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Abstract When a thermal error model of a machine tool is
established, selecting the appropriate temperature measure-
ment point is a very difficult problem. This paper proposes a
novel method for constructing a linear virtual temperature.
The proposed method can overcome the problem of selecting
the temperature measurement point. First, temperature-
thermal expansion hysteresis characteristics are used to divide
the temperature measurement points into two groups. Each
temperature variable is then chosen through a principal com-
ponent analysis (PCA). Finally, using two temperature-
variable weights and the correlative coefficient thermal dis-
placement as the maximum optimal indexes, two temperature-
weighted coefficients are calculated, and a linear virtual-
temperature variable related to the thermal error linearity is
then formed. In establishing the proposed thermal error model,
the linear virtual temperature formed can serve as a system
input variable. The proposed method was tested on a three-
axis milling machine to determine the spindle Z-axial thermal
error, and the results show that the root mean square error
(RMSE) is reduced by 11 % and the sum of the squares of
the error (SSE) is reduced by 39% in comparison with a direct
application of a temperature variable when establishing such a
model. In the proposed method, only two temperature mea-
surement points are used to establish a model, through which

the complexity in determining the optimal measurement
points through a traditional method, along with the number
of temperature measurement points required, is greatly
reduced.

Keywords Machine tools . Thermal error . Hysteresis
characteristic . Linear virtual temperature . PCA

1 Introduction

At present, the manufacturing industry requires a very high
accuracy in machine part machining. The thermal error has
become the major factor affecting machine tool processing
[1]. There are two general approaches to decreasing or even
eliminating the influence of thermal errors: hardware compen-
sationmethods and software compensationmethods to control
over them [2, 3].

Software compensation methods are currently popular re-
search areas owing to their flexible and convenient applica-
tions [3]. A software compensation of the thermal errors is
used to elucidate the relationship between the thermal errors
and temperature in a machine tool. Before a highly accurate
thermal error compensation model can be established, it is
necessary to solve a key problem in selecting the appropriate
temperature measurement points on the machine tool. Accord-
ingly, the selection of temperature measurement points is a
key function for the accuracy and robustness of the thermal
error model. To obtain the appropriate temperature measure-
ment points, scholars have put forward the following
methods:

1. Mathematical
statistics method

The common advantages of the
existing mathematic statistics method
include the following: a large number
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of sensors can be arranged on a
machine tool, and several optimal
measurement points can then be
selected from the arranged sensors
through a statistical analysis [4–12].
However, there are certain
disadvantages of this type of method:
(1) it takes a great deal of time to ar-
range a large number of sensors on a
machine tool based solely on experi-
ence, and it is thus necessary to search
for the optimal measurement points
through the application of an algo-
rithm. (2) The temperature sensor ar-
rangement is unlikely to cover the
optimal positions, resulting in certain
omissions. (3) The optimal positions
are unlikely to be adaptable for a lay-
out of the temperature sensors. Final-
ly, (4) different statistical theories are
likely to obtain different results for
sensors of the same group. These
above issues are likely to cause the
optimal measurement points to be
unattainable.

2. Numerical
calculation method

To carry out an analysis using a
numerical calculation method, a finite
element method (FEM) and a finite
difference method (FDM) are mainly
adopted [13, 14]. The advantages of a
numerical calculation method are a
complete computer simulation with
low cost. The disadvantages of a nu-
merical calculation method are an in-
ability to provide accurate boundary
conditions when a simulation is car-
ried out. In addition, the effects of the
joint surfaces among the different
parts of a machine tool can lead to
errors in the simulation results.

3. Theoretical
analysis method

Ma [15] generated an analysis of a
mechanism produced using the
thermal expansion hysteresis
behaviors, and accounted for the
changing laws when measuring the
points on the temperature-thermal ex-
pansion curves for different distances
from the thermal resources, that is, the
measurement distance to the thermal
resources ranges from nearby to far
away, and thus, the curves can gradu-
ally change from concave to convex.
He suggested that, to increase the

accuracy of a thermal error model, the
positions of the temperature sensors
selected should appear to have a linear
relation with the thermal expansion.
In addition, the work in [15] indicates
that the optimal measurement point of
a one-dimensional rod part should be
on xopt ¼ 0:5632

ffiffiffiffiffiffiffiffi

kt=cρ
p

. Accordingly,
although this method is used to carry
out a theoretical analysis of the opti-
mal measurement points, the analysis
model applied may neglect the influ-
ence of the heat exchanges through a
convection current, thereby affecting
the accuracy; in addition, on the ma-
chine tool parts may be no way to di-
rectly use the given formula to arrange
the temperature sensors. Although the
hysteresis characteristic has a negative
effect on the accuracy of the model, it
can be used to classify or select the
temperature measurement points. For
example, in [16], the optimal temper-
ature measurement points are selected
using the hysteresis characteristic.

To avoid neglecting the optimal temperature measure-
ment points when using a mathematical statistics method
and the hysteresis characteristic to classify such points, this
research provides an optimal method for determining virtual
measurement points using the temperature-thermal expan-
sion hysteresis ability for a classification of the temperature
variables and a linearity formation. When the temperature
measurement points are classified, it can be determined
whether their layout should be adjusted to make certain
that their positions are relatively rational. When the pre-
arranged temperature sensors are not at linear measurement
positions, one temperature sequence appearing to have a
linear relation with the thermal expansion is structured from
two temperature sequences that are not in the best position
in terms of the measurement point of the temperature-
thermal expansion curve. The structured temperature se-
quence is known as the linear optimal virtual temperature.
This temperature is the optimal value under the best indices
of the temperature-thermal expansion linearity. The advan-
tage of this method is that there are only two temperature
measurement points needed to structure a single linear
temperature-thermal expansion sequence. This can provide
a favorable condition for the later establishment of a ther-
mal error model, particularly simplifying the mathematic
model such that only a small amount of calculations is
required, thereby meeting the real-time needs of various
application fields.
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2 Analysis of linear virtual temperature structure
theory and test

2.1 Performance experiment on the rod part
of a temperature-thermal expansion

The basic reason for the existence of thermal expansion hys-
teresis characteristics is that the thermal conduction velocity is
smaller than the expansion velocity, thus making the temper-
ature point at different positions and the end thermal expan-
sion curves form different shapes. In the following stage, an
analysis of the linear optimal measurement points should be
conducted to select the best positions. To decrease the analysis
complexity, the thermal conduction process of one-
dimensional rods is used in the examples to carry out the
analysis, as shown in Fig. 1. The rod length is 1 m in natural
convection condition. Eleven temperature sensors are ar-
ranged on the rod in order from the left as T0, T1,…T10. The
distance between each sensor is 10 cm. The thermal resource
strength is 1000 W/m2. At the rod end, eddy current sensors
are installed to monitor the thermal distortion. After the tem-
perature rises for 2 h and falls for 1 h, the temperature-thermal
expansion curves are measured, as shown in Fig. 2 (the curves
after T5 are too close to be marked in the figure).

It can be seen from Fig. 2 that during the temperature in-
crease stage, the T0 temperature measurement point is nearer
the thermal resource, the temperature change is faster than the
varying thermal expansion, and thus the curves displayed are
rendered in a concave shape; as the temperature sensor be-
comes increasingly distant from the thermal resource, the con-
cavity of the curve gradually decreases. For instance, at the T2
position, the temperature-thermal expansion curve gradually
becomes approximately linear. At the T3 point, which is far-
ther from the thermal resource, the temperature-thermal ex-
pansion curve becomes convex, thus illustrating that the ther-
mal expansion becomes faster than the temperature variation,
but on the curves displaying that temperature change is small-
er while thermal variation is larger. This indicates that, with
the changes in the distance between the temperature measure-
ment point and the position of the thermal resource, the shape
of the temperature-thermal expansion curve also happens to
change gradually. The curve shape from the nearby to far
away temperature measurement points gradually changes
from concave to convex. Based on the above situation, there

is bound to be certain positions where the temperature-thermal
expansion test curve can be approximately linear, for example,
at the T2 position. The above description is an intuitive anal-
ysis of the temperature increase stage. It can be determined
from the fundamental theorem of calculus that when the sec-
ond derivative of one curve is larger than zero, the curve is
concave; when the second derivative is smaller than zero, the
curve is convex; and when the second derivative is equal to
zero, the curve becomes a straight line. Accordingly, based on
the symbols of the second derivative curve and in combination
with the shape features of the temperature thermal expansion
curve, the following conclusions can be obtained: when the
measurement point is farther from the thermal resource, the
second derivative of the temperature-thermal expansion curve
is smaller than zero, and when the measurement point is near
the thermal resource, the second derivative of the temperature
expansion is equal to zero. Based on the above conclusion, the
relations between the distance of the measurement point and
thermal resource can be determined in accordance with the
magnitude of the second derivative of the temperature-
thermal expansion curves. At the same time, the temperature
measurement points can be divided into two groups in accor-
dance with the positive and negative values of the second
derivative of the temperature-thermal expansion curves: (1)
when the second derivative of the temperature-thermal curve
is smaller than zero, the temperature measure point is located
on the right side of the linear temperature measurement point,
and (2) when the second derivative of the temperature-
expansion curve is larger than zero, the temperature measure-
ment point is located on the left side of the linear temperature
measurement point. Based on the above principle, it is easy to
classify the temperature measurement points. The physical
aspect of this method is definite and easy to implement and
overcomes the weak points of the unclear physical aspects of
the classification of the temperature measurement points de-
termined through a statistical analysis and miscellaneous
calculations.

Because the distances between the temperature measure-
ment points and the thermal resource positions differ, theFig. 1 Arrangement of sensors on a rod

Fig. 2 Sketch of temperature-thermal error relation
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temperature-thermal expansion curves have different charac-
teristics. To ensure the prediction accuracy of a thermal error
model, Yang [17] suggested that a dynamic thermal error
model method should be established to improve the model
prediction accuracy. To further improve the prediction accu-
racy of the thermal error model, Yang [18] also suggested that
an integrated recurrent neural network model can adapt to the
non-linearity and non-statistical performances during the ther-
mal deformation process, thereby further improving the accu-
racy of the model prediction. Although these two types of
thermal error models have greatly improved the accuracy of
thermal error prediction, their structures are complicated and
inconvenient for practical use. If the temperature measurement
points are correctly at the linear temperature measurement
points, a linear thermal error model that is simple in structure,
and with high prediction accuracy, can be established. For this
reason, Ma [15] suggested that when a thermal error model is
established for a machine tool, the best temperature measure-
ment points should be selected for those points that have a
linear relation with the thermal expansion, and the author pro-
vided a formula for calculating the linear position. However,
because the structure of a machine tool is very complicated
and irregular, it is not easy to carry out a calculation directly
though the linear point formula given in [15]. Therefore, a
hypothesis was suggested: If the temperature measurement
points are not at the linear points, can a temperature sequence
appearing to have an approximately linear relation with the
thermal expansion of a machine tool be structured through
several different points? The next section analyzes this
question.

2.2 Structure and analysis of linear virtual temperature

Through the analysis described in Section 2.1, we are able to
carry out a classification and determination of the temperature
measurement points based on their distance from the thermal
resources in terms of the shape of the temperature-thermal
expansion curve at certain points. For a convenient and prac-
tical application in structuring the linear temperature measure-
ment points, a simply hypothesis is put forward, i.e., if there
are two temperature measurement points, the shape of the
measured temperature-thermal expansion curve for the in-
creasing temperature stage will be convex, and the for the
opposite, it will be concave; in addition, the temperature se-
quences structured through these two measurement points ap-
pear to have a linear relation with the thermal expansion, i.e.,
there is a single linear temperature measurement point.

The following proves the existence of a single virtual linear
measurement point through the two measurement points men-
tioned above. The above topic can be described through math-
ematic language: based on the fact that the second derivative
of f1(x) is smaller than zero and that the second derivative of
f2(x) is larger than zero, a single function, f(x), can be

structured through the weighted sum of f1(x) and f2(x) so as
to make the second derivative zero, as shown in Fig. 3.

Proof: To begin, assume that there exists a second deriva-
tive of f(x).

Assuming that the function, f(x), is structured through a
weighted f1(x) and f2(x), and making the second derivative
be equal to zero, then

f xð Þ ¼ af 1 xð Þ þ bf 2 xð Þ; ð1Þ
where a and b are weighted coefficients satisfying a+b=1.

To seek the second derivative for two sides of Eq. (1) and
letting f″(x)=0, we obtain

af 1″ xð Þ þ bf 2″ xð Þ ¼ 0; ð2Þ
where f1″(x)<0, f2″(x)>0, and a+b=1. We can then have the
following equation:

a ¼ f 2″ xð Þ
f 2″ xð Þ− f 1″ xð Þ: ð3Þ

Owing to the fact that the signs of the second derivatives
f1(x) and f2(x) are the opposite and their denominators are not
equal to zero so that Eq. 3 exists, the conclusion is proved that
is to assign the weighted coefficients in terms of Eq. 3 as able
to weight two functions to structure the function as the linear.

Through the above proof, one temperature sequence
appearing to have a linear relation with the thermal expansion
can be structured through a temperature-thermal expansion
curve appearing to be a convex and concave temperature se-
quence for two measurement points. In the previous section,
the temperature measurement points were derived into two
groups in terms of their thermal expansion hysteresis behav-
iors. Accordingly, when structuring the virtual measurement
points, as long as one convex sequence and one concave two-
temperature sequence of the temperature-thermal expansion
curves are chosen, a single virtual measurement point can be
structured. Because many temperature measurement points
are arranged during these measurements, many kinds of com-
bined methods exist. To make the most out of the effects of
such a combination, it is necessary to solve the problem of
how to select two temperature variables required from the

Fig. 3 Sketch diagram of the linear function of a structure

1968 Int J Adv Manuf Technol (2015) 80:1965–1973



temperature measurement points of two groups so as to create
a combination with the best results.

2.3 Main principle of a PCA

When certain objects are studied, many indexes or variables
should always be taken into account to reflect the characteris-
tics and laws of the objects in a comprehensive and accurate
manner. Accordingly, because as many indexes as possible
can be considered to accurately reveal the objective character-
istics and laws, a problemmay be generated in which the more
indexes that are considered, the more complicated the analyt-
ical process will become. For this reason, Hotelling [19] sug-
gested the use of a principal component analysis (PCA). De-
tails of this analysis method can be found in [20]. The purpose
of a PCA is to study how a few variables are used to account
for the original variables when expressing information
through several linear combinations of the original variables
under the prerequisite of losing less information. In this way,
we can achieve the objective of playing a role in reducing the
number of dimensions and simplifying the problem under the
prerequisite of retaining the original information. The ab-
stracted comprehensive indexes are called the principal com-
ponents, the characteristics of which are as follows:

1. Every principal component is a linear combination of
each original variable.

2. The number of principal components is much smaller than
the number of original variables.

3. The principal components have reserved most of the in-
formation regarding the original variables.

4. There are no correlations among each principal
component.

2.4 Temperature variable selection

When the temperature variables are selected, the more infor-
mation carried by the temperature sequence that is available,
the more effective the results of the established model will be.
The PCA method is used to abstract the first and second com-
ponents from the information matrix formed by all of the
temperature variables, and a correlation analysis is conducted
from the first and second principal components. The two max-
imum temperature variables of the correlative coefficients of
the first and second principal components serve as two tem-
perature variables to structure the linear virtual temperature.

One point needs to be explained: Why are the principal
components directly used as virtual temperature variables?
The main reason is that every principal component is part of
the original variable linear combination. For the arrangement
of the sensors, there is no reduction in their number, and thus,
the principal components are directly used to structure the

temperature sequence without a reduction in the number of
sensors. If the correlation coefficients of the selected temper-
ature variables and the principal component are larger, it can
be ensured that the information provided by the temperature
variables will be the same or similar to the principal
component.

2.5 Structure method of linear virtual temperature

Through the PCA, we selected two temperature variables from
numerous temperature variables with an aim to structure a
variable with the thermal expansion value appearing to have
a linear relation through the two variables. The structured
temperature cannot strictly become a linear relation owing to
the cause of the measurement error. For this reason, only the
maximum variable of the linear correlation coefficient can be
constructed. This problem can be converted into an optimal
constraint problem.

Max corrcoef T ; Zð Þð Þ
s:t T ¼ a1⋅T1 þ a2⋅T2

a1 þ a2 ¼ 1
; ð4Þ

where T is the structured temperature, Z is the thermal expan-
sion, T1 and T2 are the temperature variables selected using the
PCA method, a1 and a2 are variable coefficients, and corrcoef
() is the correlation function.

Equation (4) is an extreme condition value problem, where
the two variable coefficients a1 and a2 can be easily obtained
using Lagrange’s method of multipliers.

Summarizing the above description, a linear virtual temper-
ature flow chart is shown in Fig. 4.

2.6 Linear virtual temperature structure tests

An experiment was carried out to test the effectiveness of the
structural linear virtual temperature suggested in this research.
The 11 temperature measurement points are arranged on a
one-dimensional thermal conducting rod in order, as shown
in Fig. 1. The measured temperature-thermal expansion
curves are shown in Fig. 2. It can be seen in Fig. 2 that at all
temperature measurement points, temperature T2, has the best
linear relation with thermal expansion D. If the linear correla-
tion coefficients between the constructed virtual temperature
variable and thermal expansion sequence can be equal to or
greater than that between measurement temperature T2 and
thermal expansion sequence, the validity of the method of
contracture linear virtual temperature variables can be
verified.

It can be seen from Fig. 2 that the temperature variables can
be divided into two groups to satisfy the arrangement require-
ments of the temperature measurement points. As the struc-
tural flow chart in Fig. 4 shows, for the third step, all of the
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temperature variables can be used to structure an information
matrix, and the first and the second principal components of
the information matrix can then be calculated. The maximum
temperature variable with a similar coefficient as the first prin-
cipal component is T1, with the similar coefficient being
0.9775. The maximum temperature variable with a similar
coefficient as the second principal component is T6, with the
similar coefficient being 0.9774. These two temperature vari-
ables have one convex and one concave thermal expansion
curve, respectively, which satisfies the prerequisite conditions
for structuring linear virtual measurement points. The weight-
ed coefficients of the two temperature variables are calculated
using Eq. (4). The weighted coefficient of T1 is 0.256 and that
of T6 is 0.744. Accordingly, the linear virtual temperature is

T ¼ 0:256*T1þ 0:744*T6:

The correlation coefficient of virtual temperature T and the
thermal expansion sequence is 0.9995, whereas the correlation
coefficient of the T2 variable and the thermal expansion se-
quence for the measurement temperature is 0.9967. It can be
seen from this contrast that the structured virtual temperature
and linearity of the thermal expression are quite high, as
shown in Fig. 5.

Through the contrast in the correlation data and Fig. 5, the
temperature sequence and thermal expansion sequence ob-
tained through the method used for structuring the virtual

temperature have a very good linear relation with each other.
The above description has proved the effectiveness of this
method.

3 Application example

3.1 Selection of temperature measurement points
and model construction

In Section 2, the effectiveness of this method was tested
for a simple case. In the following, the structure of the
virtual temperature method suggested in this paper is
further tested on real machine tools. An experiment
was carried out on a milling machine with a tri-axial
numerical control. The model for the Z-shaft axial ther-
mal error was established. Four temperature sensors, T1,
T2, T3, and T4, were arranged on the spindle bearings to
monitor changes in the temperature. An eddy sensor, D,
was installed on the spindle end part to monitor the
axial error, as shown in Fig. 6. The spindle was in
operation for 120 min at 1000 r/min. The room temper-
ature was 22.3 to 23.5 °C. Small fluctuations could be
considered as constants. The amount of temperature
change and variations in the thermal expansion are
shown in Fig. 7. The relation between the amount of
temperature change at each measurement point and the
variations in the thermal expansion are shown in Fig. 8.
Based on an analysis of structuring the linear virtual
temperature described in Section 2, measurement points
T2, T3, and T4 could be finalized into one group, and T1
could be another group on its own.

Based on the structural linear virtual temperature sequence
method suggested in this paper, first, four temperature vari-
ables can be used to structure one information matrix, and the
first and second main components of the matrix are then cal-
culated to obtain the maximum temperature variable with a
similar coefficient, i.e., 0.998, as the first main component, T1.
The maximum temperature variable with a similar coefficient,

Fig. 4 Structure of a linear virtual temperature flow

Fig. 5 Effect of structure on the linear virtual temperature
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i.e., 0.9203, as the second main component is T4. Two
temperature-sequence-weighted coefficients are calculated
using Eq. (4). The weighted coefficient of T1 is 0.438, and
that of T4 is 0.562. To verify the effectiveness of the virtual
measurement point, the multiple linear regression model is
used to compare the forecast effect of the different input var-
iables [7]. Therefore, the virtual temperature T14 structured by
T1 and T4 should be

T14 ¼ 0:438*T 1 þ 0:562*T4:

The first-order polynomial model is established based on
the virtual temperature, T14, and thermal expansion, D:

D1 ¼ 3:404*T14−3:284: ð5Þ

To compare the accuracy of the virtual structural tempera-
ture sequence method, all of the temperature variables are
adopted to establish the polynomial model.

D2 ¼ 15:711*T 2 þ 16:3989*T3 þ 0:3747*T1

−30:3562*T4
ð6Þ

In addition, T1 and T4 can be directly used to establish the
regression polynomial thermal error model.

D3 ¼ 1:3407*T1 þ 1:1132*T4 ð7Þ

The above-three established models are called model I,
model II, and model III for convenience in a later comparison.

3.2 Model tests

In Section 3.1, the spindle Z-axial thermal error model is
established. What is the effect of the model prediction? It is
still necessary to change the operation conditions to carry out
the tests. The sensor position should be arranged as shown in
Fig. 6. The spindle should first be in operation for 120 min at
900 r/min, and then stop operating for 40 min to lower the
temperature. Next, the spindle is put into operation again for
40min at 1100 r/min, and then stops its operation. The amount
of temperature change at the measurement points and the ther-
mal expansion curves are shown in Figs. 9 and 10,
respectively.

The tested data are placed into the three models to fit the
effects, as shown in Fig. 11. Here, Z is the thermal expansion
data of the spindle. The residual indexes of each model are
shown in Table 1.

Fig. 6 Arrangement of sensors on the machine tool
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It can be seen from Fig. 11 that when all of the temperature
variables are adopted, the prediction effects of model II are the
poorest. The main reason for this is that the introduction of
more variables can increase the measurement noise, thereby
generating the poor model results. It can be seen from Fig. 11
that, by structuring virtual temperature variable model I and
directly adapting temperatures 1 and 4 to establish model III,
the prediction results are comparatively close. It can be seen
from the data comparison in Table 1 that, although model I
and model III had the same input variables, the different treat-
ments of the temperature variables caused the prediction ac-
curacy of model I to be superior to that of model III, for
example, the root mean square error (RMSE) was reduced
by 11 %, and the sum of the squares of the error (SSE) was
reduced by 39 %. For the same model structure and order, this
experiment illustrates that the model established through the
structuring of the linear virtual temperature method has the
highest accuracy. The main reason for this is that, when two
temperature variables are weighted, the information of the two
variables cannot be completely entered into the model, but are
determined based on the size of the weighted coefficient,
whereas the weighted coefficient is determined based on the
optimal guidance or standard of the linear degree of the
temperature-thermal expansion, and thus the application of
the virtual temperature of the structure in the model

establishment is superior to the direct application of two tem-
perature variables.

4 Conclusions

With an aim at structured linear virtual temperature variables
when modeling the thermal error of a machine tool, this paper
studied the measurement point classification, key temperature
variable abstraction, and method of structuring the linear vir-
tual measurement points. The following conclusions were ob-
tained through an analysis and experimentally:

1. Through an analysis of the temperature-thermal expan-
sion hysteresis characteristics, a classification method
was proposed to classify the temperature measurement
points, that is, the convex curve of the temperature-
thermal expansion hysteresis characteristics can be one
group and those of the concave curve can be another
group;

2. The application of a PCA allows two key temperature
variables carrying the most information to be selected
from the temperature variables of the two groups. The
information carried by the two temperature variables can
account for the majority of information provided by all of
the temperature variables. When the model is established,
only these two temperature variables are needed.

3. The two temperature variables selected through a weight-
ed combination allow a temperature sequence appearing
to have an approximately linear relation with the thermal
expansion to be obtained.
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