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Abstract Several measuring systems can be combined to per-
form accurate assessments at the sub-micrometer level in di-
mensional metrology. The obtained data are fused into a com-
mon coordinate system using registration methods for which
the optimal transformation parameters from the common parts
of the data called correspondences are computed. New origi-
nal automated coarse and fine registration methods are pro-
posed here using discrete curvatures: an improved Hough
transformation method for the coarse registration and three
iterative closest point (ICP) variants for the fine registration.
The enhancement of Hough consists of exploiting the curva-
ture parameters in order to minimize the basic algorithm com-
plexity. Thus, local transformation parameters are only com-
puted for points presenting similar precalculated surface type.
While the rough alignment of the scene data and the model
data is thereafter optimized through the fine registration using
common ICP algorithm, the first ICP variant includes the
curvedness and surface type similarity constraints, especially
to reduce the searching area during the matching step. For the
proposed second ICP variant, correspondences are searched
using a specific distance criterion involving curvature feature
similarity measure defined from principal curvatures. The

third ICP variant combines both point-to-point and point-to-
plane minimizations automatically weighted in the objective
function, with the use of moving least squares (MLS) surface
technique to determine the corresponding point in point-to-
point part. The three developed methods are tested on simu-
lated and real data obtained from a computer tomography
(CT) system. The results reveal the benefit of the proposed
new automated coarse and fine registration approaches.

Keywords Coarse registration . Fine registration . Discrete
curvatures . Hough transform .Moving least squares surface .
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1 Introduction

Measurement of freeform microparts at the sub-micrometer
level of accuracy requires one to combine different measuring
systems such as computed tomography (CT) and coordinate
measuring machines (CMM) based on optical and tactile
probing systems. The CT is a technology based on the
computer-processed X-rays, which produces tomographic
data/image of specific areas of the scanned artifact, allowing
the operator to get information about inside and/or outside of
the artifact [1–4]. The CMM involves tactile and/or optical
measurement only of the outside of the artifact [5–7]. The
obtained data are fused into a common coordinate system
using coarse and fine registration methods [8]. Registration
process aims to compute the optimal transformation parame-
ters (R,T) (three rotation angles in R and three translation
components in T) from the common parts of the data called
correspondences. An initial rough alignment resulting from
the coarse registration is crucial and is thereafter optimized
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through the fine registration using commonly the ICP algo-
rithm or its variants.

Coarse registration enables to estimate roughly the rigid
transformation using commonly marker-based approach
[9–11] or automatic shape alignment [12, 13]. The second
category of methods includes techniques such as the genetic
algorithm, and principal component analysis (PCA) [14]
which has been robustified recently using the least-median-
of-squares method (LMedS) for the principal axis determina-
tion in the presence of outliers [15]. This category covers also
approaches based on the use of known correspondences found
from the calibration relationships between the multiple sen-
sors and views [16] or from similar invariant characteristics,
features signatures, etc. [17, 18].

Fine registration consists of refining the alignment of the
two datasets using traditional ICP algorithm [19]. ICP is an
iterative algorithm for the optimal motion estimation that
brings the scene data P to the model data Q in closed-form
from known correspondences. The iteration is terminated if
stopping criteria are reached. At each iteration, ICP is
proceeded as follows:

& Match points in the overlapping sections of the scene data
and the model data (pi,qi)

& Compute the global rigid transformation (Rg,Tg)
& Apply the motion (Rg,Tg) to the scene data points P
& Calculate the error metric
& Apply the stopping criteria

Different ICP variants are yielded in the literature to im-
prove the algorithm robustness, speed, range, and rate of con-
vergence [20, 21].

A new automated registration method is proposed in
this paper using discrete curvatures. The coarse registra-
tion requires no markers and no user interaction since it
exploits a curvature feature for an improved HT method
[22]. For that purpose, the shape index and the corre-
sponding surface type are computed for all vertices
which are afterward classified accordingly. HT is then
applied only on points of the same surface type, which
reduces considerably the processing time and the algo-
rithm’s complexity.

The exploitation of discrete curvatures has been explored
for fine registration while being classified into three
approaches.

Although the classical point-to-point ICP algorithm is
adopted for the first approach, two additional correspondence
matching criteria have been associated with the closest point
criterion using respectively the shape index and the
curvedness in order to prune the searching area.

For the second approach, a novel distance criterion has
been elaborated combining Euclidean distance and curvature
distance defined from the principal curvatures. The classical

point-to-point minimization algorithm has been applied to
compute the transformation parameters.

To improve the robustness of the fine registration to
noise, the point-to-point optimization method is com-
bined with a point-to-plane one for the third approach.
The curvature parameters of each vertex are exploited
for an automatic weights definition and for a local sur-
face approximation of the model data using MLS sur-
face technique [23]. The final corresponding point taken
from the model data is an artificial point defined as the
projection of the initial corresponding point onto the
local surface approximation.

Finally, the developed methods are tested on simulated data
and on real data from CT measurements. The results are ana-
lyzed and reveal the benefits of the automated proposed reg-
istration approaches.

2 Proposed automated registration techniques

The proposed automated registration process is based on the
exploitation of the curvature features of each vertex in scene
data (P) and in model data (Q). The shape index, the surface
type (Ts), and the local framesVare used for coarse registration
while the shape index, the curvedness, the principal
curvedness, and the surface type are exploited for fine
registration.

2.1 Curvature extraction

2.1.1 Smooth cases

For smooth cases, curvatures are defined to measure the
local bending of an oriented surface. Assuming a given
point pi belongs to the surface, for each unit direction
u! on its tangent plane Tp(pi) the normal curvature Kn

u!� �
is defined as the curvature of the curve that be-

longs to both the surface itself and a perpendicular
plane containing n! pið Þ and u!. The normal curvature
is formulated in Eq. 1.

Kn u!� � ¼ Spi u!� �
: u! ð1Þ

where Sp u!� �
formulated in (Eq. 2) denotes the shape

operator (or Weingarten endomorphism) at point pi
along the direction u!, which is defined as the derivate
of n! pið Þ with the tangent direction u!, −∇ u! n! pð Þ.

Sp u!� � ¼ −∇ u! n! pð Þ ð2Þ

The shape operator matrix is usually symmetric. Its eigen-
values and the corresponding eigenvectors are respectively
called the principal curvatures and the principal directions. It
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has been proved in [24] that the principal curvatures are relat-
ed with the normal curvature (Eq. 3).

Kn u!� � ¼ K1cos
2θ−K2sin

2θ ð3Þ

where K1 and K2 represent the maximum and the minimum
principal curvatures, respectively. θ is the angle between u!
and the principal direction associated with the maximum prin-
cipal curvature.

These equations allow one to calculate the Gaussian curva-
ture and the mean curvature (the main curvature parameters
commonly used) according to the classical definitions
and notations of differential geometry for the case of
smooth surface [25].

2.1.2 Discrete cases

For discrete models, such as the point cloud or the polygon
mesh, the discrete differential geometric information is differ-
ent from the smooth cases. Classical discrete curvature esti-
mation methods are usually applied on polygon mesh sur-
faces. Depending on the piecewise smoothness of the input
mesh, the discrete curvature estimation is subject to various
definitions [26, 27]. The classical methods of discrete estima-
tion based on polygon mesh surfaces could be classified into
three basic categories: one may approximate a local quadric
surface at a given vertex mesh and then apply the derivatives
to obtain the curvatures [28]. One may discretize the mathe-
matic formula that gives the curvature information of contin-
uous surface and extend the notations to discrete domains
[29]. One may use the tensor-based techniques for discrete
curvature estimation [28]. The last category has been proved
to be efficient and simple to implement, which mainly moti-
vated our choice for a modified Cohen-Steiner [29] approach.

The discrete curvatures on 3D meshes are estimated by the
local surface fitting for the first category. For a given vertex pi,
local parameterization technique, such as local surface fitting,
is applied to get a local parametric representation of a surface
in u and v. Once the r(u,v) corresponds to the semigeodesic
coordinates, the Gaussian curvature and mean curvature could
be calculated from the following formula (4).

r u; vð Þ ¼ x u; vð Þ; y u; vð Þ; z u; vð Þð Þ ð4Þ

Although the most commonly used method is the quadric
surface approximation, the fitted quadrics are unsuitable for
approximating arbitrary data according to Sapidis and Besl
[30].

The basic idea of the discrete Laplace-Beltrami operator
[31] adopted byMeyer et al. [26], which illustrates the second
category, is that a mesh is considered as either the limit of a
family of smooth surfaces, or a linear approximation of an
arbitrary surface. Considering a surface at a vertex pi, the
geometry properties are defined as the spatial average around

this vertex. Thus, it is important to choose the appropriate
associated surface patch over which the average will be com-
puted for each vertex. Two main types of local regions are
commonly used in practice, but it has been proved by Meyer
et al. [26] that the Voronoi region presents a better perfor-
mance than barycenter-based-cell.

Similar to the methods based on local quadric surface as-
sociation, the method of Meyer et al. [26] begins with the
calculations of mean curvature and Gaussian curvature. The
mean curvature normal operator that is also known as
Laplace-Beltrami operator is introduced to the discrete case.
Since the Gaussian and mean curvatures are both solved, the
principal curvatures can be easily computed.

To determine the two principal directions, the method uses
the tensor-based technique and computes the eigenvectors of
the curvature tensor. The curvature tensor of a surface S is the
map that assigns each point pi of S to the function that mea-
sures the normal curvature Kn of S at pi in the direction of the
unit vector ū, tangent to S at pi [27].

Cohen-Steiner and Morvan proposed a method belonging
to the third category that estimates the discrete curvature ten-
sor on polygon mesh [29] by elaborating a curvature measure
over a given local region to define the shape operator matrix
for each vertex. A variant of their approach has been imple-
mented in our program.

2.1.3 The adopted discrete curvature calculation method

Unlike Cohen-Steiner and Morvan, additional weight
coefficient λe has been introduced in the shape operator
formulation for the discrete curvature calculation method
we propose, in order to consider the contribution of line
curvature tensor along each mesh edge to the given
vertex. For the local region B definition, Voronoi cell
is generated on the one-ring neighborhood of the vertex.
The shape operator matrix H at each vertex is given by
the Eq. 5 where n! eð Þ is the edge normal at edge e,
which is equal to the average normal vectors of the
two triangles incident to the edge.

H ¼ 1

A

X
e∈E

λe: β eð Þ:length e∩Bð Þ: e!� e!� � ð5Þ

λe ¼
cos−1 n pð Þ��!

; n eð Þ��!� �
X

e∈E
cos−1 n pð Þ��!

; n eð Þ��!� � ð6Þ

The equation (Eq. 5) depends on several parameters such as
n! eð Þ, λe, A, e, B, and β illustrated in Fig. 1. For any polyhe-
dral mesh surface, the normal to the edge e, n! eð Þ, is calculat-
ed using Eq. 7, while the normal vector n! pið Þ at each vertex
pi is estimated as the weighted average of the normal vectors
of the adjacent triangle facets around it (Eq. 8). The unit
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normal vector n!i (i=1…N) of the ith triangle facet is calcu-
lated by Eq. 9, which depends on the three unit edge
vectors e!i1 (j=1,2,3) of each ith triangle facet in coun-
ter-clockwise. ωi (i=1…K) represents the weight coeffi-
cients corresponding to the normal vectors of the facets
fi. The weight coefficients are defined from the area of
each adjacent triangle facet and the distance between the
given vertex and the barycenter of each adjacent facet
(Eq. 10). Ai (i=1…K) represent the area of the ith tri-
angle facet, and di (i=1…N) are the distances between
the vertex pi and the barycenter of the ith triangle facet.
N is the number of all the triangle facets adjacent to the
given vertex.

n! eð Þ ¼ n!1 þ n!2

n!1 þ n!2

�� �� ð7Þ

n! pið Þ ¼
X K

i¼1
ωi: n

!
iX N

i¼1
ωi: n

!
i

����
����

ð8Þ

n!i ¼ e!i1 � e!i2 þ e!i2 � e!i3 þ e!i3 � e!i1

e!i1 � e!i2 þ e!i2 � e!i3 þ e!i3 � e!i1

�� �� ð9Þ

ωi ¼
Ai=d2iX K

i¼1
Ai=d2i

ð10Þ

2.1.4 Shape index, curvedness, and surface type calculation

The shape index and the curvedness are two other surface
descriptors deduced from the two principal curvatures like
the Gaussian and mean curvatures. The shape index first in-
troduced by Koenderink and Doorn [32] is a single value
within the range [−1, 1] characterizing the local surface type.
Regardless of discrete or continuous shapes, the shape index is
calculated using Eq. 11 where K1 and K2 represent the maxi-
mum and the minimum principal curvatures of the local sur-
face.

δ ¼ −
2

π
tan−1

K1 þ K2

K1−K2

� 	
; K1≥K2ð Þ ð11Þ

The surface type is derived from the shape index value as
highlighted in Table 1.

The curvedness C is a positive number defined as a bending
energy specifying the amount of the surface curvature. Its
formulation is given in Eq. 12 [32]. The curvedness is inverse-
ly proportional to the local size of the object and has the
dimension of reciprocal length. It only vanishes at planar ver-
tices, while Gaussian curvature vanishes on parabolic surface
and mean curvature vanishes on saddle surface.

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 þ K2
2

2

s
ð12Þ
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Fig. 1 a Voronoi cell generation.
b The parameters used for H
formulation. c The surface normal
estimation

798 Int J Adv Manuf Technol (2015) 81:795–810



2.2 Coarse registration

The previous works on coarse registration are generally
achieved manually from known correspondences. Since the
correspondences are unknown, the existing automatic
methods mostly suffer from the problems of larger matching
errors [12] or complex computations [33]. Therefore, different
methods are suggested in literature to roughly align the
datasets, thus avoiding the matching step. Among them,
PCA is the most common approach used when the overlap-
ping sections are almost complete and the objects present no
symmetries.

In this paper, Hough transformation method has been
adopted to automate the rough alignment of two
datasets (scene data P and model data Q) while coping
with PCA limitations. An initial HT approach was
attempted by Merlin and Farber [34] where only trans-
lations of the target object were considered. More re-
cently, Ballard [35] extended the HT approach by in-
cluding rotations and scale changes for the detection
of nonparametric curves. These publications point out
the algorithm complexity which increases with the data
volume since HT is based on an exhaustive search.
Hence, the combination of the curvature parameters in
the HT principle is aimed at reducing the number of the
exhaustive search operations which consequently de-
creases the computational time as well as the memory
storage necessary for the Hough table.

2.2.1 Curvature-based Hough transformation method

First, local frames defined by the Eigen vectors (Vi,Vj) related
to the eigenvalue decomposition of the shape operator matrix
H are calculated for all vertices in both data sets (respectively
in scene data P and in model data Q).

The precalculated local frames (Vi,Vj) are afterward
employed to compute the possible global transformation pa-
rameters (Ri→j,Ti→j) for all combinations between each point
pj in P and each point qi in Q using Eq. 13.

Ri→ j ¼ V j:V
T
i and Ti→ j ¼ pj−Ri→ jpi ð13Þ

Each new transformation parameters are stored in the
Hough table (also called 6D Hough counting space (HCS)
or the 6D accumulation table) while initializing the corre-
sponding counter to one, which will be incremented according
to the number of the transformation parameters occurrences.
The correct point correspondences in the scene data and in the
model data results in rather identical transformation parame-
ters (Rc,Tc), when the residual εc in (Eq. 14) is less than 10

−2,
while the other transformation parameters are distributed ran-
domly in the HCS.

dist Ri→ j;T i→ j

� �
− R;Tð ÞHCS

� �
< εc ð14Þ

The retained transformation is selected regarding the coun-
ter values. The counter associated with the searched transfor-
mation is expected to provide the highest number of votes in

Table 1 Surface types specified by shape index intervals
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HCS. Furthermore, the peak value would be equal to the num-
ber of point correspondences in the overlapping surface when
the model data and the scene data match perfectly. The appli-
cation of the HT requests one to calculate the local transfor-
mation parameters between each point in the model data and
each point in the scene data, which presents o(N×M) complex-
ity if N and M denotes, respectively, the number of points in P
and in Q (Fig. 2). Hence, the HT approach is a very time-
consuming algorithm for two large cloud data. To solve this
problem, we propose to reduce the number of operations by
considering curvature parameters precalculated at each point
in HT process. Therefore, transformation operations (Eq. 13)
are only executed between points presenting the same surface
type (which is of the number of 10 (Table 1)). The complexity

becomes o ∑10
i¼1 N

0
i �M

0
i

� �� �
whereNi

′ andMi
′ are the number

of points presenting identical surface type i in P and in Q
(Fig. 3).

E.g.: 45 local transformation parameters (Ri→j,Ti→j) are
calculated for the selected three points with the blue color in
the model data covering all possible combinations in Fig. 3,
while only 21 local transformation parameters (Ri→j,Ti→j) are
calculated for the same selected three points with blue color in
the model data point when considering the curvature parame-
ters in Fig. 3. For both cases, local transformation parameters
(Ri→j,Ti→j) corresponding to the blue peak are selected for
the coarse alignment.

2.3 Fine registration

The classical ICP or its variant used for fine registration is
mainly operated in two separate and successive steps: the

correspondences searching and the optimization. The
searching of point pairs in the overlap area of the two discrete
shapes constitute an important part of the registration process
impacting the quality of the final result. The closest point
criterion according to Euclidean distance is traditionally used
for the correspondences searching, while point-to-point mini-
mization algorithm or point-to-plane minimization algorithm
is generally implemented to find the optimal transformation
parameters (the rotation matrix Rg and the translation vector
Tg). The introduction of the curvature information in the two
main steps of the fine registration process has been investigat-
ed into three approaches.

2.3.1 Method 1: ICP variant using shape index
and curvedness for correspondences searching

Since the curvature information is geometry invariant, the
points corresponding to the same point on a physical object
should have similar curvature attributes. The similarity be-
tween two points can be defined based on second-order geo-
metric attributes such as the shape index (surface type) and the
curvedness. During the matching step, three criteria related to
the closest point position and curvature parameters similarity
have been implemented to perform ICP algorithm. For a given
point pi in scene data P, its corresponding point in model data
Q is the closest point qi presenting the same surface type
(shape index) and the same curvature as pi, equation (14
bis). The feature distance df defined in Eq. 15 is used to mea-
sure the curvature parameters similarity between two points, pi
in P and qi in Q.

d f ¼ Cpi−Cqi if Ts pið Þ ¼ Ts qið Þ
∞ else Ts pið Þ ≠ Ts qið Þ

�
ð15Þ
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Fig. 2 Schema of the basic Hough transform (HT) method where the 6D
HCS is represented by 2D space for the illustration
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Rpq ¼ argmindist pi; qið Þ
qi∈ψ pið Þ

where Ψ pið Þ ¼ d f < Thd f ð16Þ

Thus, for any given point pi in P, the feature distance df is
first calculated if the corresponding point qi in Q presents the
same surface type as pi (Eq. 16).

The final corresponding point is then selected among qi
points in the subset Ψ(pi) by applying the closest point criteri-
on within Euclidian distance. Ψ(pi) is defined using a feature
distance threshold Thdf, which delimits the matching resolu-
tion of two points pi and qi while influencing the accuracy of
the correspondences searching results. A large value of Thdf
causes the matching resolution to be too large by the algo-
rithm. As a consequence, many point pairs with bad corre-
spondences will be found and considered for the next step of
the process. By contrast, a too small value of Thdf leads to
discount several good correspondences penalizing the deter-
mination of the optimal global transformation parameters (Rg,
Tg). Both conditions can lead the coarse alignment to failure.
In general, if the curvature estimation is reliable, a compro-
mised value of Thdf fixed in the interval of [10−3 10−7] can
induce a satisfying rough alignment.

Once the matched points are stored, the next step consists
of computing the global transformation parameters (Rg,Tg) by
solving the optimization problem in Eq. 17 using singular
value decomposition (SVD) or unit quaternion (UQ) in
closed-form. Moreover, Levenberg Marquardt and L-BFGS
methods were also respectively studied and discussed by
NIST and LNE [36] for an optimal solution of the problem
(Eq. 17).

f Rg; Tg

� � ¼ min
Rg ;Tg

1

n

Xn

i¼1

Rgpi þ Tg−qi
�� ��2 ð17Þ

where n is the number of point pairs.
After numerous iterations, normally less than 10, the over-

lapping sections between P and Q can be aligned with good
performance.

2.4 Method 2: ICP variant based on curvature distance
and Euclidean distance combination

The accuracy of the found corresponding point pairs af-
fects the estimation of the transformation parameters.
The output of this step has a major impact over the
downstream stages and influences the overall perfor-
mance of the registration approach. In order to enhance
the performance of this phase, the geometric distance
has been introduced for a better recognition of the sim-
ilarity between points in the overlapping area of P and
Q. Thus, assuming an arbitrary vertex pi in P and an
arbitrary vertex qj in Q, the proposed geometric distance
dg defined in the equation (Eq. 18) depends on both

Euclidean distance de (Eq. 19) and curvature ratio dis-
tance dc (Eq. 20) between pi and qj.

dist pi; qj

� �
¼ dg pi; q j

� �
¼ λ:de þ 1−λð Þ:k:dc ð18Þ

where

de ¼ pi−qj

�� �� ð19Þ

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1p−ρ1q

� �2
þ ρ2p−ρ2q
� �2

r
ð20Þ

and ρ1 ¼ 1
�
K1
, ρ2 ¼ 1

�
K2
, λ∈[0,1].

The coefficient k is a constant that normalizes the curvature
ratio distance dc, while λ is a coefficient set by the operator to
balance the contribution of dc and de.

Once points are matched using the closest geometric dis-
tance criterion, the global transformation parameters (Rg,Tg)
are computed in the same manner as the previous approach.

A compromising threshold is used to retain or not the found
closest point for the sake of reducing the matching errors.

2.4.1 Method 3: ICP variant combining point-to-surface
and point-to-plane algorithms

For the third proposed approach, the research of correspon-
dences can be based on Euclidean distance criterion or on geo-
metric distance criterion previously defined. However, unlike
the rigid registration where only known point pairs (pi, qi), using
separately point-to-point or point-to-plane algorithm, are consid-
ered, the proposed novel objective function combines both
point-to-point and point-to-plane minimization while introduc-
ing additional correspondences (pi,qi

∗) for the point-to-point part
(Eq. 21), where qi

∗ is estimated from the initial qi of (pi, qi) and its
neighbors using the MLS surface technique.

f Rg; Tg; p; q
� � ¼ Xn

i¼1

ω*
i αi Rpi þ T −qi

*
�� ��2 þ βi Rpi þ T −qið ÞTni

� �2
 �

ð21Þ

ωi
* are weights close to one indicating the reliable

correspondences.
(αi,βi) are automatically set according to the preliminary

surface type value estimated for each point (Table 1). The idea
behind this is based on the following assumption: the higher the
surface type value is, the higher the value ofαi and the lower the
value of βi are, and vice versa (Table 2). For example, if the
surface type of a point pair (p1,q1) is a dome, 0.8 is attributed to
α1 and 0.2 for β1. Hence, if the surface type of a point pair (p2,
q2) is a plane, 0.1 is attributed to α2 and 0.9 to β2.

The calculation of the point qi* based on MLS approach is
carried out by applying algebraic point set surfaces (APSS)
method [23] (Fig. 4). The APSS approximating the point
cloud (formed here by the neighbor points of qi, N(qi)) yields
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as the zero set of an implicit scalar function f(x), representing
the algebraic distance between the evaluation point X ∈N(qi)
and the local fitted sphere u(X), (Eq. 22).

f Xð Þ ¼ su Xð Þ ¼ 1 XT X TX
� �

u Xð Þ ¼ 0 ð22Þ

where u=[u0, u1, u2, u3, u4]
T is the vector of scalar coefficients

describing the local sphere u(X) estimated by solving the fol-
lowing optimization problem:

u Xð Þ ¼ min
u

X
i

ωad
i Xð Þ su qið Þ2 þ ∇su qið Þ− n!i

�� ��2� �
ð23Þ

where n!i is the surface normal of qi. ∇su(qi) is the gradient of
f(X). ωi

ad is a weight associated to each considered X formu-
lated in equation (Eq. 24).

ωad
i Xð Þ ¼ ϕ

qi−Xk k
ri:h

� 	
ð24Þ

where ϕ is a smooth decreasing weight function, ri is the
radius representing the local point spacing and h∈ℝ is a global
scale factor adjusting the influence of the radius of every
point. ri is computed as the distance from qi to its farthest
neighbor point using a neighborhood definition while h is
set intuitively.

Finally, the point qi* is found by iteratively projecting the
point qi onto the local sphere. The point-to-plane

minimization method has been proved to be robust to
noise. However, inaccuracies can be induced if the
neighboring points present high curvatures due to the
least squares estimation of the tangent plane. The reason
is that the new proposed formulation of the objective
function includes both the point-to-plane approach to
handle points presenting low curvatures and the point-
to-point approach to handle points with high curvatures.
The proposed ICP variant can be considered as nonrigid
registration method and has been proved to be robust to
noise.

Table 2 Specification of the parameters αi and βi according to the
surface type T

Surface type Parameter αi Parameter βi

Spherical cup (T=−4) 0.9 0.1

Through (T=−3) 0.8 0.2

Rut (T=−2) 0.7 0.3

Saddle rut (T=−1) 0.6 0.4

Saddle (T=0) 0.5 0.5

Saddle ridge (T=1) 0.4 0.6

Ridge (T=2) 0.3 0.7

Dome (T=3) 0.2 0.8

Spherical cap (T=4) 0.1 0.9

Plane (T=5) 0 1

Fig. 4 Local fitted algebraic sphere u(X)
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2.5 Implementation of the coarse and fine registration
algorithm

The combination of HT method and curvature parameters
which guarantees the coarse registration as well as the three
ICP variants described above for fine registration, have been
implemented using MATLAB software on a pc characterized
by an Intel core i7/×64 platform with 8 GB of RAM and a
2.0 GHz processor.

The proposed curvature-based registration process which
offers three possibilities for fine registration is illustrated in
Fig. 5 interpretable as follows:

Method 1 Searching correspondences using Euclidean dis-
tance de(pi,qj) for points of identical shape index
and curvedness followed by the application of the
point-to-point minimization method (rigid regis-
tration method). This procedure corresponds to
the flows a and c in Fig. 5.

Method 2 Searching correspondences using specific dis-
tance dg(pi,qj) for all points and application of
the point-to-point minimization. This procedure
corresponds to the flows b and c in Fig. 5.

Method 3 Searching correspondences using specific dis-
tance dg(pi,qj) for all points and application of
the point-to-point combined with point-to-plane

minimization (non-rigid registration method).
This procedure corresponds to the flows b and
d in Fig. 5.

For any selected procedure, the program terminates only if
one of the stopping criteria is satisfied: if the difference of the
mean squared errors (MSE) between two iterations is weaker
than ε=10−3 or if the number of the iterationsN is greater than
100.

3 Results

3.1 Evaluation of the robustness of the developed
algorithms on simulated data

Two simulations were handled in order to study the robustness
of the algorithms when confronted to measurements of differ-
ent levels of noise and when dealing with data fusion. The
developed three methods were applied on simulated data col-
lected from the CAD data of a LEGO connector. Initially,
more than one million points are generated to define the scene
data (the moving set). The corresponding curvature C and
shape index δ parameters are illustrated respectively in
Fig. 6a, b. The model data (the fixed set) is thereafter built

Fig. 6 Curvature parameters
maps of the LEGO connector: a
curvedness C map; b surface type
T map
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by combining a generated Gaussian noise to a copy of the
CAD data. For the first simulation, three tests involve gener-
ating Gaussian noise with controlled mean and standard devi-
ation (μ=0, σ=5, 50, and 100 nm). The considered values
of the standard deviation correspond to typical noise values
observed on the measuring system. σ=5 nm corresponds to
the noise caused by the probing system integrated on ultra-
high precision CMM [5, 6], while σ=50 nm corresponds to
the noise that can be seen on classical CMM. σ>100 nm cor-
responds to the noise produced by the measuring system inte-
grated on μCT.

The Matlab function “randn” is used to generate the
Gaussian noise (Fig. 7), added in the orthogonal direction at
each model data point. The execution of this function returns
actual standard deviation that slightly differs from the imposed
value. For the analysis, RMS and PV values calculated from
the generated Gaussian noise are consequently considered as
the true generated values. Once the model data is created, it is
translated (Tx=2 mm, Ty=−3, and Tz=−1 mm) and rotated

(Rx=−0.5 rad, Ry=−0.01 rad, and Rz=0.5 rad) along x-, y-,
and z-axis to generate the initial alignment between the two
datasets, Fig. 8a.

Afterward, the three developed registrationmethods, which
have in common the enhanced HT registration method, are
applied. The coarse and the fine registration results obtained
using the first approach, are, respectively, illustrated in
Fig. 8b, c.

Finally, the RMS and PVof the residual registration errors
are evaluated and compared to the RMS and PVof the gener-
ated noise since they transcribe the form specifications of the
LEGO connector.

For the first method, the influence of Thdf (Eq. 15) and the
Euclidean distance threshold Thdist (to delimit the accepted
closest points distance) onMSE are evaluated for a noise level
of σ=5 nm. For such a level of noise the algorithm converges
only if Thdist varies between 0 and 0.05 and if Thdf varies
between 0 and 0.1. The results illustrated in Fig. 9, considered
as an abacus, reveal that the MSE values are low for Thdist less
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than 0.01 mm and for Thdf varying between 0.001 and 0.005
range. For a noise level of σ=50 nm, the algorithm converges
only if Thdist varies between 0 and 0.5 and if Thdf varies be-
tween 0 and 0.1. The MSE values are low when Thdist is less
than 0.2 mm or when Thdf varies between 0.0001 and 0.003
range.

For the second and third methods (for which we recall that
the parameters αi and βi are set automatically in the program
according to the shape index parameter as indicated in
Table 2), the influence of the parameter λ (λ∈[0 1]) (Eq. 6)
on MSE values is investigated with the three proposed levels
of noise. The obtainedMSE using Euclidean distance (λ=1) is

more satisfying compared with the MSE values obtained by
varying λ.

Focusing on results obtained using the methods 1 and 3, the
difference between the generated and the estimated RMS and
PV, respectively, denotedΔ(PV) andΔ(RMS), is small within
low MSE values too (Table 3). Additionally, the MSE values
issued of the first method increase from ∼10−31 to ∼10−11

when the amplitude of noise increases. Regarding the third
method, MSE values increase slowly from ∼10−11 to ∼10−9.

For the data fusion simulation, the model data is combined
with the Gaussian noise of σ=5 nm and the scene data is
combined with the Gaussian noise of σ=100 nm. The results
reported in Table 4 confirm that the methods 1 and 3 are more
accurate than the proposed method 2. The deviations Δ(PV)
andΔ(RMS) related to the methods 1 and 3 are below a nano-
meter. The test is repeated again for which the model data is
combined with Gaussian noise of σ=100 nm, and the scene
data is combined with Gaussian noise of σ=5 nm. The results
reported in Table 5 are similar to those presented in Table 4
and endorse the accuracy of the methods 1 and 3 at a nano-
meter level.

3.2 Application of the algorithms on μCT measurement

The concept of X-ray computer tomography (CT) is based on
the attenuation of the X-ray beam through the specimen.
According to Beer–Lambert law, the ratio between the trans-
mitted and the incident photons depends on the integral of the
absorption coefficient of the material μ along the path that the
photons follow through the specimen. The absorption coeffi-
cient μ is linked to the density, the atomic number and the
energy [1–4]. The resulting image is a projection of a volume
in a 2D plane. To get 3D information, numerous radiographs
should be taken while rotating the specimen between 0° and
180°. These projected images allow one to mathematically
reconstruct the volume of the measured specimen using a
specific algorithm.

CT requires an X-ray source, a rotation stage, and an X-ray
detector. Fan, cone, and parallel X-ray sources are commonly
used. A fluorescent detector is usually used and devoted for
the changing of the X-rays into visible light which is trans-
ferred to the CCD camera by a set of optic lenses (Fig. 10).
Both the specimen and the rotary stage can move between the
detector and the source using a high precision bearing or air-
bearing system in order to adjust the resolution which gener-
ally lies between 10 and 500 μm. The necessary time for a
complete scan is strongly influenced by the resolution, the size
of the CCD camera and the source therefore is difficult to set a
general rule.

Nowadays the term micro-CT (μCT) is usually used to
refer to tomography with an image spatial resolution in the
micron range, which can be achieved if the spot size is within

Fig. 8 Study of the robustness of the developed three algorithms on
simulated connector data: a initial alignment (red, model data; blue,
scene data), translations (Tx=2 mm, Ty=−3, and Tz=−1 mm) and
rotations (Rx=−0.5 rad, Ry=−0.01 rad, and Rz=0.5 rad); b coarse
alignment; c fine alignment (color figure online)

Fig. 9 Evolution of the MSE versus the threshold of df denoted as Thdf
and the threshold of the Euclidian distance Rpq ¼ minqi∈ψ pið Þ dist pi; qið Þ
denoted as Thdist
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the order of fewmicrons, or via an adequate set of optics in the
detector.

The μCTused here for the LEGO connector scanning is the
Carl Zeiss METROTOM 800. METROTOM 800 was spe-
cially achieved through the use of maintenance-free micro-
focus X-ray tube technology (Fig. 10). Extremely small focal
points enable razor-sharp projection images on the detector,
leading to the foundation of a high measuring accuracy. The
METROTOM 800 detector delivers almost three million
pixels for very high detail recognition (Table 6).

In the METROTOM 800, the specimen can be located at
any position along the beam path via a continuously adjust-
able travel mechanism. The detector is always optimally illu-
minated with the part projection. Together with the vertical
adjustment, this function allows one to enlarge specific areas
of the parts to measure details in relation to the entire
specimen.

The described μCT is used for the scanning of the connec-
tor prototype provided from the LEGO Company which is a
supporter of the JRPMICR (IND59) project. The connector is
made of polycarbonate materials and manufactured by an in-
jection molding process. The dimensions of the connector are
of 25-mm length and 5-mm diameter (Fig. 11).

More than one million points are recorded to cover the
entire specimen surfaces. The registration of the μCT mea-
surement data with the CAD data is carried out using the three

implemented methods. For the second and third methods, the
impact of the λ parameter on MSE is investigated and the
results are reported in Fig. 12. λ=0.4 gives the smallest
MSE value for both methods 2 and 3 and is considered as
the optimal value selected for the fine registration. The obtain-
ed results are illustrated in Table 7. The initial alignment is
presented in Fig. 13a, while the coarse and fine registration
results are illustrated in Fig. 13b, c, respectively. According to
the results in Table 7, the methods 1 and 3 are more accurate
than method 2. The average of the three obtained PV values is
87.941 μm while the average of the three obtained RMS
values is 4.183 μm.

3.3 Analysis of the results

The entire process involving the coarse and the fine registra-
tion algorithms are applied and evaluated firstly on simulated
data of the LEGO connector CAD and secondly on its mea-
surement performed by the previously described μCT system.

3.3.1 Registration of simulated data

We recall for the first simulation that the model data is defined
by the CAD data while three levels of noise (σ=5, 50,
and 100 nm) are generated and combined with a copy of the
CAD data to create the scene data. The algorithms are then

Table 3 Results related to the first simulation

Method Gen. PV (nm) Est. PV (nm) |Δ(PV)| (nm) Gen. RMS (nm) Est. RMS (nm) |Δ(RMS)| (nm) MSE

1 1.995×10−5 1.995×10−5 2.314×10−15 4.650×10−6 4.650×10−6 9.848×10−17 7.751×10−31

2.084×10−4 2.084×10−4 1.159×10−15 4.417×10−5 4.417×10−5 3.590×10−17 7.962×10−31

4.179×10−4 4.119×10−4 5.632×10−8 9.195×10−5 9.200×10−5 5.632×10−8 6.099×10−11

2 1.94×10−5 6.105×10−5 4.110×10−5 4.64×10−6 1.43310−4 1.387×10−4 1.115×10−4

2.05×10−4 1.375×10−4 7.086×10−5 4.41×10−5 1.499×10−4 1.056×10−4 3.081×10−6

4.15×10−4 3.608×10−4 5.705×10−5 9.19×10−5 1.702×10−4 7.824×10−5 3.083×10−6

3 1.995×10−5 1.919×10−5 7.601×10−7 4.650×10−6 4.651×10−6 8.836×10−10 2.025×10−11

2.084×10−4 2.055×10−4 2.446×10−6 4.417×10−5 4.413×10−5 2.715×10−8 1.842×10−9

4.179×10−4 4.159×10−4 1.996×10−6 9.195×10−5 9.195×10−5 1.719×10−9 8.106×10−9

Gen. generated, Est. estimated

Table 4 Results related to the second simulation

Method Gen. PV (nm) Est. PV (nm) |Δ(PV)| (nm) Gen. RMS (nm) Est. RMS (nm) |Δ(RMS)| (nm) MSE

1 1.995×10−5 – 6.465×10−8 4.650×10−6 – 3.841×10−7 7.390×10−31

4.179×10−4 4.179×10−4 9.195×10−5 9.233×10−5

2 1.995×10−5 – 1.618×10−4 4.650×10−6 – 1.911×10−4 2.320×10−8

4.179×10−4 5.798×10−4 9.19×10−5 2.830×10−4

3 1.995×10−5 – 3.002×10−6 4.650×10−6 – 4.307×10−7 8.170×10−9

4.179×10−4 4.149×10−4 9.195×10−5 9.238×10−5

Gaussian noise amplitude of 20 nm is added to model data Q, while Gaussian noise amplitude of 400 nm is added to scene data P
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applied to ensure the coarse and fine registrations. Regarding
the investigated case, both methods 1 and 3 are more accurate
than method 2. The MSE obtained with the method 1 leans
toward 10−31 especially when the generated noise has σ≤
50 nm. The deviation between both generated and estimated
PVand RMS is less than 10−15 (Table 3). It corresponds to the
scanning of a freeform standard or a high surface quality of a
complex specimen by means of a high precision CMM or an
ultra-high precision CMM (accurate at the nanometer level).
Thus, in order to guarantee an evaluation at nanometer level,
the data registration and its analysis can be performed using
method 1 due to its negligible error, which can be assimilated
to the software operation inaccuracy. The MSE provided by
method 1 is distinctly more accurate than the one obtained
using the other methods 2 and 3 since it is calculated only
on corresponding points of the same curvature parameters
(shape index and curvedness) while the MSE related to the
two other methods 2 and 3 are calculatedwithout applying this
constraint. For method 1, both threshold Thdf and threshold of
the Euclidean distance Thdist should be selected carefully in

the abacus (Fig. 9), which can be considered as the detriment
and weakness of this method 1.Moreover, the three developed
methods allow one to analyze a large number of data, more
than 1,000,000 points.

For the simulation with noise amplitude higher than
400 nm, both proposed methods 1 and 3 provide deviations
Δ(PV) and Δ(RMS) below the nanometer level. The analysis
of the deviationsΔ(PV) between the generated and estimated
PV reveals again that method 1 is more accurate. Nonetheless,
method 2 presents least satisfying results among all presented
cases.

Simulations for which model and scene data are both com-
bined with Gaussian noise of different amplitudes (20 nm
Gaussian noise amplitude (σ=5 nm) for the model data and
400 nm Gaussian noise amplitude (σ=100 nm) for the scene
data and inversely) are performed in order to investigate the
ability of the proposed methods to fuse data provided from
different systems of measurement (tactile and optical probing
system, from an high precision CMM and an ultra-high pre-
cision CMM, from CT system, vision system, etc.).

Table 5 Results related to the second simulation

Method Gen. PV (nm) Est. PV (nm) |Δ(PV)| (nm) Gen. RMS (nm) Est. RMS (nm) |Δ(RMS)| (nm) MSE

(1) 4.179×10−4 – 6.465×10−8 9.195×10−5 – 3.841×10−7 7.390×10−31

1.995×10−5 4.178×10−4 4.650×10−6 9.239×10−5

(2) 4.179×10−4 – 1.342×10−4 9.195×10−5 – 1.133×10−4 2.470×10−8

1.995×10−5 4.316×10−4 4.650×10−6 2.052×10−4

(3) 4.179×10−4 – 3.337×10−6 9.195×10−5 – 4.414×10−7 8.180×10−9

1.995×10−5 4.145×10−4 4.650×10−6 9.239×10−5

Gaussian noise amplitude of 400 nm is added to model data Q, while Gaussian noise amplitude of 20 nm is added to scene data P
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The application of the methods 1, 2, and 3 on simulated data
confirms that method 1 is more accurate than the method 3
which both are more accurate than method 2 (Tables 4 and 5).
Regarding the amplitude of noise in model and scene data,
which is less than 400 nm, the obtained results emphasize once
again that the methods 1 and 3 are promising. According to
these results, we can consider that the methods 1 and 3 are more
suitable for dimensional metrology at the nanometer level of
uncertainty.

3.3.2 Registration of CAD data and measured data from CT
tomography

The second test consists of aligning the CAD data and the
measured data using our three implemented algorithms. We
recall that the measurement is performed by Carl Zeiss
METROTOM 800 μCT, offering us a large surface dataset
covering the entire connector. The obtained measurement is
composed of more than 1,000,000 points. The results reported
in Table 7 show that the average PV value is 87.941 μm and
the average RMS value is 4.183 μm. The high value of PV can
be explained by a combination of the form errors of the con-
nector with the resolution and linearity errors of the μCT.
These μCTerrors generally exceed some tens of micrometers.
The form errors of the connector are caused by the
manufacturing process based on the injection molded polycar-
bonate and by the physical phenomena that appear during
cooling. The shape of the connector etched in the mould pre-
sents form errors related to the error motions of themechanical
guiding stages supporting the movable table of the electrical
discharge machining, where the mould is fixed and
manufactured. These errors can be considered as systematic
errors since they appear in all the manufactured specimen
using the same mold. In the other side, the errors generated

by μCT can be distinguished into systematic and random er-
rors depending if those are repeatable or not. Numerous errors
sources in the μCTcan be identified such as: resolution of the
source of the X-ray, resolution and linearity errors of the de-
tector, positioning errors of the artifact in the working space,
error motions and positioning errors of the spindle, position-
ing of the detector, reconstruction of the numerous collected
2D radiology, number of orientations of the artifact, etc..

4 Conclusion

Three curvature-based registration methods have been report-
ed in this paper to deal with automated alignment of two
datasets in dimensional metrology. The classical markers
manually identified by the user during the matching step of
the coarse registration in industrial applications (such as in
reverse-engineering, quality control, etc.) are replaced by the
curvature features of the workpiece. These ones are recog-
nized and quantified automatically using a discrete curvature
calculation method on meshed data for which a variant of
tensor-based techniques has been implemented.

For coarse registration, the three implemented methods are
commonly based on an enhanced HT method applied on local
regions of similar surface type to improve the basic algorithm
while dealing with PCA limitations. Satisfying rough align-
ments were obtained observing that the result accuracy is cur-
vature quality depending.

Table 6 Carl Zeiss METROTOM 800 specifications

Performances features

Tube 130 kV/39 W

2D detector 1900×1512 pixels

Measuring range Ø125×150 mm

Lifting table 290 mm

Source-detector distance 800 mm

0 20 mm

Fig. 11 Photo of LEGO connector
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Table 7 Results related to the CAD and the μCT measurement
alignment

Method PV (mm) RMS (mm) MSE

(1) 8.7951×10−2 4.178×10−3 3.050×10−5

(2) 8.7846×10−2 4.197×10−3 1.241×10−4

(3) 8.8027×10−2 4.173×10−3 1.682×10−5
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For fine registration, curvature parameters were exploited
to come up with three variants of ICP methods. The two first
approaches adopt point-to-point algorithm for the minimiza-
tion step, however, the specificity lies in the introduction of
curvature features in the matching step. For the first approach,
two constraints defined from the shape index and the
curvedness are applied during the matching step to prune the
correspondences searching area. For the second approach, a
new geometric distance merging Euclidean distance with cur-
vature distance defined from principal curvatures, has been
elaborated for the correspondences searching.

For the third approach, the objective function of classical
ICP algorithm has been substituted by a combination of point-
to-point and point-to-plane algorithms with automatic weights
determined from the surface type. Moreover, MLS technique
has been introduced to find the final corresponding point used
in the point-to-point algorithm part. For correspondences
searching, Euclidean distance or a mixture of this one with a
curvature distance can be used to further reduce registration
error in some cases.

To evaluate the robustness of the implemented three ICP
variants, two simulations were undertaken using the CAD
data of a LEGO connector combined with Gaussian noise.
The first simulation aims at evaluating the robustness of our

algorithms on three measurements issued from a measuring
system with three given levels of noise while the second one
simulates the data fusion of different levels of noise. The pro-
posed three curvature-based fine registration approaches pro-
vide preliminary promising results. The first approach pro-
vides the most satisfying registration error in most cases while
the second and the third registration errors are more or less
convincing depending on the cases. The algorithms have been
applied on the LEGO connector measurement performed by
Carl Zeiss METROTOM 800 μCT with its CAD data.
Through the exposed applications the performance induced
by curvature parameters introduction for enhanced HT ap-
proach has been emphasized. Additionally, the influence of
the curvature similarity measure utilized for fine registration
as well as the advantage of the novel objective function have
been highlighted. Thus, the results revealed the benefit of the
new automated proposed registration approaches pointing out
the curvature exploitation.
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