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Abstract The energy conservation optimization design about
geometrical shape and dimensions of the cutting edges (lips)
of the twist drill is meant to determine the main cutting edge
curve in the rake face that minimizes the drilling power.
Dijkstra’s algorithm is introduced and applied to serve the
above purpose. The rake surface of the twist drill is discretized
into a set of nodes and arcs between the adjacent nodes, which
together compose a digraph. Cutting angles of elementary
cutting tools on the lips of a twist drill are determined by the
method of displaying planar image; those angles, together
with undeformed chip thickness and width, are substituted
into the empirical model of cutting force for elementary cut-
ting tool to obtain the weights of arcs in the digraph, that is, the
drilling power. Then, a main cutting edge curve in the rake
face that minimizes the drilling power is generated using
Dijkstra’s algorithm. Meanwhile, an improvement in
Dijkstra’s algorithm procedures is put forward to reduce time
and space complexities of the process and improve smooth-
ness and machinability of the cutting edge curve. A computer
program is developed with Matlab 2011b to determine the
main cutting edge curve. The calculation results with 0.50 %
carbon steel show that the new curved cutting edge reduces
the drilling power by 7~8 %, compared to a conventional
straight cutting edge.
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1 Introduction

Conventional twist drills are widely used in manufacturing, of
which the flake is usually grinded into a conical surface and
the main cutting edge (lip) a straight line. An enterprise in
China may sell 1000,000,000 conventional high-speed steel
(HSS) twist drills annually. However, their drilling perfor-
mance is not satisfactory. Related problems are many and
various, among which is the undesired distribution of the cut-
ting angles of the main cutting edge due to the limitation of the
grinding structure and the grinding method, resulting in poor
drilling performance and a higher drilling power [1]. For a
long time, people have been making huge effort to reduce
the energy consumption in drilling by improving the grinding
structure of the drill point [1–4]. Among the numerous kinds
of improved drills, the most outstanding is the multifacet drill
(MFD), which is called the Ni Zhifu drill in China. It is re-
ported that theMFD reduces the energy consumption by 20%
compared to the standard twist drill when drilling plain carbon
steel [1, 2].

Unfortunately, the MFD is difficult to be marketed and has
a limited range of application because of its especially com-
plicated grinding method. Under the instruction of the Plannar
Display Theory [5, 6], which aims at mapping of images on a
projection plane, Xiong and Shi et al. [7, 8] put forward a
curved cutting edge design that controls the distribution of
rake angles of the main cutting edge by changing the orienta-
tion of the edge, and thus reduces its energy consumption in
drilling. This design discards the requirement of straight-line
cutting edge of the standard grinding process of the conven-
tional twist drill (without changing its manufacturing process
and the original structure). A curve-edged drill that maximizes
the value of the rake angle at each point along the tool cutting
edge (hereafter referred to as the “drill with large rake angles”)
is developed, the flank face of which is grinded as a simple
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ruled surface [9, 10]. In this way, grinding problems that block
the marketing of the optimized drill are well solved and a new
path for energy conservation optimization of the drill tip
grinding structure is opened. The drilling torque is reduced
by about 12–20 % compared to conventional drills, with re-
markable energy-saving effect. Xiong [11], Xiong and Fang
et al. [12] further introduce the specific method to optimize the
main cutting edge curve and reduce the energy consumption
in cutting based on certain given cutting angle distributions of
the main cutting edge, such as rake angle distribution, incli-
nation angle distribution, tool cutting edge angle distribution,
etc. As is well-known, the cutting power of cutting tools is not
only affected by the cutting angle distribution but also by
undeformed chip thickness, undeformed chip width, and cut-
ting parameters. Change in the orientation of the main cutting
edge will also cause change in cutting angles and in unde-
formed chip thickness and width. Nevertheless, changes in
the three elements may not be in the same direction, and thus
may result in heterogeneous change in cutting energy con-
sumption. Therefore, it is almost impossible for the optimized
main cutting edge curve based on any randomly given cutting
angle distribution to be the most energy-saving curve. The
problem is that the given cutting angle distribution is very
unlikely to be the optimal distribution. Then what kind of
cutting angle distribution is the optimal one? In other words,
what kind of main cutting edge curve is the most energy-
saving?

The question is essentially how to determine the main cut-
ting edge curve in the helicoid rake face of the twist drill that
minimizes the drilling power, which is a typical functional
optimization problem. However, “functional analysis” [13]
has not provided a general method to determine the functional
extremums of such a curve on a hook surface.

From a mathematical perspective, the abovementioned
problem is of the same nature with the determination with a
traffic navigation software of the shortest path between any
two points in a given traffic network. Based on this insight,
this essay makes an attempt to apply Dijkstra’s algorithm
[14–17] which settles the shortest path problem of the graph
theory to the energy conservation optimization of the main
cutting edge curve of the twist drill. A specific method used
in determining the main cutting edge curve in the helicoid rake
face of the twist drill that minimizes the drilling power is
introduced. The idea is as follows: The rake surface of the
twist drill is discretized into a set of nodes and arcs between
the adjacent nodes, which together compose a digraph. The
arc between any adjacent nodes (hereafter referred to as
“ECT” standing for “elementary cutting tool”) is a possible
part of the main cutting edge curve with the minimum drilling
power (hereafter referred to as “MCECMDP”); relational
models of ECT cutting forces with cutting angles and cutting
parameters are established through cutting experiments; the
cutting angles and the cutting parameters of the ECTs that

constitute the main cutting edge curve of the twist drill are
figured out; the drilling forces are calculated through the
above models, and then the drilling power can be obtained;
the ECT drilling power being the weight of arc in the rake
surface digraph, the shortest path between the source and the
destination composed of adjacent arcs, the sum of whose
weights is the minimal, is located through Dijkstra’s algo-
rithm. This path is exactly the MCECMDP. Programmed cal-
culation shows that the MCECMDP is not the curve with the
largest rake angles; when machining a 0.50 % carbon steel
workpiece with a drill with a diameter ofϕ25mm, the drilling
power of a MCECMDP is reduced by 7.45 % compared to
that of the straight main cutting edge of a standard twist drill.

2 Introduction to the shortest path problem
and Dijkstra’s algorithm

2.1 The shortest path problem

The shortest path problem is a classical topic in graph theory
researches. The essence of the issue is to find out the shortest-
distance path between two nodes vertex on a digraph [13, 14]
G ¼ V ;Eð Þ (V is the set of all the vertices (nodes), and E is
the set of weighted edges that connect the nodes), that is, to
find out the path composed of adjacent edges, of which the
sum of weights is minimized.

When a source node vs in V is given and the arc weights in
G are all nonnegative real numbers, the shortest path problem
that aims to find the shortest distances from vs to all other
nodes is referred to as the single-source shortest path problem.

2.2 Dijkstra’s algorithm

Dijkstra’s algorithm is a classical algorithm to solve the
single-source shortest path problem.

The solution pattern of Dijkstra’s algorithm is as follows: to
divide V into two sets S and T. S is the set of all the ending
nodes of the determined shortest paths to the source node vs; at
the initial stage, S only contains vs. T is the set of nodes of the
undetermined shortest paths to the source node vs. Nodes in T
will be moved to S in an ascending order of the length of the
shortest paths to the source node vs, until there is no node left
in set T. The path composed by all the edges that connect the
source node vs to any node vt in order is the shortest path from
vs to vt. The sum of the corresponding weight values is the
length of the shortest path.

Many practical problems can be abstracted and then trans-
formed into the shortest path problem, such as location of the
optimal route in the road traffic network, the optimal transmis-
sion of information flow among routers in the computer net-
work, etc. Therefore, Dijkstra’s algorithm has been success-
fully applied in such fields [16] as operational research,
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computer science, geographic information science and trans-
portation, etc.

3 Adjacency matrix of the rake face network

To determine the main cutting edge curve of the twist drill
with the minimal drilling power is to find a curve on the
helicoid rake face that starts from any point on the tool minor
cutting edge, for instance the outer corner C, to a point on the
cylindrical spiral passing the chisel edge corner B that ensures
the consumed drilling power reaches its minimum when this
curve serves as the main cutting edge. Obviously, this is a
typical single-source shortest path problem. In order to solve
this problem with Dijkstra’s algorithm, the rake surface of the
twist drill should be discretized into a set of nodes and edges
between adjacent nodes, which together compose a digraph
(network). Also, the edge weights should be evaluated to es-
tablish an adjacency matrix of the network.

3.1 Equation set of the rake face of the twist drill

The rake face of the twist drill corresponding to the main
cutting edge is a helicoid formed through the helical motion
of the straight generating line round the axis of the drill. As-
suming the drill diameter is D, in the drill structure coordinate
system Oxyz shown in Fig. 1, the equations of the rake face
corresponding to the straight main cutting edge BC are

x ¼
ffiffiffiffiffiffiffiffiffiffiffi
r2−r20

q
cosεþ r0sinε

y ¼
ffiffiffiffiffiffiffiffiffiffiffi
r2−r20

q
sinε−r0cosε

z ¼
ffiffiffiffiffiffiffiffiffiffiffi
r2−r20

q .
tanφ0 þ Tε= 2πð Þ

8>>>><
>>>>:

ð1Þ

where 2φ0 is the drill point angle, 2φ0=118°; T is the pitch of
the drill flute helicoid, T=2πR/tanβ, in which R=0.5D is the
drill radius, β is the helical angle in the outer corner C, β=30°;
r is the radius of any point on the rake face; and ε is the turning
angle of the point.

The coordinates of points C and B are, respectively,

(
ffiffiffiffiffiffiffiffiffiffiffiffi
R2−r20

q
, −r0,

ffiffiffiffiffiffiffiffiffiffiffiffi
R2−r20

q
=tanφ0 ), and (r0/tanψ, −r0,0).

3.2 Discretization of the rake face

As is shown in Fig. 2, the rake face is discretized into a direct-
ed network through the following procedures:

1. In the xOy plane, the rake face’s projection ABCD (BC is
the projection of the main cutting edge of the standard
twist drill in the xOy plane; AD and BC are parallel and
there, distance to x axis is r01) and is divided into n−1 arc
segments by n concentric circles, of which the radiuses are

distributed with arithmetic progression and the center is
O, the origin of coordinates. The radius of the i th con-
centric circle is

ri ¼ R− i−1ð Þ R−r0
.
sinψ

� �.
n−1ð Þ; i ¼ 1; 2; 3…n ð2Þ

where ψ is the chisel edge angle of the conventional twist drill.
Correspondingly, the rake face is divided into n−1 strips of
helicoid by n co-axial cylindrical surfaces.
2. Each arc between AD and BC is divided into m−1 equal

segments (so the grids in the rake face are different in

Fig. 1 The drill structure coordinate system

0

0
1

+1

Fig. 2 Discretization of the rake face
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size). Assuming j is the equipartition point number, for the
points on AD, j=1, and for the points on BC, j=m. There-
fore, nm (i.e. n×m) nodes are obtained. The j th node on
the i th arc is marked as Pij, and the angle between OPij
and x axis is

θi j ¼ j−1ð Þ tan−1
r0
ri

� �
−tan−1

r01
ri

� �� �
= m−1ð Þ

þ tan−1
r01
ri

� �
; j ¼ 1; 2; 3…m

ð3Þ

Assuming the coordinates of Pij are (xij, yij, zij), since Pij is
on the rake face, the coordinates can be obtained based on the
related geometrical relations and the equation set (1):

xi j ¼ ricosθi j; yi j ¼ risinθi j ; zi j ¼ ti=tanφ0 þ Tε= 2πð Þ ð4Þ

where ti ¼
ffiffiffiffiffiffiffiffiffiffiffi
r2i −r20

p
and the parameter ε can be determined

through the equation set (1) based on the values of the coor-
dinates (xij,yij):

cosε
sinε

� �
¼ ti r0

−r0 ti

� �−1 xi j
−yi j

� �

¼ ti r0
−r0 ti

� �−1
ricosθi j
−risinθi j

� �
ð5Þ

3. For programming convenience, all the nodes are
renumbered from 1 to nm. Assume node Pij is renumbered
g, and node P(i+1)k is renumbered h, then

g ¼ i−1ð Þ mþ j; h ¼ imþ k: ð6Þ
Hereafter, Pg and Ph are used to represent the same nodes

Pij and P(i+1)k on the condition that no misunderstanding
would be caused.
4. Connect node Pg and node Ph. If the projection length lijk

of the line segment PgPh in the xOy plane satisfies

li jk ¼ PgPh
		 		

xOy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xg−xh

 �2 þ yg−yh

� �2
r

≤Δri ð7Þ

where

Δri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i −r2iþ1

q
; i ¼ 1; 2; 3… … n−1 ð8Þ

In other words, if there is one, but only one intersection
between the i +1th arc and the line segment PgPh obtained by
connecting node Pij and node P(i+1)k, then line PgPh is one
edge of the directed network (digraph) of the rake face.

3.3 Adjacency matrix

The adjacency matrix A of the directed network of the rake
face is a nm×nm square matrix. Its element wgh (g=1,2,3…

nm;h=1,2,3…nm) is the weight value of the edge that con-
nects the g th and h th nodes.

Any edge in the directed network of the rake face may
be a segment of the MCECMDP that is to be determined.
The drill part that corresponds to the edge PgPh viewed as
an ECT that can operate cutting independently, its cutting
edge is the edge PgPh, and its rake face is the tangent
plane to the rake face at the midpoint of this edge. If
the edge is short enough, it can be substituted by the
straight line that connects its ends. Since it is the main
cutting edge with the minimal drilling power that is to be
determined, the cutting power (indicated as ΔPgh) of the
ECT is defined as the weight of the edge PgPh.

wgh ¼ ΔPgh; PgPh
		 		

xOy
≤Δri ð9Þ

If the length of the edge that connects node Pg and node Ph
does not satisfy the Eq. (7), it means there exists no such edge
that can connect these two nodes. In this case, the correspond-
ing cutting power ΔPgh of the ECT would be infinite. There-
fore,

wgh ¼
ΔPgh; PgPh

		 		
xOy

≤Δri

∞; PgPh
		 		

xOy
> Δri

(
ð10Þ

By calculating the drilling powers of all the ECTs, that is,
the weights of all edges, the adjacency matrix A of the rake
face discrete network (digraph) can be obtained.

4 Calculation of edge weight

The terminologies and definitions employed in this section
follow those recommended by ISO 3002 [18, 19].

In order to determine the cutting power of the ECT, its
cutting angles and its undeformed chip thickness and width
should be calculated first.

4.1 ECT cutting angles

ECT cutting angles are defined as the cutting angles of the
main cutting edge of the twist drill at the midpoint of the
ECT cutting edge, including the working rake angle γ0e, the
working normal rake angle γne, the working tool inclination
angle λse, and the working cutting edge angle κre. The method
of displaying planar image [5, 6] is applied to determine the
ECT cutting angles.

4.1.1 Formation of image points and image lines
on the projection plane

Assume the coordinates of the end points of the edge PgPh to
be (xg, yg, zg) and (xh, yh, zh). The coordinates (xghm, yghm,
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zghm) and the radius of its midpoint Pim are, respectively, as
follows:

xghm ¼ xg þ xh
2

; yghm ¼ yg þ yh
2

; zghm ¼ zg þ zh
2

rghm ¼ rg þ rh
2

¼ ri þ riþ1

2

8><
>: ð11Þ

Assume the rotation speed of the twist drill to be N/r•s−1

and its feed to be f/m•r−1. The image points and image lines
can be created in the projection plane according to the method
of displaying planar image [5, 6], as shown in Fig. 3. d
in the figure is the image line of the tangent line (which
is substituted by line PgPh) of the ECT cutting edge at
its midpoint; Q, Pe,Te,Re,N,F are, respectively, the im-
age points of the rake face, the working reference plane,
the working cutting edge plane, the working orthogonal
plane, the cutting edge normal plane, and the assumed
working plane at this midpoint. Based on the definitions
of these planes and their relations and the Eq. set (1)
for the rake face, the homogeneous coordinates [5, 6, 8]
of these images can be obtained.

d ¼ xh −xg yh−yg zh−zg
� T ¼ N ; ð12Þ

Q ¼
−
dy

dx

				
dz¼0

1

−
dy

dz

				
dx¼0

2
66664

3
77775

¼

Tsinεtanφ0−2πr0sinε−2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2im−r20

p
cosε

−Tcosεtanφ0 þ 2πr0cosε−2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2im−r20

p
sinε

1
2π r0cosε−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2im−r20

p
sinε

� �
tanε−2πr0sinε−2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2im−r20

p
cosε

T þ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2im−r20

p
sinε−r0cosε

� �.
cosεtanφ0ð Þ

2
6666664

3
7777775
;

ð13Þ
Pe ¼ ve ¼ −π zg þ zh


 �
− f π xg þ xh


 �� T
; ð14Þ

T e ¼ d � ve; ð15Þ
Re ¼ Pe � T e; ð16Þ

and

F ¼ − xg þ xh

 �

0 zg þ zh

 �� T

=2; ð17Þ

where ve is the image line of the cutting velocity ve at the
midpoint.

4.1.2 Calculation of the cutting angles

According to the method of displaying planar image [5,
6], the Euclidean angle θACB between the planes A and
B which is measured in the plane C is equal to the non-

Euclidean angle θACB formed by the image points A, B,
and C. Based on the homogeneous coordinates, their
value can be obtained [5, 6]:

θACB ¼ θACB ¼ tan−1
ffiffiffiffiffiffiffiffiffiffi
CTC

p A1 A2 A3

B1 B2 B3

C1 C2 C3

						
						
.

CTC CTA
BTC BTA

				
				

0
@

1
A:

ð18Þ

Substituting the homogeneous coordinates obtained
from Eqs. (12)~(17) in Eq. (18) yields the values of
all the cutting angles, that is, the working rake angle
γ0e, the working normal rake angle γne, the working
tool inclination angle λse, and the working cutting edge
angle κre Fig. 3:

γ0e ¼ θQRePe

γne ¼ θQNPe

λse ¼ θQT ePe

κre ¼ θFPeTe

8><
>: ð19Þ

4.2 Undeformed chip thickness and cut width

The undeformed chip thickness acgh and the cut width awgh of
the ECT are, respectively, [1, 8]

acgh ¼ f sinκreghvgh= 2vegh

 �

; ð20Þ

and [1, 8]

awgh ¼ dlghcosλsegh; ð21Þ

where κregh and λsegh are, respectively, the working cutting
edge angle and the working tool inclination angle of the

Fig. 3 Angular and distance relationships among relevant image points
and image lines on the projection plane [12]
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ECT; vgh/vegh is the ratio of the rotational speed vgh to cutting
velocity vegh, and

vgh=vegh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xghm

 �2 þ yghm

� �2
r

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xghm

 �2 þ f

2π

� �2

þ yghm
� �2

s
;

ð22Þ

dlgh is the length of the ECT cutting edge, and

dlgh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh−xg

 �2 þ yh−yg

� �2
þ zh−zg

 �2r

: ð23Þ

4.3 Empirical models of ECT cutting forces

The ECT cutting forces are calculated with the empirical rela-
tional models of the cutting forces with the cutting angles, the
undeformed chip thickness, and the cut width that are obtained
through cutting experiments.

4.3.1 Turning experiments on the end face of sleeve parts

A set of turning experiments with HSS end-cut tools on
0.50 % carbon steel were designed, which adopt the L25(56)
orthogonal array based on the three-factor experimental re-
sults so as to establish the empirical models of the cutting
forces. The experiments were conducted on a CM6140-type
horizontal lathe. The objects to bemachined are turned 0.50%
carbon steel sleeve parts (with a hardness of HBS241, an outer
diameter of ϕ115 mm, and an inner diameter of ϕ110 mm,
Fig. 4). The cutting forces were measured by a Kistler three-
component piezoelectric dynamometer with the computer da-
ta acquisition system. Altogether, 25 sets of HSS end-cut tools
(with the cutting edge angle κr=90°) with different rake an-
gles and inclination angles were grinded, and a second round
of cutting experiments were made, in which the cutting tools
were resharpened. Due to limited space, Table 1 shows the
cutting forces measured in the first round only, where γ0 is the
rake angle; λs is the inclination angle; f is the feed per spindle

revolution; ve is the working cutting speed, which is calculated
based on the rotation speed and the workpiece pitch diameter
(with the feed speed ignored); Fs is the axial thrust force; Fo is
the radial thrust force, and Fr is the main cutting force.

4.3.2 Empirical models of cutting forces

The experimental data were imported to the statistical analysis
software EView [20] so that the following empirical relational
formulas of the main cutting force Fr, the axial thrust force Fs,
and the radial thrust force Fo with the cutting angles, the un-
deformed chip thickness, and the cut width were fitted:

F r ¼ 2:567 � 108 awa
0:8223
c exp −0:6204γn−0:4271λ

2
s


 �
N

Fs ¼ 1:323 � 108 awa
0:9455
c cosλsð Þ1:351 v0:2121e exp 1:720 1−sinγnð Þð Þ N

Fo ¼ −5:000� 103aw −3:461� 105ac þ 1:739� 1010a2c−2:509� 1014a3c



þ1:208� 1018a4c−4:817γ
2
n þ 3:730γ3n−0:824λs

�
N

8>>><
>>>:

ð24Þ

where the unit of the cutting angles (including γn and λs) is
radian,and γn=tan

−1(tanγ0cosλs); aw is the cut width, and for
the given experimental condition aw=2.5×10

−3/cosλs (in me-
ters); ac is the undeformed chip thickness in meters, and ac=f;
ve is in meters per second (m•s−1).Fig. 4 Face cutting experiments on sleeve parts

Table 1 Results of face cutting experiments on sleeve parts

No. γ0/° λs/° f/mm•r−1 ve/m•min−1 Fs/N Fo/N Fr/N

1 −30 −30 0.04 3.5 163.2 31.8 209.5

2 −30 −15 0.05 7.1 140.7 34.8 245.2

3 −30 0 0.065 14.1 371.8 14.0 352.5

4 −30 15 0.08 22.3 457.0 −52.3 326.9

5 −30 30 0.1 28.3 568.0 −80.4 381.5

6 −15 −30 0.05 14.1 127.7 62.8 218.5

7 −15 −15 0.065 22.3 393.4 57.5 349.4

8 −15 0 0.08 28.3 406.1 12.2 343.8

9 −15 15 0.1 3.5 255.2 −29.5 390.2

10 −15 30 0.04 7.1 110.1 −41.8 182.1

11 0 −30 0.065 28.3 262.4 79.2 296.7

12 0 −15 0.08 3.5 175.1 40.7 316.2

13 0 0 0.1 7.1 138.7 17.4 291.4

14 0 15 0.04 14.1 84.0 −10.9 151.4

15 0 30 0.05 22.3 126.6 −50.7 196.6

16 15 −30 0.08 7.1 91.6 59.1 250.6

17 15 −15 0.1 14.1 125.6 41.4 273.3

18 15 0 0.04 22.3 71.1 4.4 132.0

19 15 15 0.05 28.3 87.3 −16.8 161.9

20 15 30 0.065 3.5 77.8 −50.2 198.5

21 30 −30 0.1 22.3 84.2 84.1 271.6

22 30 −15 0.04 28.3 51.7 19.1 115.9

23 30 0 0.05 3.5 39.2 5.0 130.1

24 30 15 0.065 7.1 55.8 −13.4 155.4

25 30 30 0.08 14.1 103.1 −81.5 232.7
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In end-face turning, the differences between the cut-
ting angles (γn λs and κr) and the working cutting an-
gles (γne, λse and κre) are negligible. Therefore, the
latter are substituted for the former in calculation in
the following sections.

4.4 ECT cutting forces

The above empirical formulas are established on the
condition that the cutting edge angle κr is 90°. Since
no consideration is given to the influence of the change
in the angle on the cutting force while in practice the
angle may change along the main cutting edge, Eq. (24)
cannot be directly used to calculate the drilling forces of
the ECTs which constitute the main cutting edge. There-
fore, in reference to [21], it is assumed that

R ¼ R1R2R3; andR0 ¼ R4R2R3 ð25Þ

where

R1 ¼
1 0 0
0 1 0
0 0 1

0
@

1
A; R2 ¼

1 0 0
0 cosλse −sinλse

0 sinλse cosλse

0
@

1
A

R3 ¼
cosγne 0 −sinγne

0 1 0
sinγne 0 cosγne

0
@

1
A; R4 ¼

sinκre −cosκre 0
cosκre sinκre 0
0 0 1

0
@

1
A

9>>>>>>>=
>>>>>>>;

:

ð26Þ

Then, plug into the following equation the cutting forces
ΔFs、 ΔFo、 ΔFr predicted by Eq. (24) when the cutting
edge angle is 90°, the normal rake angle is γne, and the tool
inclination angle is λse,

ΔFsnew ΔFonew ΔF rnewð ÞT ¼ R0R
−1 ΔFs ΔFo ΔF rð ÞT;

ð27Þ

and the values ofΔFsnew,ΔFonew, andΔFrnew can be obtain-
ed, which are the cutting forces when the cutting edge angle is
κre, the normal rake angle is γne, and the tool inclination angle
is λse.

4.5 ECT drilling power

In order to obtain the ECT drilling power, the three cutting
forces (ΔFsnew, ΔFonew, ΔFrnew) calculated with Eq. (27)
should be transformed into tangential, radical, and axial com-
ponents at the position of the ECT on the main cutting edge.
Assume the three components to be ΔFlgh, ΔFmgh, ΔFngh,
respectively, with reference to [1], the torque ΔTgh and axial
force ΔRgh of the ECT between node g and node h are, re-
spectively,

ΔTgh ¼ ΔF lghrgh;ΔRgh ¼ ΔFngh: ð28Þ

The drilling powerΔPgh (in watts) of the i th ECT, that is,
the weight wgh of edge PgPh is

wgh ¼ ΔPgh ¼ N 2πΔF lghrgh þ ΔFngh

		 		 f
 �
: ð29Þ

Apparently, the torqueΔTgh of the ECT can be deemed as
the weight wgh of edge PgPh. However, what is obtained
through this procedure is the main cutting edge curve with
the minimal torque.

4.6 Validation of the drilling power (force) calculation
model

In order to examine the accurateness of the drilling force and
the drilling power obtained through the above procedure, the
predicted results for the drilling power, the torque, and the
axial force of the standard twist drill are compared to the
calculation results obtained from the formulas recommended
in reference [2], as shown in Table 2. The structural parame-
ters used in the calculation are as follows: diameter: D=
25 mm;, drill core thickness 2 r0=3.6 mm;, and half drill point
angle: φ0=59°; chisel edge inclination angle: ψ=55°; and he-
lical angle at the outer corner C: β=30°. The workpiece ma-
terial is 0.50 % carbon steel. Since the tool inclination angle
along the chisel edge is 0, the cutting process is deemed
as an orthogonal cutting process, and therefore Fo=0.
The figures in Table 2 reveal that the relative errors

(¼ predicted value −value in referenceð Þ
value in reference � 100% ) between the pre-

dicted values of the drilling power and the torque and
the calculation results from formulas in reference [2] are
within ±5.5 %, which is acceptable. This indicates that
the previously proposed models of the drilling force and
the drilling power are accurate.

5 MCECMDP based on Dijkstra’s algorithm

5.1 Program design

The steps below describe the procedure based on Dijkstra’s
algorithm for determining the MCECMDP on the given rake
face and calculating its drilling power (Fig. 5):

1. Input the structural parameters (D, r0, φ0, β, ψ) of
the twist drill, its rotation speed (N) and feed ( f ),
the search region parameter (r01), and the meshing
parameters (n, m).

2. Do the meshing. Let i =1,2,3….. n−1 and j =1,2,3……
m, then calculate the polar coordinates (ri, θij) and the
spatial coordinates (xij, yij, zij), (xghm, yghm, zghm), etc.
with Eqs. (1)~(5), (11).

3 Let i=1, j=1, k=1.

Int J Adv Manuf Technol (2016) 82:889–900 895



4. Calculate g, h, lijk, Δri with Eqs. (6)~(8) and calculate
ΔPgh with Eqs. (9)~(29).

5. If lijk ≤Δri, then wgh=ΔPgh; otherwise, wgh=∞.
6. If k<m, let k=k+1, and go to (4); otherwise, go to (7).
7. If j<m, let j=j+1, and go to (4); otherwise, go to (8).
8 If i<n, let i=i+1, and go to (4); otherwise, go to (9).

(9) Let A=(wgh)nm×nm

(10) Making use of Dijkstra’s algorithm, determine the var-
ious MCECMDPs (node serials):

Γ p ¼ Γ S F ; p ¼ 1; 2; 3……m; ð30Þ

whose source nodes are the outer corner (with node number
S=m) and whose destinations are nodes on the arc AB (num-
bered F, F=nm−m+1, nm−m+2, nm−m+3…… nm). Then,
calculate their corresponding drilling power:

Pminp ¼ PminS F ; p ¼ 1; 2; 3……m: ð31Þ

Find out the main cutting edge curve

Γmin ¼ Γ p0; p0∈ 1; 2; 3……mf g; ð32Þ

with the lowest minimal drilling power

Pmin ¼ min Pminp


 � ¼ Pminp0: ð33Þ

This curve Γmin serves as the most optimized result.
Based on the above procedure, a Matlab program is de-

signed to determine the MCECMDP on the given rake face
and its drilling power.

5.2 Preliminary result

In calculation, the structural parameters of the twist drill are
identical to those of the standard twist drill mentioned in
Section 4.6; the drilling parameters are as follows: rotation
speed: N=450 r•min−1=7.5 r•s−1; feed: f=0.11 mm•r−1=
1.1×10−4 m•r−1; discrete parameters of the rake face helicoid:
n=80, m=80; parameters of search region: distance from
straight line AD to x: r01=0.35 r0 and the radius of arc AB:
r0/sinψ.

5.2.1 Minimal drilling power

The calculated minimal drilling power of the main cutting
edge Pmin is 894.888 W (accurate to three decimal places,
the same hereafter). The corresponding drilling torque T is
19.228 N•m.

Move straight line AD in Fig. 2 till it is infinitely close to
straight line BC, and the drilling power and the drilling force
of the two main cutting edges of the standard twist drill can be
obtained with the abovementioned method. The drilling pow-
er Pstandard is 962.409 W and the torque Tstandard is
20.753 N•m.

The calculated minimal drilling power of the main
cutting edge is reduced by 7.016 % compared to the
drilling power of the main cutting edge of the standard
twist drill.

Table 2 Comparison between the drilling power, the torque, and the axial force of the standard twist drill as predicted by the proposed models and the
values calculated with the formulas recommended in reference [2]

Rotating speed N/r•min−1 Feed f/mm•r−1 Drilling power P/W Torque T/N•m Axial force R/N

Predicted Reference Predicted Reference Predicted Reference

300 0.02 169.978 165.122 5.409 5.254 −560.205 −608.728
0.05 361.191 364.813 11.488 11.603 −1117.106 −1193.738
0.08 531.563 548.031 16.902 17.423 −1394.141 −1686.309
0.11 690.701 722.152 21.956 22.950 −1720.144 −2131.03
0.14 842.502 890.060 26.768 28.275 −2238.489 −2544.311

450 0.02 254.980 244.171 5.409 5.180 −600.799 −591.933
0.05 541.859 539.572 11.489 11.441 −1213.265 −1160.803
0.08 797.524 810.643 16.904 17.181 −1543.487 −1639.785
0.11 1036.383 1068.273 21.959 22.633 −1921.106 −2072.237
0.14 1264.281 1316.723 26.773 27.887 −2489.826 −2474.115

600 0.02 339.985 322.302 5.409 5.128 −631.793 −580.299
0.05 722.552 712.330 11.490 11.328 −1286.684 −1137.989
0.08 1063.548 1070.268 16.906 17.013 −1657.514 −1607.556
0.11 1382.182 1410.477 21.962 22.413 −2074.542 −2031.508
0.14 1686.245 1738.576 26.778 27.616 −2681.725 −2425.488

Relative errors (%) −5.343~5.486 −5.330~5.485 −19.281~13.066
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5.2.2 MCECMDP

The calculated MCECMDP and the distribution curves of
the cutting angles and the drilling power are shown in
Fig. 6. The following conclusions can be drawn from the
figure:

1. For most points on the main cutting edge curve with the
minimal drilling power, the corresponding tool inclination
angle λse is not 0. As is known, only when λse=0 does the
rake angle take the maximum value [5–8]. Therefore, the
MCECMDP is not the main cutting edge curve with the
largest rake angles.

2. The distribution curves of the cutting angles of the
MCECMDP are broken lines, among which the one
for the cutting edge angle κre is a completely zigzagged
broken line. The main cutting edge curve is not smooth,
either, the enlarged version of which shows that some
cusps exist on the curve. Since the main cutting edge is
grinded by the grinding wheel, and a single feed is
unlikely to result in a cusp, the machinability of the
main cutting edge resulted from the previous procedure
is not satisfactory.

5.3 Densification of the discretized grids on the rake face

The reason for the poor machinability of the above MCEC
MDP is that the discretized grids are too large.

The smoothness and the machinability of the main cutting
edge can be guaranteed by eliminating the cusps on the
MCECMDP and on the distribution curves of the cutting an-
gles through grid densification.

If the grid is densified directly, for example, if the values of
n and m are increased on the condition that the discretized
region ABCD remains unchanged, the complexity of the cal-
culation process will increase dramatically as the number of
the nodes increases. As is known to all, when Dijkstra’s algo-
rithm is used to solve the single-source shortest path problem,
its time complexity will beO(p2) [14] if the node number is p.
In other words, the time complexity of the calculation process
is proportional to the square of the node number. To avoid
excessive time consumption, successive densification by
means of gradual diminishment of the discretized region
ABCD (Fig. 2) is adopted to solve the problem. The procedure
is as follows:

1. Assign a moderately bigger value to n, and a moderately
smaller value to m, for example, n=100 and m=50, then
determine the MCECMDP. Of course, neither the main
cutting edge curve or the distribution curves of the cutting
angles is smooth.Fig. 5 Program flow chart
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2. Assume the central angle of the arc between x axis and the
node on the newly determined main cutting edge curve
where the radius is ri to be θi0. Construct two curves by
connecting nodes (ri, θi0-bound) (i=1,2,3…n) and (ri, θi0+
bound) (i=1,2,3…n), respectively, in successive order.
Constrict the discretized region ABCD to the area formed
by the two new curves and the two arcs (AD, BC), with n
and m unchanged. Determine the corresponding MCEC
MDP.

3. If the main cutting edge curve and the distribution
curves of the cutting angles remain broken, multiply
bound by k (0<k<1) to form a new bound. Then, re-
turn to (2). Otherwise, the calculation process comes to
the end.

5.4 Calculation results after grid densification

Figure 7 illustrates the calculation results after the above den-
sification procedure when n=400,m=50,bound=5°,k=0.8,
and the other parameters are the same as stipulated in
Section 5.2. Figure 7a shows the situation before densifica-
tion, where some cusps exist apparently on the main cutting
edge curve and the distribution curves of the cutting angles;
Fig. 7b, c, respectively, show the results after the first and the
second rounds of densification, where the curves become
more smooth successively but the cusps still exist, though less
apparently; Fig.7d is the result after enough rounds of densi-
fication, where all the curves have become smooth. It can be
seen from the above figures that every round of densification

results in moderate improvement in smoothness of the curves.
Correspondingly, the calculated value of the minimal drilling
power is diminished gradually until it becomes a constant as
the grids are successively densified. The values of the minimal
drilling power corresponding to Fig. 7a–d are, respectively,
916.383, 912.724, 907.450, and 892.132 W. Compared to
the drilling power of the straight edged standard twist drill,
which is 963.941 W, the drilling power of the curved main
cutting edge is reduced by 7.450 %.

The following two points are worth mentioning:

1. Any point on the secondary cutting edge of the twist
drill being the source point, a MCECMDP whose end-
ing point is somewhere on the cylindrical surface of
the drill core can be determined through the
abovementioned method, and all these main cutting
edge curves have the same spatial shape and the same
drilling power. Any one of them (l) can be deemed as
the result of the helical motion of another (l’) round
the drill spindle until it reaches the present position
(of l).

2. The optimization of the main cutting edge curve can
only result in a decrease of 7~8 % in drilling power
compared to the main cutting edge of the standard twist
drill. It can be inferred that the fact that the Ni Zhifu
drill and the large-rake-angle drill reduce the energy
consumption in drilling by about 20 % is the synthetic
effect of multiple improvements in structure such as the
curved main cutting edge, the chip breaker, and the
shortened chisel edge, etc.

Fig. 6 Preliminary result
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6 Conclusion

1. The first attempt is made to use Dijkstra’s algorithm to
determine the MCECMDP by discretizing the helicoid
rake surface into a digraph composed of a set of nodes
and edges between the nodes.

2. For a given helicoid rake face, the MCECMDP is not the
one with the largest rake angles.

3. By grinding the main cutting edges of the standard twist
drill as curves, the drilling power of the main cutting edge
can be reduced by 7.45% at most compared to the straight
edge when cutting the 0.50 % carbon steel under the

Fig. 7 Calculation results after
grid densification
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circumstance of the given cutting parameters. The fact
that the MFD and the large-rake-angle drill reduce the
energy consumption in drilling by about 30 % is the syn-
thetic effect of multiple improvements in structure such as
the curved main cutting edge, the chip breaker, and the
shortened chisel edge, etc.

4. The shortest path algorithms can be effectively used to
determine the functional extremums of any curve defined
in a spatial hook surface through discretization.

Acknowledgments The research in this paper was funded by the Na-
tional Natural Science Foundation of China (Grant No. 51075165 and
Grant No. 51121002). The related cutting experiments are conducted with
the machine tools and test instruments of the State Key Lab of Digital
Manufacturing Equipment & Technology. Sincere gratitude goes to the
two engineers, Mr. Wenkai Zhu and Mr. Qingshan Li, who operated the
machine tools for the cutting experiments and the three graduate students,
Ge Yi, Huasheng Bi, and Ruofeng Huang, who took part in the cutting
experiments, recorded and processed the experimental data.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Wang JL (1994) Development of new drilling force models for
improving drill point geometries. The University of Michigan,
Michigan

2. Ni ZF, Chen GB (1999)Multiface drill——Ni Zhifu drill. Shanghai
Science and Technique Publishing House, Shanghai

3. Paul A, Kapoor SG, DeVor RE (2005) Chisel edge and cutting lip
shape optimization for improved twist drill point design. Int J Mach
Tools Manuf 45:421–431

4. Sambhav K, Dhande SG, Tandon P (2010) CAD based mechanistic
modeling of forces for generic drill point geometry. Comput Aided
Des Appl 7:809–819

5. Shi HM (1982) A new method for analyzing and calculating angles
on cutting tools. Int J Mach Tool Des Res 22:177–196

6. Shi HM (1986) Graphic determination of geometric angles on
metal-cutting tools. Int J Mach Tool Des Res 26:99–112

7. Xiong LS, Shi HM, Zhang HS (1982) A twist drill with smaller
cutting force and lower energy consumption. J Huazhong Univ Sci
Technol 19(II):89–94

8. Shi HM, Zhang HS, Xiong LS (1994) A study on curved edge
drills. J Eng Ind Trans ASME 116:267–273

9. Xiong LS, Shi HM, Chen YJ (2006) Applying plannar
displaying method to the design of flanks of curved edge drills.
In: Jia ZY, Wang XY, Guo DM, Wang J (eds) Current develop-
ment in abrasive technology—proceedings of the 9th
International Symposium on Advances in Abrasive Technology.
Frontiers of Design and Manufacturing Sydney Australia,
Australia, pp 493–499

10. Xiong LS, Shi HM, Chen YJ (2007) Regrinding the cylindrical
flank of curved edge drills. Chin Mech Eng 18(1165–1167):1192

11. Xiong LS (2006) Research on optimization of cutting edge shapes
of twist drills and the sharping methods. Huazhong University of
Science and Technology, Wuhan

12. Xiong LS, Fang N, Shi HM (2009) A newmethodology for design-
ing a curve-edged twist drill with an arbitrarily given distribution of
the cutting angles along the tool cutting edge. Int J Mach Tools
Manufact 49:667–677

13. Wald RM (2010) General relativity. University of Chicago press
14. Dijkstra EW (1959) A note on two problems in connexion with

graphs. Numer Math 1:269–271
15. Bertsekas DP (1998) Network optimization: continuous and dis-

crete models. Athena Scientific, Belmont
16. Xin SQ, Wang GJ (2009) Improving Chen and Han’s algorithm

on the discrete geodesic problem. ACM Trans Graph (TOG)
28:104

17. SongQ,WangXF (2012) Survey of speedup techniques for shortest
path algorithms. J Univ Electron Sci Technol Chin 41(2):176–184

18. Geometry of the active parts of cutting tools—general terms, refer-
ence systems, tool and working angles, ISO/DIS3002.

19. Watson AR, Williams RA (1977) Specification of the cutting ge-
ometry of single point tools and twist drills using the ISO system.
Int J Mach Tool Des Res 17:103–116

20. Startz R (2007) EViews illustrated for version 6. QuantitativeMicro
Software, Irvine

21. Liu JH, Zhang GP, Shi QF, Zou TX, Zhou S (2009) A new simu-
lation method of cutting force model in turning. J Xi’an Univ
Technol 25:351–355

900 Int J Adv Manuf Technol (2016) 82:889–900


	The energy conservation optimization design of the cutting edges of the twist drill based on Dijkstra’s algorithm
	Abstract
	Introduction
	Introduction to the shortest path problem and Dijkstra’s algorithm
	The shortest path problem
	Dijkstra’s algorithm

	Adjacency matrix of the rake face network
	Equation set of the rake face of the twist drill
	Discretization of the rake face
	Adjacency matrix

	Calculation of edge weight
	ECT cutting angles
	Formation of image points and image lines on the projection plane
	Calculation of the cutting angles

	Undeformed chip thickness and cut width
	Empirical models of ECT cutting forces
	Turning experiments on the end face of sleeve parts
	Empirical models of cutting forces

	ECT cutting forces
	ECT drilling power
	Validation of the drilling power (force) calculation model

	MCECMDP based on Dijkstra’s algorithm
	Program design
	Preliminary result
	Minimal drilling power
	MCECMDP

	Densification of the discretized grids on the rake face
	Calculation results after grid densification

	Conclusion
	References




