Algorithm

Quartiles
Median

Fig. 7 CPU time

7 Results

We run 15 times the IWD-based algorithm and 15
times the ACO-based algorithm to test the generated
non-dominated sets. In Fig. 4, the 30 sets are plot-
ted. According to it, the IWD algorithm generates non-
dominated sets with solutions (i.e. SC configurations) that
strongly dominates the solutions generated by ACO-based
algorithm.

In order to analytically show the performance of the
proposed algorithm, four metrics used in multi-objective
optimisation are computed. Although there is no a standard
set of metrics in multi-objective optimisation, some met-
rics have been proposed to measure the convergence and
diversity of two solutions sets.

The diversity-based indicators measure the distribution
(or the spread) of the solutions over the solution space.

2.0

3.0

4.0

5.0

6.0

ACO IWD

Algorithm

Quartiles
Median

Fig. 8 Number of non-dominates solutions

On the other hand, the convergence-based indicators eval-
uate the closeness between two solutions sets, usually
between the true pareto set and others. The reader is encour-
aged to see [29] for an extensive explanation on these
metrics.

One diversity indicator is the spacing (S), which mea-
sures the distance variance of neighbouring solutions of a
non-dominated set. The optimum value of Spacing is zero
(S = 0). It means that all the solutions are spaced evenly
apart. As shown in Fig. 6, the fifteen non-dominated sets
computed when using the IWD algorithm return sets with
a value of space (S) close to zero. On the other hand, the
solution sets computed using ACO are not evenly apart as
shown in Fig. 4.

A metric that measures both diversity and convergence is
the hyper-area (H) indicator. It computes the covered area
of a non-dominated set with respect to the objective space.

This metric represents the summation of all the rect-
angular areas bounded by a given reference point. In our
case, it is set in (0,0) in Fig. 4; therefore, the optimum
value of the hyper area is zero (H = 0) which means
that the two objectives take the hypothetical value of zero.
As shown in Fig. 6, each non-dominated set generated
using IWD-based algorithm returns a value of H lower
than the value of H returned when ACO-based algorithm is
utilised.

Two important issues in meta-heuristics is the CPU time
to solve an instance and the number of non -dominated solu-
tions in the solution set. As shown in Fig. 7, the CPU time
at which the IWD-based algorithm solves the instance in
Fig. 3 is much less than the time spent by the ACO-based
algorithm.

Regarding the number of non-dominated solutions in
a set (see Fig. 8), the maximum number of solutions
in a set is four when using the ACO algorithm. On
the other hand, the maximum number of solutions when
IWD is utilised is six. Therefore, it seems that when
using IWD algorithm the non-dominated solution sets
have more solutions than the ones computed by the ACO
algorithm.

In Table 2, a solution set generated by IWD algorithm is
shown. According to Table 1, just two stages (i = 7, 29)

require safety stock to guarantee instant delivery to cus-
tomers, i.e. Ω = π29 = 0. Stage i = 7 is a supplying
stage that represents a component supplied from China;
thus, the lead time provided by supplier 1 is 100 days
(see Table 1). The stage i = 29 is a delivery stage, that
requires most of the safety stock. According to the records
of the OEM, the investment in safety stock is reduced about
10 %.

Int J Adv Manuf Technol (2016) 82:419–433 431

Ta
bl

e
2

N
on

-d
om

in
at

ed
so

lu
tio

n
se

tb
y

IW
D

-b
as

ed
al

go
ri

th
m

St
ag

e
S

1
S

2
S

3
S

4
S

5
S

6

(i
)

j
λ

i
π

i
ι∗ i

j
λ

i
π

i
ι∗ i

j
λ

i
π

i
ι∗ i

j
λ

i
π

i
ι∗ i

j
λ

i
π

i
ι∗ i

j
λ

i
π

i
ι∗ i

1
4

0
6

0
4

0
6

0
3

0
7

0
4

0
6

0
2

0
5

0
4

0
6

0

2
3

0
2

0
3

0
2

0
1

0
5

0
3

0
2

0
3

0
2

0
4

0
1

0

3
2

10
11

0
2

10
11

0
1

5
5

0
1

10
10

0
2

10
11

0
2

10
11

0

4
1

10
10

0
2

2
3

0
1

5
5

0
1

10
10

0
1

2
2

0
1

10
10

0

5
3

0
20

0
3

0
20

0
1

0
15

0
3

0
20

0
1

0
15

0
2

0
10

0

6
3

11
13

0
1

10
10

0
1

10
10

0
3

12
14

0
1

11
11

0
3

10
12

0

7
3

11
13

58
3

10
10

60
4

10
10

75
3

12
14

58
2

11
11

80
2

10
12

78

8
3

10
12

0
1

1
1

0
2

3
4

0
3

1
3

0
1

5
5

0
2

5
6

0

9
1

20
20

0
2

10
11

0
2

10
11

0
1

15
15

0
1

10
10

0
2

10
11

0

10
1

80
80

0
4

75
78

0
1

10
0

10
0

0
1

10
0

10
0

0
2

60
61

0
3

60
62

0

11
1

0
10

0
1

0
10

0
3

0
12

0
3

0
12

0
3

0
12

0
3

0
12

0

12
1

10
2

10
2

0
1

60
60

0
1

61
61

0
2

10
0

10
1

0
1

76
76

0
1

81
81

0

13
2

8
9

0
2

10
11

0
1

8
8

0
1

8
8

0
1

8
8

0
2

12
13

0

14
1

0
5

0
1

0
5

0
3

0
3

0
1

0
5

0
3

0
3

0
3

0
3

0

15
1

0
40

0
2

0
30

0
3

0
35

0
1

0
40

0
3

0
35

0
1

0
40

0

16
1

10
2

10
2

0
1

79
79

0
2

84
85

0
1

82
82

0
1

63
63

0
1

62
62

0

17
3

0
25

0
3

0
25

0
3

0
25

0
1

0
30

0
3

0
25

0
3

0
25

0

18
1

8
8

0
1

10
10

0
1

8
8

0
1

8
8

0
1

8
8

0
1

10
10

0

19
1

3
3

0
1

5
5

0
1

7
7

0
1

5
5

0
1

5
5

0
1

7
7

0

20
3

0
20

0
3

0
20

0
1

0
60

0
1

0
60

0
1

0
60

0
2

0
30

0

21
1

10
2

10
2

0
1

79
79

0
1

65
65

0
1

82
82

0
1

63
63

0
1

62
62

0

22
1

8
8

0
1

10
10

0
1

8
8

0
1

8
8

0
1

8
8

0
1

10
10

0

23
2

0
60

0
2

0
60

0
2

0
60

0
1

0
80

0
1

0
80

0
2

0
60

0

24
1

10
2

10
2

0
1

79
79

0
1

65
65

0
1

82
82

0
1

63
63

0
1

62
62

0

25
2

0
55

0
2

0
55

0
1

0
50

0
2

0
55

0
2

0
55

0
2

0
55

0

26
3

8
10

0
1

12
12

0
2

13
14

0
3

10
12

0
3

12
14

0
1

8
8

0

27
2

10
2

10
3

0
1

80
80

0
1

65
65

0
1

83
83

0
1

80
80

0
1

10
1

10
1

0

28
1

10
3

10
3

0
1

82
82

0
1

65
65

0
1

83
83

0
1

80
80

0
1

82
82

0

29
1

10
3

0
10

4
1

82
0

83
1

65
0

66
1

83
0

84
1

80
0

81
1

82
0

83

S
S
C

=
37

′ 0
09

S
S
C

=
33

′ 9
37

S
S
C

=
33

′ 6
65

S
S
C

=
32

′ 1
53

S
S
C

=
32

′ 0
18

S
S
C

=
32

′ 0
08

L
T

=
62

L
T

=
64

L
T

=
77

L
T

=
81

L
T

=
82

L
T

=
83

∗d
ay

s
of

in
ve

nt
or

y

432 Int J Adv Manuf Technol (2016) 82:419–433

8 Conclusions

In this work, a hybrid swarm intelligence algorithm is pre-
sented to solve the problem of solving the problem of min-
imising the cost of placing safety stock under guaranteed-
service time and the time to market.

The proposed hybrid algorithm has two parts. In the first
one, an option is selected to perform a stage and in the sec-
ond part, a dynamic programming algorithm is used to set
the amount of safety stock based on the selected options.
The first part of the algorithm (i.e. selection algorithm) is
carried out by one of the following two swarm intelligence
algorithms: Intelligent water drop (IWD) or Ant Colony
Optimisation (ACO).

So, as to test the proposed algorithm, a real life applica-
tion is solved. We ran 15 times each algorithm and showed
that the IWD-based algorithm returns solutions sets that
dominate the ones computed using ACO-based algorithm.
Based on two metrics in multi-objective optimisation, the
solutions sets generated by IWD-based algorithm gener-
ate an hyper-area (H) smaller than the area generated by
ACO-based algorithm. Therefore, when IWD is used, the
minimum value of every objective is reached given that the
reference point is set in (0,0). On the other hand, the solu-
tions in every solution set computed by IWD are better
distributed over the solution frontier since the value of the
Spacing metric is close to zero. According to the value of
these two metrics, it seems that the IWD-based algorithm
performs better than the other swarm intelligence algorithm
when the bi-objective problem of placing safety stock and
time to market is solved.

Acknowledgements Asociación Mexicana Cultura, A.C. As part of
the National Research Network “Sistemas de Transporte y Logı́stica”,
the authors acknowledge all the support provided by the National
Council of Science and Technology of Mexico (CONACYT) through
the research program “Redes Temáticas de Investigación”

References

1. Amini M, Li H (2011) Supply chain configuration for diffusion
of new products: an integrated optimization approach. Omega
39(3):313–322

2. Bakker M, Riezebos J, Teunter RH (2012) Review of inven-
tory systems with deterioration since 2001. Eur J Oper Res
221(2):275–284

3. Blum C, Merkle D (2008) Swarm intelligence: Introduction and
applications. Springer

4. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence.
Oxford

5. Chandra C., Grabis J. (2007) Supply chain configuration. Con-
cepts, solutions and applications. Springer

6. Chopra S, Meindl P (2012) Supply chain management: Strategy,
planning and operations, 5edn. Pearson Prentice Hall

7. Crowston WB, Wagner MH (1973) Dynamic lot size models for
multi-stage assembly systems. Manag Sci 20(1):14–21

8. Dorigo M, Stützel T (2004) Ant Colony Optimization. MIT Press
9. Dorigo M, Stützle T (2010) Ant colony optimization: Overview

and recent advances. In: Gendreau M, Potvin JY (eds) Handbook
of Metaheuristics, International Series in Operations Research &
Management Science, vol 146. Springer, pp 227–263

10. Duan H, Liu S, Wu J (2009) Novel intelligent water drops opti-
mization approach to single UCAV smooth trajectory planning.
Aerosp Sci Technol 13(8):442–449

11. Farahani RZ, Rezapour S, Drezner T, Fallah S (2014) Com-
petitive supply chain network design: an overview of classifica-
tions, models, solution techniques and applications. Omega 45(0):
92–118

12. Goh M, Lim JYS, Meng F (2007) A stochastic model for risk
management in global supply chain networks. Eur J Oper Res
182(1):164–173

13. Graves S, Willems S (2000) Optimizing strategic safety stock
placement in supply chains. Manuf Serv Oper Manag 2(1):
68–83

14. Graves S, Willems S (2005) Optimizing the supply chain configu-
ration for new products. Manag Sci 51(8):1165–1180

15. Huang G, Zhang X, Liang L (2005) Towards integrated optimal
configuration of platform products, manufacturing processes, and
supply chains. J Oper Manag 23(3-4):267–290

16. Lesnaia E, Vasilescu I, Graves S (2005) The Complexity of Safety
Stock Placement in General-Network Supply Chains, Innovation
in Manufacturing Systems and Technology (IMST)

17. Li H, Womer K (2008) Modeling the supply chain configura-
tion problem with resource constraints. Int J Proj Manag 26(6):
646–654

18. Moncayo-Martı́nez L, Resendiz-Flores E, Mercado D,
Sanchez-Ramirez C (2014) Placing safety stock in logistic net-
works under guaranteed-service time inventory models: An
application to the automotive industry. J Appl Res Technol 12(3):
538–550

19. Moncayo-Martı́nez L, Zhang D (2013) Optimising safety stock
placement and lead time in an assembly supply chain using
bi-objective MAX–MIN ant system. Int J Prod Econ 141(1):
18–28

20. Moncayo-Martı́nez LA, Recio G (2014) Bi-criterion optimisation
for configuring an assembly supply chain using pareto ant colony
meta-heuristic. J Manuf Syst 33(1):188–195

21. Moncayo-Martı́nez LA, Zhang DZ (2011) Multi-objective ant
colony optimisation: a meta-heuristic approach to supply chain
design. Int J Prod Econ 131(1):407–420

22. Nepal B, Monplaisir L, Famuyiwa O (2011) A multi-objective
supply chain configuration model for new products. Int J Prod Res
49(23):7107–7134

23. Osman H, Demirli K (2012) Integrated safety stock optimization
for multiple sourced stockpoints facing variable demand and lead
time. Int J Prod Econ 135(1):299–307

24. Shah-Hosseini H (2007) Problem solving by intelligent
water drops. In: IEEE congress on evolutionary computation,
pp 3226–3231

25. Shah-Hosseini H (2008) Intelligent water drops algorithm: a new
optimization method for solving the multiple knapsack problem.
Int J Intell Comput Cybern 1(2):193–212

26. Shah-Hosseini H (2009) The intelligent water drops algorithm:
a nature-inspired swarm-based optimization algorithm. Int J Bio-
Inspired Comput 1(1/2):71–79

27. Snyder LV, Shen ZJM (2011) Fundamentals of supply chain
theory. Wiley

28. Straub J (2013) Characterization of extended and simplified intel-
ligent water drop (SIWD) approaches and their comparison to the
intelligent water drop (IWD) approach. In: Proceedings of the 25th
international conference on tools with artificial intelligence

Int J Adv Manuf Technol (2016) 82:419–433 433

29. Talbi EG (2009) Metaheuristics: From design to implementation,
Wiley series on parallel and distributed computing. John Wiley &
Sons

30. Wang F, Lai X, Shi N (2011) A multi-objective optimization
for green supply chain network design. Decis Support Syst
51(2):262–269

31. Wang J, Shu Y (2007) A possibilistic decision model for new
product supply chain design. Eur J Oper Res 177(2):1044–1061

32. Wilhelm W, Liang D, Rao B, Warrier D, Zhu X,
Bulusu S (2005) Design of international assembly sys-
tems and their supply chains under NAFTA. Transp
Res E: Logistics and Transportation Review 41(6):
467–493

33. Xing B, Gao WJ (2014) Intelligent water drops algorithm. In:
Innovative computational intelligence: a rough guide to 134 clever
algorithms. Springer, pp 365–373

	Managing inventory levels and time to market in assembly supply chains by swarm intelligence algorithms
	Abstract
	Introduction
	Literature review
	Problem formulation
	The supply chain configuration problem
	Safety stock problem

	Swarm intelligence
	Ant colony optimisation metaheuristic
	Intelligent water drop

	Proposed swarm optimisation based algorithm
	Selection algorithm
	Place safety stock
	Compute the non-dominated solutions
	Update environment
	IWD-based algorithm
	ACO-based algorithm

	Experimental application
	Results
	Conclusions
	Acknowledgements
	References

