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Abstract Filling holes is a major challenge to reduce digi-
tizing time and makes the digitized model compatible with
applications such as finite element (FE) analysis or inertia
calculations. Indeed, whatever the sensor used, for acces-
sibility reasons or reflection problems, some parts of the
object may be non-measured defining digitizing holes in
the digitized point cloud. In this paper, a method based on
a mesh deformation is proposed to fill the digitized holes.
The proposed method relies on the a priori knowledge of
the numerical model as a nominal mesh. After identifying
the digitized holes and calculating the differences between
the nominal mesh and the point cloud, a deformation of the
nominal mesh is performed. This deformation is determined
by minimizing the energy of deformation of the mesh con-
sidered as a lattice. The proposed method is validated on a
complex shape. Finally, this method is applied to an indus-
trial part in order to highlight interest for balancing issues.

Keywords Digitalization · Energy minimisation · Holes
filling · Shape preservation

1 Introduction

Various types of digitizing systems exist to acquire the
shapes of a 3D object. Whatever the sensor used, laser plane,
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structured light or stereo-vision, optical systems allow the
acquisition of a great amount of points representative of
the part surfaces in a very short time. Researches now
focus on using optical measuring systems for in-line produc-
tion measurements for which measuring time is a critical
issue. However, it is commonly admitted that digitized point
clouds are noisy, dense, and heterogeneous [14], and that
for accessibility reasons or reflection problems, some parts
of the object may be non-measured defining digitizing holes
in the point cloud Fig. 1. Holes in the object representation
could make further applications, such as rapid prototyping
[7], Finite element analysis (FEA), or volume calculations
difficult to achieve [21, 26]. These holes also contribute to
increase the freeform surfaces reconstruction time, which is
already a time-consuming operation [2]. Numerous studies
[6, 13, 14, 18] deal with the definition of automated measu-
ring strategies with the objective of time minimization while
increasing the point cloud completeness, but re-digitizing
is generally time-consuming and sometimes incompatible
with in-process measurements. Furthermore, some zones
could remain inaccessible. Some authors propose to reach
the complete 3D object representation by filling the holes
[15, 21]. Because of the variety of hole types, a large
number of hole-filling algorithms exist, each one more or
less dedicated to one specific type [20].

In this study, we use the a priori knowledge of the CAD
model of the object under study to overcome the digitizing
defects. The algorithm relies on a stress-strain deformation
of the nominal geometry performed with the aim of mini-
mizing the differences between the CAD model geometry
and the point cloud while preserving the initial topology.
It will thus be possible to fill the holes with the deformed
geometry. This approach is interesting as it preserves the
quality of the identified geometrical characteristics and of
the measured dimensions of the object. It is appropriated
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when the point exploitation requires a complete represen-
tation of the object as for FEA, or volume calculation as
it is the case in the present paper. In fact, the approach is
applied to inertia calculation, first step in crankshaft balanc-
ing. As crankshafts are complex parts, some surfaces are
difficult to measured, and the digitizing process generally
leads to incomplete point cloud presenting digitizing holes.
Inertia calculation can only be performed if the discrete data
structure is closed. This is performed by filling the holes
using the morphing-based approach.

1.1 Related works

Methods for hole-filling generally consist of two sub-
problems: hole detection and reconstruction of the missing
regions [19]. The method proposed by Wang and Oliveira
is well-adapted to scanned data. First, a mesh is associated
to the point cloud. The boundaries of the holes are detected
by identifying the boundary edges (edge belonging to only
one triangle). A ring of points around the boundary, defining
the boundary vicinity, is used to interpolate the missing
portion using a Moving Least Squares procedure. Recon-
structed patches preserve and smoothly blend with the
original model.
Jun [9] bases his approach on the simple principle that a hole
can be filled with planar triangulation (such as Delaunay tri-
angulation) if all the boundary edges are projected onto a
plane without auto-intersections. As this only works well for
simple holes, complex holes are divided into several sim-
ple sub-holes that can be filled using the aforementioned
method. In a final step, smoothing is applied to refine the
model quality. Li et al. [12] propose to first identify fea-
ture curves, then use curve blending to complete the missing
parts of the feature curves in the holes. A Bézier-Lagrange

Fig. 1 Digitized holes

hybrid patch relying on the feature curve is then con-
structed to fill the holes. The method preserves the features
but is not completely automated. In their approach, Wang
et al. [21] define a method well-adapted to restoring miss-
ing curves and corners. Missing feature curves (sharp edges)
are reconstructed as B-spline curves. Missing corners are
found by minimizing the square of the tetrahedron’s volume
reconstructed from the potential corner and its neighbors.
Holes are thus filled using advancing front method. This
method is less adapted to complex surfaces. Wang and Hung
[20] propose a method based on Grey System Theory to
achieve a smooth and continuous hole filling. Grey system
theory is used to reduce randomness and increase regular-
ity in the data. A prediction model is used to identify the
location of the future element. In their approach, authors
consider two prediction models: the normal vector predic-
tion and the angle prediction. Once newly points are added,
a final smoothing stage is performed but curvature is not
controlled. Some authors take advantage of 2D images that
have been acquired during the measurement stage to recover
the missing zones [15, 17]. The 2D images are used as a set
of constraints, and as input of a mesh deformation process
which tends to minimize the curvature evolution between
the inserted facets and the initial mesh. The mesh deforma-
tion relies on a mechanical approach for which the mesh is
considered as a bar network. With such an approach, that
combines techniques of shape from shading and mesh defor-
mation, the overall shape of the part is preserved. However,
it requires the use of two measuring systems at the same
time. Some authors use morphing to reconstruct missing
data with a specific application in dental surface reconstruc-
tion. The objective is to align a scanned tooth to a standard
model. The approach begins with a one-to-one mapping of
feature points of the standard tooth and the scanned tooth
thanks to a radial basis function to define the relations
for all points in both teeth. A global deformation (transla-
tion, rotation, and scaling) is performed followed by local
adjustments to align the tooth in preparation to the stan-
dard one [23]. In this method, the use of morphing permits
to fill the holes by taking advantages of the prior knowl-
edge of the general tooth shape. Morphing is more used in
computer graphics for mesh deformation. Two main kinds
of approaches exist: the geometric methods and the physi-
cally based methods [24]. As far as geometric methods are
concerned, lattice or mesh nodes are moved according to
geometric constraints to achieve the deformation. In [8], the
objective is to relate a template to a target geometry con-
sidering some reference points referred to as landmarks.
After a general alignment of the landmarks, using transla-
tion, rotation, and scaling, the morphing is performed using
the landmarks as constraints. The motion of the mesh nodes
is interpolated from the motion of the landmarks based on a
radial basis function regression to preserve smoothness. The
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method is applied for human-femur reconstruction. In some
cases, the morphing can be restrained to a region of interest
while preserving the general shape. Kho and Garland [10]
propose an iterative sketch-based deformation. The user
draws a reference curve in a zone of interest and a second
target curve. The deformation is achieved by deforming the
reference curve toward the target one. These methods are
generally more suited to visualization and animation.

Physically based approaches lead to more realistic results
as they rely on energy minimization [5, 15, 17, 24]. As for
geometric methods, the 3D object is represented as a trian-
gular mesh, but the deformation is made here considering
mechanical energy. Most methods only consider the stretch-
ing energy which accounts for length changes and add con-
straints to preserve the curvature evolution. In our approach,
all types of mechanical energy are taken into account:
stretching, bending, and torsion energy. Stretching corre-
sponds to length changes, while bending and torsion ensure
the overall shape preservation and continuity in curvature
evolution.

1.2 Method overview

In this study, the proposed method for hole-filling considers
the deformation of the object’s CAD model to best approx-
imate the scanned data. The CAD model is represented as a
triangular mesh (STL format) (Fig. 2), for which {N} is the
set of nodes and {P } the set of beams defining the triangu-
lar facets of the mesh. The mesh deformation is performed
according to a physically-based approach based on energy
minimization. To preserve curvature continuity, all types
of solicitations are considered here: torsion, bending, and
stretching.

The big picture of the method proposed to deform the
mesh of the nominal part toward the measured data is dis-
played in Fig. 3. First, a registration step is required to
globally align the mesh onto the scanned data. Indeed, to
identify holes and perform a deformation that preserves
the part shape, a good match between the measured and
the nominal features is necessary. To make this registra-
tion, numerous methods exist [4, 22, 25], more generally

Fig. 2 Surface modeling
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Fig. 3 Proposed approach

based on the well-known ICP algorithm [3]. In the present
study, the HT-ICP algorithm is adopted. The second and
the third steps focus on hole detection and boundary iden-
tification. Indeed, boundaries limit the zones for which the
deformation will be performed. The last step is the mesh
deformation based on stress-strain energy minimization.
The energy minimization relies on a mechanical modeling
which is detailed in the next section.

2 Mechanical modeling for energy minimization

The CAD model is represented as a triangular mesh. Each
edge defining a facet is considered as a cylindrical beam
which is characterized by its length L and its circular
section S. The mechanical characteristics are defined by
(E, G, I, Io), respectively, the Young’s modulus, the torsio-
nal modulus, the second moment, and the polar second
moment (Table 1).

2.1 Settings

Let us consider the set of m beams {P k}[1,m] and the
set of n nodes {Ni}[1,n] defining beam’s extremities. The
displacement of each node is defined by six components,
three accounting for the translation (ui , vi , wi) and three

Table 1 Degree of freedom (DOF) description

DOF Characteristics

Tension u E.S

Torsion α G.Io

Bending in plane (X,Y) v et β E.I

Bending in plane (X,Z) w et γ E.I
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others for the rotation (αi , βi , γi). Data can be expressed in
the global frame R as well as in the local frame Rk associ-
ated to the beam k (Fig. 4). Hence, the following parameters
can be defined:

– Uk
i : Node i displacement in the local frame Rk .

Uk
i =

[
uk

i vk
i wk

i αk
i βk

i γ k
i

]t

Rk
. (1)

– Ui : Node i displacement in the global frame R.
– Fk

(k,i) : External force applied to the beam k at the node
i in the local frame.

– F(k,i) : External force applied to the beam k at the node
i in the global frame.

Each beam k is assumed to be axisymmetric and
is defined by its mechanical (Ek, Gk) and geometrical
(Sk, Lk, Ik, Iok) characteristics. The lattice deformation is
completely defined by the global force, F = [F1 · · · Fm]t

and the node displacement U = [U1 · · · Um]t expressed in
the global frame R.

2.2 Stiffness matrix definition

For simplification reasons, we introduce the total force F̂ k
k =[

Fk
(k,i) F k

(k,j)

]t

applied to the beam k at each extremity and

the displacement Û k
k =

[
Uk

i Uk
j

]t

of each beam extremity.

Hence, the local stiffness matrix of the beam k is defined
such as F̂ k

k = Kk
k .Û k

k with:

Kk
k =

[
Ak

k Ck
k

(Ck
k )

t
Bk

k

]
(2)

where the components of Ak
k , Ck

k , and Bk
k calculated by

Euler Bernoulli beam theory are given in Appendix A. The
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Fig. 4 Beam modeling

transformation from the global frame R to the local frame
Rk of the beam k can be expressed thanks to the Euler’s
angles θk and φk giving the matrix MRRk = Ry(

π
2 −

φk).Rz(θk) (Fig. 5). The external forces and the displace-
ment can be easily expressed in the global frame by Ui =
M∗

RRk .U
k
i and F(k,i) = M∗

RRk .F
k
i with :

M∗
RRk =

[
MRRk 0

0 MRRk

]
(3)

It is thus possible to define the stiffness matrix in the global
frame to calculate the relationship F̂k = Kk.Ûk:

Kk =
[

M∗
RRk 0
0 M∗

RRk

]
.Kk

k .

[
(M∗

RRk )
t 0

0 (M∗
RRk )

t

]
(4)

2.3 Energy balance

For each beam k, the deformation energy is defined by
E

def
k = 1

2 .Û
t
k.Kk.Ûk . Hence the total energy of deformation

is defined by:

E
def
tot =

∑
k∈[1,n]

1

2
.Û t

k.Kk.Ûk (5)

The global stiffness matrix K is calculated by assembling
all the stiffness matrices. Therefore, the total energy of
deformation becomes:

E
def
tot = 1

2
.U t .K.U (6)

The solution of the deformation problem consists in the
minimization of the total energy. In our case, as the exter-
nal forces are null the mechanical work Wext = Ut .F , so
the solution that minimizes the strain energy is the one that
minimizes the energy of deformation. The resolution of such
a problem is a classic quadratic optimization problem which
is solved using Matlab.

The mesh deformation is performed by imposing dis-
placements to the mesh nodes that do not correspond to
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Fig. 5 Frame description
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holes and by computing the displacement of the other nodes
by minimization of the total energy E

def
tot . Let us remem-

ber here that each displacement includes three translations
and three rotations. These 6 degrees of freedom involve both
the shape preservation and the continuous evolution of the
curvature. On the other hand, mesh deformation calculation
can be time-consuming. Indeed, for a classical part (Fig. 2),
the mesh includes about 105 nodes each having 6 degrees of
freedom. The originality of our approach is thus to reduce
the minimization problem to zones of interest defined from
digitized hole neighborhoods. Finding the holes is thus an
essential step in the overall approach as we will see now in
more details.

3 General approach

The general approach consists of three main steps (Section
1.2): data registration, hole detection and boundary iden-
tification, and mesh deformation. The input data are a
nominal mesh and a digitized point cloud corresponding to
the scanned data. Finally, the nominal mesh is deformed
to match the digitized point cloud which involves the hole
filling.

3.1 Data registration

The first step of the approach is a global data registra-
tion between the scanned data and the nominal mesh to
ensure the correspondence between scanned and nomi-
nal features. This step, necessarily performed prior to the
mesh deformation enables the point cloud to be close to
the nominal mesh. Global registration is achieved using
a HT-ICP algorithm [4]. The result is considered sat-
isfactory if the registration error is less than the error
imputed to the manufacturing process and/or the digitizing
error.

Beams to 
deform

Local 
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q Closest
Points to N1 

q Closest
Point to N2

N1 

N2 
Ni 

Fig. 6 Hole detection and mesh reduction

Beams to 
deform

Ring included into
the deformable beam
set 

Fig. 7 Boundary definition

3.2 Hole detection and boundary detection

As point clouds obtained from scanning are generally dense
and heterogeneous with a lack of continuity [14], finding
digitizing holes could be a long and tedious task. To sim-
plify this issue, we propose to take advantage of the initial
data registration which leads to a good match between the
scanned data and the nominal mesh. Holes are thus identi-
fied by considering points that belongs to the nominal mesh
for which no equivalent exist in the point cloud.
The main hypothesis here is that the hole dimension is
greater than the mesh size. Let us consider a point N of
the nominal mesh, and its associated normal vector (Fig. 6).
The q closest points to N belonging to the point cloud are
identified. A local mesh is built from these q points, and
the intersection between the line passing through N and
directed along the normal vector is calculated. If the inter-
section does not exist, as for point N1 in Fig. 6, the point
N is identified as a hole point, and the beams linked to this
node are classified as beams to be deformed (in red in Fig.
6). This hole detection method turns out to be efficient and
simple to implement as it is based on the calculation of the
vector normal. The facets linked with the considered point
are selected, and the normal vector is estimated by calcu-
lating the average of the normal vectors of the previously

q Closest
Point to Ni 

Ni

Imposed
displacement

Local normal 
vector

Fig. 8 Displacement computation
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Fig. 9 Digitized point cloud with artificial holes

defined facets. Note that such a method involves the reduc-
tion of the mesh to be deformed to a restriction defined by
the digitized holes.

3.3 Mesh deformation

To preserve the curvature evolution between the deformed
regions and the nominal mesh, it seems relevant to increase
the region to be deformed (Fig. 7). Therefore, a ring around
the border is defined. The ring’s width is defined according
to the mesh’s size; in this study, the width is equal to three
times the mesh’s size. The nodes of the nominal mesh that
are added to the ring necessarily have their counterpart in the
scanned point cloud. For such nodes, a corresponding point
can be defined in the scanned point cloud by considering the
barycentre of the q nearest points to the given node.

For each node belonging to the border zone (in orange
in Fig. 7), the displacement u is imposed and must

Fig. 10 Deviations between the CAD-filled mesh and the digitized
point cloud

Fig. 11 Deviations between the morphed mesh and the digitized point
cloud

be calculated. For such nodes, the intersection between
the straight line passing through the point and directed
along the vector normal and the mesh created by the
q closest points exists (see Section 3.2). The displace-
ment is the one that makes the studied node perfectly
matched with its corresponding point: ui = λ.ni with
ni the normal vector Fig. 8. This defines the gener-
alized displacement of the node i in the global frame
that is introduced in the energy minimization problem
(Eq. 6):

Ui = [
λ.nix λ.niy λ.niz 0 0 0

]t
R . (7)

For other points (in grey in Fig. 7), the displacement is
used to reduce the gap between the nominal mesh and the
measured points.

The minimization problem thus leads to the deformation
of the nominal STL mesh to match the point cloud involving
the propagation of the deformation to the digitized holes.
Such an approach ensures the preservation of the general
shape as the deformation is only applied to the zones of
interest around the digitized holes. The management of the
curvature continuity at the vicinity of the junction is done
thanks to the control of the tree rotations at each node.

Table 2 Results analysis

Cad filled Morphing

Maximal deviation 1.6 mm 0.55 mm

Mean Deviation 0.0085 mm 0.044 mm

Standard Deviation 0.067 mm 0.073 mm
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Fig. 12 Representation of the studied part

4 Application

4.1 Study of a sculptured part

The method is applied to a sculptured surface made by
3D printing (ABS plastic part) (Fig. 2) bounded by a
100 x 100 x 15 mm3 box. The part is scanned using a
laser scanner Kreon KZ25 mounted on a coordinate mea-
suring machine (CMM). The manufacturer announces an
accuracy of 15 μm. Only one scanner orientation is used
during the scanning process in order to reduce the digitiz-
ing noise. Under these conditions, the maximal digitizing

Table 3 Computation parameters

Number of nodes of initial mesh 12,718

Number of nodes of restricted mesh 2775

Number of nodes of the scanned mesh 545,007

noise is estimated to be 72 μm [1, 26]. After the scanning
is done, artificial holes are added to the actual ones (Fig. 9).
To assess our method, the holes are filled using a CAD soft-
ware (CATIA ©) for which the mesh size is equivalent to
that used in the nominal mesh. The mesh that is filled using
the aforementioned CAD software is compared to the initial
point cloud (Fig. 10). As shown in the figure, the CAD soft-
ware does not succeed in hole filling as some holes remain
unfilled. Furthermore, deviations with the initial mesh can
reach up to 1.6 mm which can be penalizing for some
applications. Lastly, one can see that curvature continuity is
not ensured and so the overall shape is not preserved. The
proposed morphing method is applied. Deviations between
the morphed mesh and the measured point cloud are dis-
played in Fig. 11 and a comparison between the CAD-filling
approach and our approach is proposed in Table 2. Since
the distance between the scanned data and the CAD-filled
mesh are identical outside the hole areas, the mean dis-
tance and the standard deviation are closed to those obtained
with the morphing-based approach. However, the maximal
distance is strongly reduced with our algorithm (three times
lesser). Furthermore, Fig. 11 clearly highlights smoothing
and overall shape preservation.

Nevertheless, high deviations can be observed on the
edges of the part. This is likely due to the normal vector cal-
culation, which is deficient when it comes to mesh edges for
which there is a lack of information.

Let us see now, the interest of our algorithm for point
exploitation, in the particular case of inertia parameter
calculation for crankshaft balancing.

4.2 Improving crankshaft balancing

This illustration is directly linked with a new method for
crankshaft balancing based on non-contact measurement.
In this method, once the crankshaft is digitized using a
laser-plane scanner, a STL mesh is directly built from the

Table 4 Unbalance in reference planes

Part Unbalance 1 (g cm) Unbalance 2 (g cm)

Nominal mesh 261.7 261.5

Morphing 258.9 258.3

Cad filled 253.9 253.8
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Fig. 13 Deviation (mm) between nominal and morphed crankshaft

digitized points. This mesh, which must define a closed
structure, is the support for a voxelisation algorithm [16].
The voxelisation algorithm delivers a 3D structure of voxels,
each one being assigned with an elementary mass. The
calculation of inertia parameters is carried out considering
this 3D structure made of concentrated masses located at the
center of each voxel. This method has proven to be efficient
for the estimation of the specific unbalances if the digitized
point cloud is a complete representation of the shape [26].
Digitized holes can alter unbalance calculation. Indeed,
crankshafts are very complex parts, which generally require
numerous sensor orientations to access all the surfaces to be
measured. As this process is time-consuming, the idea is to
limit the number of sensor orientations, and to fill the holes
with the morphing-based approach we propose.

For this purpose, the digitizing of the crankshaft is
simulated from the CAD model. First, the defects of the
manufacturing process are simulated so that the crankshaft
has unbalance defects. Rough crankshafts are convention-
ally obtained by forging. Associated defects are simulated
by performing an expansion of 3 % of the nominal CAD
model and by carrying out a 0.5 mm shift between the two
sections located on both sides of the symmetry plane. To

Fig. 14 Digitized crankshaft

simplify the representation, only a 100 mm portion of the
crankshaft is studied (Fig. 12a). Mesh specifications are
detailed in Table 3. These defects generate unbalances that
are calculated in the two reference planes located on either
extremity (Table 4).

Once the defects are simulated, the mesh is calculated
from the modified CADmodel. To simulate digitizing holes,
holes are added to the mesh (represented in purple in Fig.
12a) corresponding to areas that are difficult to scan [26].
Our algorithm is thus applied. Results highlight a mean
deviation of 8.7 μm and a standard deviation of 92 μm
(Fig. 13). Unbalances are calculated for the morphed mesh.
As displayed in Table 4, the values calculated after mor-
phing are close to the actual values. Indeed, the estimated
unbalances are determined with an error of less than 1.5 %.
To enhance the efficiency of our approach, unbalances
obtained using a classical CAD-filling are also calculated
and compared to the actual ones. In this case, the error is
up to 3 % which could be penalizing for the further balanc-
ing operation. Therefore, with the morphed-based approach
to fill digitized holes, it is possible to preserve the overall
shape of the digitized object, and then, it is also possible to
conduct inertia calculations with an error of less than 1.5 %
relatively to the actual values.

4.3 Application to digitized data

The method is applied to actual digitized data. The
crankshaft is digitized using a structured light sensor (Gom
Atos III) positioned thanks to a tripod. Under these condi-
tions, the maximal digitizing noise is estimated at 18 μm
[26]. From previous work [11], we know that 50 viewpoints
are necessary to reach completeness. However, digitizing
holes are present in the point cloud in non-accessible areas
(Fig. 14). To clarify the representation, only the arm con-
necting the crankpin to the crank journal and one of the
cylinders machined at both extremities are specifically stud-
ied (Figs. 15b and 16b).

The arm is bounded by a 85 x 40 x 110 mm3 box.
According to the proposed method, the nominal mesh (Fig.
15a) is deformed, and the morphed mesh is displayed in Fig.
15c, d. Point identified as holes (Section 3.2) are represented
in red, and points of the border used to impose displace-
ments (Section 3.3) are represented in orange. Despite the
complexity of the hole boundary (Fig. 15b) and of the digi-
tizing noise, the mesh morphing leads to a satisfactory result
as the shape is clearly preserved, along with the curvature
evolution 15d. The morphed mesh can replace the point
cloud for further point exploitation. This result highlights
the performance of the method for filling actual digitized
holes.

Regarding the second part, it consists of a 41 mm diam-
eter and 19 mm length cylinder (Fig. 16a). In this case, the
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Fig. 15 Representation of studied part of the crankshaft

lack of data corresponds to the top plane (Fig. 16b). As dis-
played in the figure, only a few points are digitized on the

Fig. 16 The studied cylinder

plane surface, which involves that only a few points can
be used to define the border of the planar portion. In addi-
tion, due to the tangency discontinuity between the plane
and the cylinder, digitizing noise is high in this area. As
a result, the calculation of the imposed displacements is
heavily altered, and the resulting morphed mesh is incorrect
(Fig 16c).

4.4 Discussion

The applications we proposed highlight the relevance of
the morphing-based approach based on the CAD model
to fill digitizing holes prior to point exploitation. This is
clearly illustrated through the crankshaft balancing exam-
ple. When digitized data are used, although digitized holes
present a complex geometry, and despite digitizing noise,
the morphed mesh can be calculated. The general shape is
preserved and all the holes are filled considering curvature
continuity at the junctions. However, the method present
some limits. First, the manufacturing process is assumed
to be controlled, i.e., the shape of the actual part is not
very different from the shape of the nominal part. This
is generally the case for machining or additive manufac-
turing operations as proposed here. In addition, the hole
must not cover a complete feature, as it is the case with
the top plane of the cylinder. The great lack of points on
the surface involves a bad shape prediction. Finally, dig-
itizing noise can be penalizing at the vicinity of the part
edges for which the evaluation of the normal vector can be
deficient.

5 Conclusion

A complete approach has been presented in this paper
for filling holes in point clouds with a priori knowledge
of the CAD model. This approach relies on the morph-
ing of the CAD model represented as a mesh according
to the minimization of the mechanical energy. The mesh
is associated to a beam lattice and, to preserve curvature
continuity, all types of solicitations are considered (tor-
sion, bending, and stretching). Hole-filling with shape
preservation is particularly essential to facilitate applica-
tions such as rapid prototyping, finite element analysis, or
inertia calculations as proposed in this paper. To prevent
substantial computational time, a method of restriction
of the meshes to the digitized hole areas has been devel-
oped. This method preserves the curvature connection
between the deformed areas and the nominal mesh. As
crankshaft balancing using optical means is nowadays
a challenging issue, the application of the proposed
approach concerns the calculation of unbalances using
incomplete simulated digitized data. Using our approach,
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in comparison with classical CAD-filling methods,
showed a significant decrease in unbalance determination.
The relevance of the morphing-based approach based on
the CAD model to fill digitizing holes is also illustrated
by actual digitized data. The method is efficient when the
manufacturing process is controlled and when data are not
affected by the digitizing noise (when it remains inferior to
the mean value of the sensor noise. The morphed mesh can
thus replace the point cloud for further point exploitation.
Such a method could also help in the definition of digitiz-
ing strategy for complex parts. Indeed, complete digitizing
is not necessary anymore when digitizing holes can be
accurately filled with shape preservation.

Appendix A: stiffness matrix description

Kk
k =

[
Ak

k Ck
k

(Ck
k )

t
Bk

k

]
(8)

Ak
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0 0 0 0 0

0
12.Ek.I k
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0 0 0
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(Lk)2
0

0 0 0
Gk.Iok

Lk
0 0

0 0 − 6.Ek.I k

(Lk)2
0

4.Ek.I k

Lk
0

0
6.Ek.I k

(Lk)2
0 0 0

4.Ek.I k

Lk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Bk
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

Ck
k =
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⎤
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(11)

Appendix B: frame transformation description

MRRk =

⎡
⎢⎢⎣

cos
(π

2
− φk

)
0 sin

(π

2
− φk

)

0 1 0

− sin
(π

2
− φk

)
0 cos

(π

2
− φk

)

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

cos(α) − sin(θk) 0

sin(θk) cos(θk) 0

0 0 1

⎤
⎥⎥⎦

(12)
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