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Abstract The high geometric accuracy requirement of preci-
sion machine tools represents a challenge for tolerance design
and assembly process planning that guarantee the final assem-
bly accuracy. Component tolerances should be allocated in
association with assembly processes. However, tolerance de-
sign and assembly process planning are usually considered
separately and lack quantitative analysis. In this paper, to in-
tegrate the geometric tolerance of components and variation
propagation in assembly process, a state space model is devel-
oped. The measurement and adjustment process are expressed
as observation matrix and control inputs. An optimal control
problem is formulated to determine the adjustment process in
consideration of the loss of final assembly accuracy and costs
of remachining adjustment process. Tolerances of components
can be optimally allocated based on the variation propagation
in this deterministic assembly process. The generality and
effectiveness of this approach are validated by applying the
model on a four-axis horizontal machining center.
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1 Introduction

Machine tools are fundamental components in modern
manufacturing. In the development of machine tools, the

machining accuracy is always the basic and key characteristic
requirement [1, 2]. The main error sources in machine tools
are categorized as geometric and kinematic errors, thermal
errors, stiffness error, and errors addressed to the deflection
of cutting tools [3–5]. Nowadays, in the development of
precision machine tools, many techniques should be applied
in design, manufacture, and use to take into account several
phenomena, such as the elastic and thermal deformations,
the possible wear of moving parts, and the appearance of
vibrations [6–11].

Due to the uncertain sources and the complex formulation
of machining errors, it is difficult but necessary for designers
to identify and quantify the error sources before construction.
Error budget is an important deterministic tool that provides a
systematic way to predict and control the repeatable and
nonrepeatable errors of a machine [1]. The error budget is a
model of the machine in its environment expressed in terms of
cause-and-effect relationships. Uriarte et al. [12] established
the overall error budget for a micromilling machine with tools
less than 0.3 mm in diameter. Sun et al. [13] presented an error
budget methodology for designing and characterizing ma-
chines used to manufacture or inspect parts with spatial
frequency-based specifications. For precision machine tools,
error budget is carried out to identify and understand the major
sources of error of the design, assembly, verification, and use.

The geometric and kinematic errors directly affect the rel-
ative position between tool and workpiece, producing dimen-
sional errors [14]. These errors come from the mechanical
imperfections such as misalignments of axes, slideways, and
joint wear. Many researchers investigated geometric errors for
various structures of machine tools from several points of
view. Lamikiz et al. [15] developed a methodology for esti-
mation of the geometrical accuracy of five-axis milling centers
based on the Denavit and Hartenberg formulation. Diaz-Tena
et al. [16] presented a method to estimate global precision of
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complex multitasking machines by using the homogenous
matrix. The modeling and compensation of volumetric errors
for a multi-spindle machine tool were introduced and
discussed by Ahn et al. [17], and Tian et al. [18] presented a
general and systematic approach for geometric error modeling
of machine tools due to the geometric errors arising from
manufacturing and assembly. Liu et al. [19] investigated the
characteristics of geometric errors in CNC machine tools in
detail. In this paper, geometric variation accumulation in as-
sembly process is modeled, and a methodology is proposed
for the quantitative error budget estimation and tolerance al-
location of machine tools.

The final assembly accuracy of machine tools is dependent
on machining errors of components and variation accumula-
tion in assembly process, which are respectively determined
by tolerance allocation in design and adjustment processes in
assembly. Tolerance analysis and synthesis are a traditional
issue in industrial application and academic research. Recent
developments in computer-aided tolerancing (CAT) technology
and concurrent optimal design have been adopted in tolerance
design to improve product quality and reduce cost by designers
and manufacturing engineers [20–22]. Variation propagation
and control in assembly process also attracted interests from
many researchers. The developments in the engineering-driven
stream of variation (SoV) and measurement data-driven statis-
tical process control (SPC) methodologies significantly im-
prove the variation reduction for manufacturing processes
[23, 24]. They have been proven to be effective in process
variation monitoring and diagnosis [25].

However, the geometric accuracy requirement of machine
tools is usually in micrometers, and it has the same magnitude
of common machining errors. The popularly used statistical
methods such as worst case and root-sum square (RSS) are no
longer suitable for tolerance analysis of machine tool assem-
blies. Therefore, the tolerance allocation and assembly process
planning for machine tools mainly depend on designers’ ex-
periences. The tolerance allocation, machining, and assembly
process planning are separately considered in designing and
lack of quantitative analysis. Therefore, the development of an
analytical method to model and control variation propagation
for machine tool assemblies is required. Researchers have not
yet investigated in depth these issues.

Satisfying the increasingly higher accuracy requirement
cannot only depend on tolerance specification. Measure-
ments and adjustments are required to the assembly pro-
cess to ensure the variation accumulation being in a de-
fined range. In each step of machine tool assembly, vari-
ation is accumulated due to the incoming components with
geometric error. Measurement is implemented to evaluate
the variation of key characteristics (KCs). Based on the
measurement results, some critical characteristics should
be adjusted to a relative small value by scraping or
remachining in order to obtain the target accuracy.

In the multi-station assembly process, the variation propa-
gation is related to incoming geometrical error, measurement,
and adjustment processes. State space model (SSM) has been
used tomodel and control variation propagation in automotive
body and aircraft part assembly process [26]. Geometric devi-
ations of KCs are selected as the state variables and changed
along assembly stations in a nonlinear way. The measurement
and adjustment processes are modeled as observation matrix
and control input respectively in state space equation. Based
on SSM, designers can optimize fixture locator adjustment
strategies and dimension control for automotive body and air-
craft assembly [27, 28]. However, compared to the flexible
part assembly, the parts of machine tools are much stiffer,
and the KC definition, measurement method, and adjustment
process are very different in machine tool assembly. In addi-
tion, based on SSM, Gomez-Acedo et al. [29] presented a
methodology for the design of a thermal distortion compen-
sation system for large machine tools. In this method, the
actual physical system state is optimal as estimated by using
Kalman filter.

The aim of this work is to enable designers to achieve
optimal tolerance design and assembly process planning to
satisfy the final accuracy requirement in an analytical method.
SSM is used to model the variation propagation of machine
tools and to solve the integrated dimension control problems
in design and assembly. This research also suggests the use of
optimal control and Kalman filter method both derived from
SSM to obtain analytical and practical solutions for the design,
accuracy testing, and process planning problems.

In the first section, the machine tool assembly process is
discussed, and authors suggest that the assembly process must
be considered in tolerance allocation for precision machine
tool. The angular errors between axes are selected as an as-
sembly accuracy requirement based on kinematic error model.
Moreover, the final part of Section 1 discusses geometric error
model of KCs based on coordinate definition and datum flow
chain (DFC). Section 2 describes the variation propagation
modeling in assembly process using SSM. The modeling of
practical measurement and adjustment process of a horizontal
machining center is illustrated in detail after theoretical
discussion. Section 3 describes the tolerance allocation
method based on SSM and optimal control theory. Con-
clusion and suggestions for further researches are summa-
rized in the last part.

2 Key characteristic modeling in machine tool
assemblies

2.1 Machine tool assembly process

Machine tool is composed of supporting parts, feeding sys-
tems, spindle, electric and control system, and other auxiliary
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systems. All these components are set up in assembly process
to enable machine tools to realize required functions. For the
assembly accuracy requirement, the process is mainly influ-
enced by machining error and assembly error accumulation of
support parts, feeding systems, and spindle.

In machine tool assembly process, the bed is usually firstly
mounted on the ground. The other components or sub-
assemblies are assembled systematically after installing the
bed. In each assembly step, the error state of last assembly
step is the initial error state of this step. The geometric error
of incoming component is the error input. Measurement pro-
cess is implemented to evaluate variation state. Adjustment
must be implemented to reduce the variation accumulation
to meet the requirement of assembly specification.

At each assembly step, geometric variation accumulation is
increased, tested, and reduced. The machine tool design and
manufacturing process integrates the accuracy issues such as
tolerance allocation, assembly process planning, measurement
result valuation, and decision of adjustment. In this compli-
cated practical problem, modeling of variation propagation
and control is basic and significant. Following sections pres-
ent the analytical model of geometric space and the model
describing the assembly process.

2.2 Kinematic errors of precision machine tools

For decades, researchers investigated and developed geomet-
ric error modeling and analysis of machine tool. However,
most of these models are used for error identification and
compensation in order to reduce kinematic error in machining
process. The studies focused on the errors of moving axes and
did not concern about how the errors generate and accumulate.
Therefore, when discussing the variation propagation in a ma-
chine tool assembly process, the geometric error model of
KCs of the process must be reconsidered and constructed.

A typical four-axis horizontal machining center is consid-
ered. The basic configuration of this machine is shown in
Fig. 1. Three linear axes (X, Y, Z) and one rotary axis (B) for
generating rotary motion about Y-axis are contained in this
machine.

The machining accuracy depends on the moving accuracy
of all the axes: the assembly specifications of the finished
assembly mainly regulate the single and relative space accu-
racy of all these axes. The machine axis kinematic errors are
firstly modeled. Following Fig. 2 shows the kinematic rela-
tionship between axes and the analytical model.

The geometric error is expressed through a coordinate sys-
tem, whose base is defined coincident with nominal X-axis.
Other coordinates are separately defined as nominal or actual
part position and orientation as shown in Table 1.

Based on the kinematic model and coordinate definition,
the relationships between two adjacent coordinates are sum-
marized in Table 2, whereΩ2 w.r.t.Ω1 means the translation or
rotation of coordinate Ω2 is defined with respect to (w.r.t.)
coordinate Ω1.

Homogeneous transformation matrix (HTM) is used
to construct the geometric error model [30]. According
to the coordinate definition and kinematic chain of the
machine tool, the relative position and orientation errors
of any two characteristics (coordinates) can be calculated by
HTM multiplication.

Considering an ideal coordinate of the tool tip 0pt and a
command tool path (Xc, Yc, Zc, Bc), the actual position and
orientation of the tool tip with kinematic errors rpt can be
obtained by:

rpt ¼ rTt⋅
0pt ð1Þ

where rTt is the HTM from ideal coordinate of the tool tip to
actual under the command tool path. It is a 4×4 error HTM
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due to kinematic errors. It can be expressed as follows for this
horizontal machining center:

rTt ¼ T87 ΔxB;ΔyB;ΔzB;ΔαB;ΔβB;ΔγB;Bcð Þ
⋅T76 ΔαzB;ΔβzB;ΔγzBð Þ
⋅T65 Δxz;Δyz;Δzz;Δαz;Δβz;Δγz; Zcð Þ
⋅T51 Δαxz;Δβxz;Δγxzð Þ
⋅T12 Δxx;Δyx;Δzx;Δαx;Δβx;Δγx;X cð Þ
⋅T23 Δαxy;Δβxy;Δγxy

� �
⋅T34 Δxy;Δyy;Δzy;Δαy;Δβy;Δγy; Yc

� �

ð2Þ

where Tij represents the 4×4 HTM for linear and rotary
motions.

Then, by neglecting the mounting errors of workpiece on
the table and spindle in the spindle box, the actual error of tool
tip with respect to the work piece in three-axis directions can
be obtained from first-order approximation. To simplify, the
rotation command of B-axis Bc is set to 0 in this calculation.
The three-error components in each axis direction can be
expressed as follows:

Δx ¼ Δxx þΔxy−Δxz−ΔxB

þ Δγxz þΔγz þΔγzB þΔγB−Δγx−Δγxy
� �

⋅y

þ Δβz þΔβBð Þ⋅z
Δy¼ Δyx þΔyy−Δyz−ΔyB

− ΔγB þΔγzB þΔγz þΔγxzð Þ⋅x
− Δαz þΔαzB þΔαBð Þ⋅z
Δz ¼ Δzx þΔzy−Δzz−ΔzB

þ ΔβB þΔβz þΔβxzð Þ⋅x
þ Δαx þΔαxy−ΔαB−ΔαzB−Δαz−Δαxz

� �
⋅y

ð3Þ

Equation (3) shows that the error is composed of two terms:
the axis linear error and the angular errors. Each linear axis in-
troduces an error along the axis direction. It can be deduced that

the most the linear motion system is elaborately manufactured
and assembled, the lower the linear motion errors will be. The
errors along motion directions can also be compensated by servo
feed system. The four motion systems are relatively isolated in
assembly, and the separate control of themotion error is required.

The second term depends on angular errors. Errors include
angular error of one axis as well as the relative angular error
between two axes. Since angular errors are mostly concerned
on machine tool assembly, this research focuses on modeling
and controlling angular errors. The angular error arises from
the form and position errors of components. In the next sec-
tion, the analytical relationship between angular error and
geometrical features of components is discussed.

2.3 Coordinate system and datum flow chain

Machining depends on relative motions of machine tool com-
ponents. Themachining error comes from the kinematic errors
of motion systems and the geometric errors of mounting sur-
faces. Therefore, to control the assembly angular error accu-
mulation, KCs of the machine tool motion system and mount-
ing surfaces need to be defined and modeled.

For instance, consider a planar motion system with two
linear motion axes as shown in Fig. 3. The two axes are
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Fig. 2 Model of four-axis horizontal machining center kinematic error

Table 1 Coordinate definition of kinematic error model

Coordinate Definition

Ω1 Base coordinate and the nominal X-axis

Ω2 Saddle part coordinate

Ω3 Nominal Y-axis

Ω4 Spindle box part coordinate

Ω5 Nominal Z-axis

Ω6 Slide carriage part coordinate

Ω7 Nominal B-axis

Ω8 Rotate table part coordinate

Table 2 Kinematic error definition of horizontal machining center

Kinematic errors Definitions

Δxx, Δyx, Δzx Translation errors of X-axis (Ω2 w.r.t. Ω1)

Δαx, Δβx, Δγx Rotation errors of X-axis (Ω2 w.r.t. Ω1)

Δxy, Δyy, Δzy Translation errors of Y-axis (Ω4 w.r.t. Ω3)

Δαy, Δβy, Δγy Rotation errors of Y-axis (Ω4 w.r.t. Ω3)

Δxz, Δyz, Δzz Translation errors of Z-axis (Ω6 w.r.t. Ω5)

Δαz, Δβz, Δγz Rotation errors of Z-axis (Ω6 w.r.t. Ω5)

ΔxB, ΔyB, ΔzB Translation errors of B-axis (Ω8 w.r.t. Ω7)

ΔαB, ΔβB, ΔγB Rotation errors of B-axis (Ω8 w.r.t. Ω7)

Δαxy, Δβxy, Δγxy Angular errors of Y-axis w.r.t. X-axis (Ω3 w.r.t. Ω2)

Δαxz, Δβxz, Δγxz Angular errors of Z-axis w.r.t. X-axis (Ω5 w.r.t. Ω1)

ΔαzB, ΔβzB, ΔγzB Angular errors of B-axis w.r.t. Z-axis (Ω7 w.r.t. Ω6)
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nominal perpendicular to each other. The sliding saddle on X-
axis is the mounting base of Y-axis. The trend line of X-axis
Trend(X) can be measured by moving the sliding saddle. The
translation and rotation errors (Δxx, Δyx, and Δγx) of the
saddle vary with the moving distance of X-axis. By fixing
the saddle in a certain position, the trend line of Y-axis
Trend(Y) can also be measured on the same measuring basis.

As shown in Fig. 4, the squareness error between the X-
slide and Y-slide is given by the following:

Δγxy ¼ θ1−θ2 ð4Þ

The angular error between Trend(X) and nominal X about
Z-axis is the angular error θx caused bymotion error that refers
to nominal X. The angular error between Trend(Y) and nom-
inal Y consists of three parts: (1) the angular error of X-axis
Δγx, which varies with the moving distance of X-axis X0; (2)
the machining error of the sliding saddle Δγxy_saddle (square-
ness error between side mounting surface of X-axis slide
blocks and Y-axis rail); and (3) the angular error θy caused
by motion error of Y-axis. Thus, the squareness error can be
rewritten as follows:

Δγxy ¼ θx−θy−Δγxy saddle−Δγx ð5Þ

where θx, θy, and Δγx come from the manufacturing and
assembly error of linear motion system and Δγxy_saddle from
the machining error of sliding saddle.

In practical assembly process, the translation and rota-
tion errors of linear motion system mostly depend on the
geometric error of the mounting surfaces and can only be
adjusted by these surfaces as shown in Fig. 5. Therefore,
to simplify the angular error caused by the translation
error of the linear motion system itself can be neglected
and can be considered as the machining error of mounting
surfaces of support components. Moreover, the angular
error of different machine tools’ linear motion systems
(such as slide guides or hydrostatic guides) also depends
on the mounting surfaces or contact surfaces of motion
systems.

The detailed analysis of linear motion system shows that
the translation and rotation errors are influenced by geometric
error of guide components (straightness, parallelism and form
error of rails, and mounting surfaces), loads, or deformation of
components. However, this paper only investigates the angu-
lar error between two connected mounting surfaces of support
components considering it as the angular error of linear mo-
tion system.

Assembling the X-Y table or machine tool motion system,
the KCs contribute to the variation propagation that comes
from the mounting surfaces’ contact to the motion block of
X-axis and the rails’mounting surfaces of Y-axis. One slide of
the blocks and rails is defined as a reference characteristic,
while the other slide parallels the reference one. To simplify
the analysis in final assembly process, the mounting surfaces
of one motion system are modeled as an equivalent assembly
datum plane. Coordinate O2 expresses the orientation of mat-
ing surface of saddle and X-axis blocks. The surface mating
with top surface of blocks is defined as XY plane of O2, and
side surface is the XZ plane. O3 represents the orientation of
saddle and Y-axis rails. The orientation of O3 is the same as O2.
The bottom surface of rail is defined as XY plane, while the
side surface is YZ plane. According to the geometrical product
specifications (GPS), the fixed mating (for example the bolted
surface) of two support components can be modeled as a
reference plane.

A frame model named as datum flow chain can be
constructed to illustrate all the assembly datum planes
of KCs [31]. The KCs of machine tool bed are usually
selected as the starting datum of DFC, for the bed is
usually firstly mounted on the ground. Figure 6 illus-
trates the datum flow chain of the four-axis horizontal
machining center.

The points in DFC represent a joint surface or end surface,
which is defined as KCs in tolerance analysis, where r indi-
cates the rail mounting surface of support part, s indicates the
slide block mounting surface, and “01” indicates the bolted
mating surface of bed (0) and column (1). The orientation and
angular error of KCs is represented by the relative coordinate.
The arrow lines represent error transfer from one datum plane
to the other in one component.
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3 State spacemodel of machine tool assembly process

3.1 Variation propagation modeling based on differential
motion vectors

In kinematic error analysis, HTM is used to calculate the error
accumulation in a geometric view. The variation propagation
in assembly process is considered as a discrete event process.
The propagation and variation of geometric error state X(k) in
each assembly step should be expressed and analyzed. X(k)
describes the total deviation in the orientation of a coordinate
on a datum plane on the kth part along a DFC, measured from
its nominal or zero mean location, expressed in the coordinate
frame of the part at the base of the chain.

eX kð Þ ¼ δk ¼
δxk
δyk
δzk

2
4

3
5

where the differential rotation vector δk is associated with the
kth component with respect to base coordinate and can be
computed as follows:

δk ¼
Xk

i¼1

Ri−1δi

where Ri−1 is a 3×3 rotation matrix. It can be obtained from
the transformation from nominal component coordinate Oi to
Oi−1.

Ri½ � ¼ Ri½ �rotx Ri½ �roty Ri½ �rotz

where

Ri½ �rotx ¼
1 0 0
0 cosθxi −sinθxi
0 sinθxi cosθxi

2
4

3
5

Ri½ �roty ¼
cosθyi 0 sinθyi
0 1 0

−sinθyi 0 cosθyi

2
4

3
5

Ri½ �rotz ¼
cosθzi −sinθzi 0
sinθzi cosθzi 0
0 0 1

2
4

3
5

The differential rotation vector δk can be represented in the
following matrix form [32]:

X kð Þ ¼ δk ¼
δxk
δyk
δzk

2
4

3
5 ¼

δxk−1
δyk−1
δzk−1

2
4

3
5

þ
W 5;1ð Þ;k W 7;1ð Þ;k W 9;1ð Þ;k
W 5;2ð Þ;k W 7;2ð Þ;k W 9;2ð Þ;k
W 5;3ð Þ;k W 7;3ð Þ;k W 9;3ð Þ;k

2
4

3
5 Δθxk

Δθyk
Δθzk

2
4

3
5

ð6Þ

whereΔθk=[Δθxk,Δθyk,Δθzk]
T is KC deviation vector of the

kth part, which is obtained from measurement or designer-
specified tolerances.

W5i ¼ Ri−1m7i

W7i ¼ Ri−1m8i

W9i ¼ Ri−1m9i

ð7Þ
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and

m7i ¼
1
0
0

2
4

3
5;m8i ¼

0
cosα
sinα

2
4

3
5;m9i ¼

sinβ
−sinαcosβ
cosαcosβ

2
4

3
5

The relationship between total accumulated variation after
k part assembly with the total variation accumulated after (k−
1) parts and the variation associated with the kth part is illus-
trated in this equation.

By using SSM, the machine tool assembly process can be
expressed in the following form [33]:

eX k þ 1ð Þ ¼ A kð ÞeX kð Þ þ B kð ÞeU kð Þ þ F kð Þ eω kð Þ
ey kð Þ ¼ C kð ÞeX kð Þ þ eν kð Þ

ð8Þ

where
A(k) is identity matrix;eω kð Þ describes the variation associated with the part being

assembled at the kth assembly step, expressed in local part
coordinates;

eω kð Þ ¼
Δθxk
Δθyk
Δθzk

2
4

3
5

It is the machining error of incoming part. It is defined as
the angular errors of actual surface relative to the nominal
surface with respect to part coordinate along DFC.

F(k) transforms the variation associated with the incoming
part at the kth assembly step from part k’s coordinate to the
base coordinate of the DFC;

Here,

F kð Þ ¼
W 5;1ð Þ;k W 7;1ð Þ;k W 9;1ð Þ;k
W 5;2ð Þ;k W 7;2ð Þ;k W 9;2ð Þ;k
W 5;3ð Þ;k W 7;3ð Þ;k W 9;3ð Þ;k

2
4

3
5

Ũ(k) is the remachining or scraping adjustment vector;
Ũ(k) can be further defined as:

eU kð Þ ¼ T kð Þeu kð Þ

ũ(k) is denoted as the adjustment process. The definition of
coordinate is similar with error incoming vector eω kð Þ. It repre-
sents the adjustment of angular error of one part. In actual assem-
bly process, the adjustment cannot be implemented in somemat-
ing features such as bolted surfaces and liner motion systems.
The elements in T(k) indicate the choice of KCs to be adjusted.

B(k) transforms Ũ(k) from the coordinates of part k to the
base coordinates for the DFC. If Ũ(k) is defined in the same
part coordinate as eω kð Þ, the elements of B(k) are the same
with F(k).

C(k) is a r×6 output matrix of 1s, −1s, and 0s, defining
values that we are interested in, for a particular KC.eν kð Þ is the potential measurement noise.

In machine tool assembly, measurement and remachining
adjustment are special processes if compared with mass
manufacturing. The measurement process evaluates the vari-
ation accumulation in assembly processes. The actual angular
error of the surfaces associated to the motion axes with respect
to the base coordinate cannot be directly measured. The rela-
tive orientation error of two axes (parallel or perpendicular)
can be measured by laser interferometer. According to the
actual measuring process in assembly, in state space equation,
C(k) is the observed matrix which can be defined to obtain the
relative angular error of two KCs.

By using SSM, the variation propagation in assembly pro-
cess can be expressed as a time relative sequence process; the
measurement and adjustment process are also considered.
However, in machine tool assembly, the orientation state of
the end characteristic is not the only parameter to be considered.
The state variables should contain all these. The final part of this
section shows how the state space equation can be modified to
take into account all of the state variables KCs in DFCs.

In one chain of the DFC, the state variables after assem-
bling can be rewritten as follows:

δKC Ln kð Þ½ �
δKC Ln−1 kð Þ½ �

⋮
δKC k½ �

2
664

3
775 ¼

WLn kð Þ;Ln−1 kð Þ Θ ⋯ Θ
WLn kð Þ;Ln−1 kð Þ WLn−1 kð Þ;Ln−2 kð Þ ⋯ Θ

⋮ ⋮ ⋱ ⋮
WLn kð Þ;Ln−1 kð Þ WLn−1 kð Þ;Ln−2 kð Þ ⋯ WL1 kð Þ;L0 kð Þ

2
664

3
775

ΔθLn kð Þ;Ln−1 kð Þ
ΔθLn−1 kð Þ;Ln−2 kð Þ

⋮
ΔθL1 kð Þ;L0 kð Þ

2
664

3
775

ð9Þ
where L is the low-order index [30], Ln(m) is the nth lower
order KC of the KCm, k is the end characteristic of this chain,
Ln(k)=0, and Θ is a 3×3 zero matrix. δKC Ln kð Þ½ � is the state

variables illustrating the differential rotation vector of the KC
Ln(k).ΔθLn kð Þ;Ln−1 kð Þ is the 3×1 incoming angular error of KC

Ln(k) with respect to Ln–1(k), which come from the machining
error or designer-specified tolerances.

WLn kð Þ;Ln−1 kð Þ is a 3×3 matrix with the same meaning in

Eq. (7):

WLn kð Þ;Ln−1 kð Þ ¼
W 5;1ð Þ; Ln kð Þ;Ln−1 kð Þ½ � W 7;1ð Þ; Ln kð Þ;Ln−1 kð Þ½ � W 9;1ð Þ; Ln kð Þ;Ln−1 kð Þ½ �
W 5;2ð Þ; Ln kð Þ;Ln−1 kð Þ½ � W 7;2ð Þ; Ln kð Þ;Ln−1 kð Þ½ � W 9;2ð Þ; Ln kð Þ;Ln−1 kð Þ½ �
W 5;3ð Þ; Ln kð Þ;Ln−1 kð Þ½ � W 7;3ð Þ; Ln kð Þ;Ln−1 kð Þ½ � W 9;3ð Þ; Ln kð Þ;Ln−1 kð Þ½ �

2
64

3
75

If there is more than one DFC in assembly, the concerned
KCs after assembling can be expressed as follows:

δDFC1 Nð Þ
δDFC2 Nð Þ

⋮
δDFCk Nð Þ

2
664

3
775 ¼

WDFC1 Θ ⋯ Θ
Θ WDFC2 ⋯ Θ
⋮ ⋮ ⋱ ⋮
Θ Θ ⋯ WDFCk

2
664

3
775

ΔθDFC1

ΔθDFC2

⋮
ΔθDFCk

2
664

3
775

ð10Þ
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The incoming angular errors are introduced into the assem-
bly step by step or station by station. The equation can be
rewritten as:

δDFC1 k þ 1ð Þ
δDFC2 k þ 1ð Þ

⋮
δDFCk k þ 1ð Þ

2
664

3
775 ¼

δDFC1 kð Þ
δDFC2 kð Þ

⋮
δDFCk kð Þ

2
664

3
775þ

WDFC1 Θ ⋯ Θ
Θ WDFC2 ⋯ Θ
⋮ ⋮ ⋱ ⋮
Θ Θ ⋯ WDFCk

2
664

3
775Δθ kð Þ ð11Þ

whereΔθ(k) is the incoming angular error at the kth step that
contains one or several angular errors of the incoming
component.

3.2 Case study

A four-axis horizontal machining center illustrates how to
model the variation propagation in assembly process. KCs
are defined as the mating surfaces between two support parts
or mounting surfaces of motion systems. The bed is installed
on the ground. The mating surface of bed and column is

selected as the base datum plane in DFC. In this machine tool
structure, all these defined KCs are parallel or perpendicular to
each other. To simplify, the nominal coordinates associated on
the KCs are defined with the same orientation of Fig. 6.
According to Eq. (7), the matrix W becomes an identity ma-
trix. The equation can be rewritten as:

δ kð Þ ¼ δ k−1ð Þ þ
1 0 0
0 1 0
0 0 1

2
4

3
5 Δθxk

Δθyk
Δθzk

2
4

3
5 ð12Þ

The final angular error state can be expressed as:

δ1 Nð Þ
δ2 Nð Þ
δ3 Nð Þ
δ4 Nð Þ
δ5 Nð Þ
δ6 Nð Þ
δ7 Nð Þ
δ8 Nð Þ
δ9 Nð Þ
δ10 Nð Þ

2
666666666666664

3
777777777777775

¼

I Θ Θ Θ Θ Θ Θ Θ Θ Θ
I I Θ Θ Θ Θ Θ Θ Θ Θ
I I I Θ Θ Θ Θ Θ Θ Θ
I I I I Θ Θ Θ Θ Θ Θ
I I I I I Θ Θ Θ Θ Θ
Θ Θ Θ Θ Θ I Θ Θ Θ Θ
Θ Θ Θ Θ Θ I I Θ Θ Θ
Θ Θ Θ Θ Θ I I I Θ Θ
Θ Θ Θ Θ Θ I I I I Θ
Θ Θ Θ Θ Θ I I I I I

2
666666666666664

3
777777777777775

Δθcolumn

Δθxaxis

Δθsaddle

Δθyaxis

Δθspindlebox

Δθbed

Δθzaxis

Δθcarriage

Δθbaxis

Δθtable

2
666666666666664

3
777777777777775

ð13Þ

The expression of the final angular error related to the
incoming part machining errors is much simple, and it can
be rewritten as the state space equation:

δ1 k þ 1ð Þ
δ2 k þ 1ð Þ
δ3 k þ 1ð Þ
δ4 k þ 1ð Þ
δ5 k þ 1ð Þ
δ6 k þ 1ð Þ
δ7 k þ 1ð Þ
δ8 k þ 1ð Þ
δ9 k þ 1ð Þ
δ10 k þ 1ð Þ

2
666666666666664

3
777777777777775

¼

δ1 kð Þ
δ2 kð Þ
δ3 kð Þ
δ4 kð Þ
δ5 kð Þ
δ6 kð Þ
δ7 kð Þ
δ8 kð Þ
δ9 kð Þ
δ10 kð Þ

2
666666666666664

3
777777777777775

þ

I Θ Θ Θ Θ Θ Θ Θ Θ Θ
I I Θ Θ Θ Θ Θ Θ Θ Θ
I I I Θ Θ Θ Θ Θ Θ Θ
I I I I Θ Θ Θ Θ Θ Θ
I I I I I Θ Θ Θ Θ Θ
Θ Θ Θ Θ Θ I Θ Θ Θ Θ
Θ Θ Θ Θ Θ I I Θ Θ Θ
Θ Θ Θ Θ Θ I I I Θ Θ
Θ Θ Θ Θ Θ I I I I Θ
Θ Θ Θ Θ Θ I I I I I

2
666666666666664

3
777777777777775

Δθ kð Þ ð14Þ
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where I is the identity matrix and Δθ(k) is the incoming error
of one or several assembled components in kth assembly step.

In machine tool assembly, the incoming error mainly con-
tains the machining errors of components and the stiffness
errors caused by gravity deformation. The gravity deformation
of components in assembly process can be directly measured
or calculated through finite element analysis (FEA) software.
In practice, an intentional geometric error is usually created by
machining or scraping to offset the stiffness error due to grav-
ity deformation. This paper focuses on the uncertainty of ma-
chining error of incoming components to investigate the tol-
erance allocation for machine tools. The stiffness error is
neglected in Δθ(k) in state space equation.

In the first assembly step, the incoming error is the machin-
ing error of the two KCs of the bed. After installing the bed,
the process geometrical requirement is the parallelism be-
tween the mating surface to column and mounting surface to
Z-axis. The observation matrix can be written as follows:

ey 1ð Þ ¼ C 1ð ÞeX 1ð Þ

¼ Θ2�15
1 0 0
0 0 1

Θ2�12

� � δ1 1ð Þ
δ2 1ð Þ
⋮

δ10 1ð Þ

2
664

3
775

¼ δx6 1ð Þ
δz6 1ð Þ

� �
ð15Þ

The mating surface of bed and column KC0 has been de-
fined as the base coordinate of the assembly; therefore, the
angular error about X- and Z-axis of the mounting surface to
bed Z-axis is the geometrical requirement in this assembly step.

In the last step of assembly, when the spindle box is
mounted on the machine tool, the incoming error contains
the rotational error of Y-axis Δθyaxis and the machining error
of spindle box Δθspindlebox.

eω 7ð Þ ¼ Θ9�1 Δθyaxis Δθspindlebox Θ15�1½ �T

The assembly process can be written as follows:ey 7ð Þ ¼ C 7ð ÞeX 7ð Þ

¼ Θ1�12 1 0 0 Θ1�12 −1 0 0½ �
δ1 7ð Þ
δ2 7ð Þ
⋮

δ10 7ð Þ

2
664

3
775

¼ δx5 7ð Þ−δx10 7ð Þ� 	
ð16Þ

This assembly step requires KC5 of the spindle box to be
parallel to KC10 of the rotary table. Based on the definition of
KCs and DFC, the step-by-step assembly process considering
measurements and adjustments is mathematically modeled.
Variation propagation expressed in this SSM form suggests

the use of the control theory within the scope of tolerance
design, measurement uncertainty evaluation, or optimal as-
sembly process planning.

4 Tolerance allocation based on the state space model

4.1 Tolerance allocation method for machine tool
components

The machine tool assembly process is expressed in state space
representation and measurements, and adjustments are
modeled. To ensure the final assembly accuracy, tolerance
allocation of components and assembly process planning are
important issues in machine tool design. The tolerance alloca-
tion for mass manufacturing mainly depends on interchange-
ability, assemblability, and cost. The worst case (WC) or RSS
method is generally performed for tolerance analysis and syn-
thesis. The components of precision machine tool can be ad-
justed after remachining in assembly process. The inter-
changeability and assemblability are not the most important
constrains in tolerance allocation. In fact, the remachining
adjustment process depends on which KCs shall be consid-
ered, the cost of adjustment of KCs and the final accuracy
requirements.

The analysis and optimization methods used in control the-
ory are suitable to this discrete time linear dynamic system of
assembly process. By combining the measurement process,
the following performance measure to control the assembly
process can be formulated:

J ¼ eyT Nð ÞSey Nð Þ

þ
XN−1

k¼0

eyT kð ÞQ kð Þey kð Þ þ euT kð ÞR kð Þeu kð Þ� 	
ð17Þ

sembly step N. S is the weight matrix that evaluates the accu-
racy loss of KCs.

It can be intended as the loss of money for per angular error.
The term in the middle of Eq. (17) illustrates the accuracy loss
in assembly process from the beginning until step N−1. For
machine tool, the machining quality is decided by final accu-
racy. Controlling the geometric errors of KCs in assembly
process ensures the final accuracy.When considering the mea-
sure of the performance of final machining quality, the expres-
sion in the center of (17) can be neglected. The last part of the
expression represents the remachining adjustment costs of as-
sembly process. ũ(k) is the angular error adjustment at step k.
R is the weight matrix of the adjustment of KCs that can be
seen as the cost of money for per angular error adjustment.
Therefore, the goal of design and assembly is to cut down the
accuracy loss and adjustment cost J.
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Based on the state space equation and the objective func-
tion of the variation propagation control in assembly process,
the problem of determination of the adjustment value in each
assembly process can be transformed to solve the stochastic
discrete time linear optimal regular problem.

The optimal values of ũ(k) at the kth step are given by the
control law:

u* kð Þ ¼ −K kð Þx kð Þ ð18Þ
where K(k) is the Kalman gain:

K kð Þ ¼ R kð Þ þ BT kð ÞP k þ 1ð ÞB kð Þ� 	−1
BT kð ÞP k þ 1ð ÞA kð Þ

ð19Þ

And the discrete time Ricatti equation:

P kð Þ ¼ Q kð Þ þ AT kð ÞP k þ 1ð Þ Iþ B kð ÞR−1 kð ÞBT kð ÞP k þ 1ð Þ� 	−1
A kð Þ
ð20Þ

where P Nð Þ ¼ Q Nð Þ
The proper weight values need to be defined according to

manufacture practice. For the precision machine tool, S and Q
evaluate the unit profit loss of geometric error in the market,
and R evaluates the unit cost of geometric error in remachining
adjustment.

Obtaining the Kalman gain from the optimal control theory,
the variation propagation process becomes a deterministic
process. The state space equation can be rewritten as [33]
follows:

eXi kð Þ ¼ A kð ÞeX kð Þ þ F kð Þ eω kð Þ
eX k þ 1ð Þ ¼ I−B kð ÞT kð ÞK kð Þ½ �eXi kð Þ

ð21Þ

where eXi kð Þ is the intermediate state after incoming compo-
nent mounted and before adjustment. For unbounded control
adjustment, the state covariance matrix D(k) is given as
follows:

Di kð Þ ¼ AT kð ÞD kð ÞA kð Þ þ F kð ÞV kð ÞFT kð Þ
D k þ 1ð Þ ¼ I−B kð ÞT kð ÞK kð Þ½ �Di kð Þ I−B kð ÞT kð ÞK kð Þ½ �T

ð22Þ

where D(0) is assigned as zero. Di(k) is the covariance matrix

of the intermediate state vector eXi kð Þ. V(k) is the covariance
matrix of the incoming error vector eω kð Þ, k=0,1,2,…,N. eω kð Þ
is defined as the geometric error vector of incoming
component.

The geometric errors are derived from machining process-
es, and they must satisfy the tolerance specifications. In

manufacturing processes, the geometric errors are commonly
with the properties of mutually uncorrelated and zero mean,
which can be expressed as follows:

E eω kð Þ½ � ¼ 0

E eω kð Þ eωT lð Þ
h i

¼ V kð Þ; k ¼ l
0; k≠l


 ð23Þ

In the management of production quality, process ca-
pability index Cp is the ratio between tolerance require-
ment T and process capability P, thus Cp=T/P. In order
to describe the distribution of machining error, P is
usually selected as 6σ, where σ is the standard devia-
tion of a stable machining process. Therefore, the co-
variance matrix V(k) of geometric error is completely
defined by tolerance requirement T and deterministic
machining process.

Based on the recurrence formula (22), the analytical rela-
tionship between KCs design tolerance of incoming parts and
final assembly angular error state under optimal adjustment
can be obtained. If the final accuracy requirement is given, the
tolerances of components can be allocated.

4.2 Case study

To illustrate the modeling and tolerance allocation method of
precision machine tool by using SSM, a four-axis horizontal
machining center is discussed in this section.

The mounting surfaces of four axes, mating surface of bed
and column, and the end characteristics (working table surface
and spindle axis) are selected as KCs as Fig. 7 shows. Accord-
ing to Section 2.2, the kinematic errors of motion systems can
be neglected. DFC is generated based on the definition of KCs
in tolerance design. The mating surface of bed and column is
chosen as basic reference surface.

Theoretically, the final assembly accuracy can be evaluated
by the kinematic errors discussed in Section 2.2. However,
considering the end components (working table and spindle)
and the fact that themeasurements of the errors of rotation axis
are not easy, the final assembly accuracy requirement for the
horizontal machining center is listed in Table 3.

There are six KCs in this calculation model, and each KC has
three angular errors that may cause some confusion in modeling
and formula derivation. Therefore, to simplify a four-part assem-
bly composed of bed (A), column (B), saddle (C), and working
table (D) is considered as shown in Fig. 8. The KCs of mating
surfaces are numbered. KC0 is selected as the base datum in this
frame. One assumes that it is a two-dimensional problem, and the
angular error only exists in the paper plane.
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The coordinates associated on the KCs defined in the
modeling of variation propagation are shown in Fig. 8. The
angular error state after assembly is as follows:

δ1 Nð Þ
δ2 Nð Þ
δ3 Nð Þ
δ4 Nð Þ

2
664

3
775 ¼

1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

2
664

3
775

ΔθB
ΔθC
ΔθA
ΔθD

2
664

3
775 ð24Þ

And the SSM is shown as follows:

δ1 k þ 1ð Þ
δ2 k þ 1ð Þ
δ3 k þ 1ð Þ
δ4 k þ 1ð Þ

2
664

3
775 ¼

δ1 kð Þ
δ2 kð Þ
δ3 kð Þ
δ4 kð Þ

2
664

3
775þ

1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1

2
664

3
775Δθ kð Þ ð25Þ

Based on the analysis of tolerance allocation, it can be inferred
that the following issues determine the component tolerance: the
final geometrical accuracy requirement, the structure of the assem-
bly (DFC), and the adjustment value in assembly process (Kalman
gain K). Kalman gain K is defined by selecting the KCs to be
adjusted in assembling, the unit profit loss of final geometrical
error, and the unit cost of the adjustment of angular error.

The assembly sequence of machine tools is different ac-
cording to the structure and can be customized. Sometimes
two or several components fit together to create a sub-
assembly that is mounted onto the main assembly. The assem-
bly sequence is defined as follows:

1. Mounting part A on the ground
2. Assembling part B and part C to be a sub-assembly

2-Mounting surface

-Y- axis

3-The spindle axis

6-Mounting surface

-workpiece

5-Mounting surface

-B- axis

1-Mounting surface

-X- axis

0-Mating surface of

bed and column

(basic reference

surface)

4-Mounting surface

-Z- axis
O

4

0

12

6

Bed

Column

Saddle

Slide

X

Y

Z

Spindle

box

Table 3
5

Fig. 7 KCs of horizontal machining center in tolerance design

Table 3 Assembly accuracy
requirement Errors Tolerance Error description

1 XY 0.008/500 Perpendicularity between X and Y

2 YZ 0.008/500 Perpendicularity between Y and Z

3 XZ 0.008/500 Perpendicularity between X and Z

4 OZ-X 0.006/300 Parallelism between spindle axis and Z: in YZ plane

5 OZ-Y 0.006/300 Parallelism between spindle axis and Z: in ZX plane

6 OX-Y 0.006/300 Perpendicularity between spindle axis and X

7 OY-X 0.006/300 Perpendicularity between spindle axis and X

8 TX-Z 0.01/800 Parallelism between table surface and X

9 TZ-X 0.01/800 Parallelism between table surface and Z

10 TY-Z 0.006/300 Perpendicularity between table surface and Y: in XY plane

11 TY-X 0.006/300 Perpendicularity between table surface and Y: in YZ plane
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3. Mounting the sub-assembly on part A
4. Mounting part D on part A

In step 1, the mating surfaces of part B (KC0) and part D
(KC3) can be scraped to adjust the relative angular error. KC0
is defined as the basic datum. The adjustment matrix is chosen
as follows:

T 0ð Þ ¼
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

2
664

3
775

The weight matrix of this adjustment process can be also
defined. Since the other KCs have not been assembled, a big
value (1,000 for example) can be assigned to the cost of the
adjustment of the KCs.

R 0ð Þ ¼
1000 0 0 0
0 1000 0 0
0 0 2 0
0 0 0 1000

2
664

3
775

In assembly step 2, a sub-assembly made of part B and part
C is created. The KCs to be adjusted are the KC2 and KC1,
both with respect to KC0, and the adjustment matrix is chosen
as follows:

T 1ð Þ ¼
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

2
664

3
775

Assuming that part B and part C are joined by a linear
motion system, the motion system mounting surface KC1 is

more difficult to adjust than the end surface KC2. Thus, the
adjustment weight matrix can be chosen as follows:

R 1ð Þ ¼
10 0 0 0
0 5 0 0
0 0 1; 000 0
0 0 0 1; 000

2
664

3
775

Assembly step 3 mounts this sub-assembly on part A. For
the KC1 that has become the mating surface of two compo-
nents, the adjustment cost of KCs now has a high value.

T 2ð Þ ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

2
664

3
775

R 2ð Þ ¼
20 0 0 0
0 5 0 0
0 0 5 0
0 0 0 1; 000

2
664

3
775

In assembly step 4, KC3 becomes a mating surface of part
A and part D, and related matrixes can be chosen as follows:

T 3ð Þ ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

R 3ð Þ ¼
20 0 0 0
0 5 0 0
0 0 20 0
0 0 0 5

2
664

3
775

In tolerance allocation, one focuses on the final accuracy
requirement. Therefore, in assembly process, the observation
matrixes and weight values of them are assigned as 4×4 zero

A

B
C

D

03

1

4

2

X
Y

X
Y

X
Y

X
Y

X
Y O2

O0

O1

O3

O4

B

A

D

C

A

B
C

D

A

D

B

CΔθ
Δθ

Δθ

Δθ

Δθ

ΔθΔθ

Δθ

Fig. 8 KCs of support parts in
assembling
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matrix. In this case study, one assumes that the geometrical
requirements are the perpendicularity between KC1 and KC3
and KC2 and KC4. Then, the observation matrix when all
parts are assembled can be chosen as follows:

C 4ð Þ ¼ 1 0 −1 0
0 1 0 −1

� �

The weight matrix is assigned to evaluate the profit loss
due to the geometrical error as follows:

Q 4ð Þ ¼ 10 0
0 10

� �

Then, the Kalman gain can be calculated from Eq. (19).

K 0ð Þ ¼
0 0 0 0
0 0 0 0

−0:433 −0:048 0:433 0:048
0 0 0 0

2
664

3
775

K 1ð Þ ¼
0:167 0:019 −0:167 −0:019
−0:167 0:204 0:167 −0:204

0 0 0 0
0 0 0 0

2
664

3
775

K 2ð Þ ¼
0:100 0:014 −0:100 −0:014
−0:200 0:257 0:200 −0:257
−0:400 −0:057 0:400 0:057

0 0 0 0

2
664

3
775

K 3ð Þ ¼
0:227 0:045 −0:227 −0:045
−0:182 0:364 0:182 0:048
−0:227 −0:045 0:227 0:045
0:182 −0:364 −0:182 0:364

2
664

3
775

The adjustment value of each assembly step can be decided
by K(k), T(k), and x(k). A set of machining error of the com-
ponents is generated and summarized in Table 4, and the error
state of KCs can be calculated.

The angular error X(k) in assembly process under optimal
adjustment is shown in Fig. 9.

The comparison between the end of the assembly process
and the tolerance analysis without adjustment highlights that

the differential rotation vector of KC1 (δ1) is close to KC3
(δ3), and KC2 (δ2) is close to KC4 (δ4). Based on the coordi-
nate definition, it means that the perpendicularity between
these KCs is very small. It can also be found that by increasing
the weight values, the perpendicular errors further decrease.

Based on this variation propagation analysis of incoming
machining error to final assembly, the tolerance analysis can
be achieved in the same way. In this case, σA, σB, σC, and σD
are the standard deviations of angular errors of incoming com-
ponents. The tolerance of angular error T is determined by T=
Cp ·(6σ). The covariance of angular error of each KC with
respect to the base frame can be calculated as follows:

P1 ¼ 0:037σ2
A þ 0:396σ2

B
P2 ¼ 0:062σ2

A þ 0:269σ2
B þ 0:124σ2

C þ 0:167σ2
D

P3 ¼ 0:078σ2
A þ 0:214σ2

B
P4 ¼ 0:067σ2

A þ 0:250σ2
B þ 0:062σ2

C þ 0:349σ2
D

ð26Þ

The covariance of the perpendicularity design requirement
is as follows:

P1−3 ¼ 0:0075σ2
A þ 0:0278σ2B þ 0:0069σ2

C þ 0:0083σ2D
P2−4 ¼ 0:0103σ2

C þ 0:0331σ2
D

ð27Þ

If the requirement of assembly accuracy is given, the toler-
ance of KCs can be allocated according to these equations. It
is similar with the tolerance allocation for assemblies without
adjustment. The coefficient of the tolerances of KCs indicated
the adjustment process.

Table 4 Incoming angular errors of components

×10−5 rad Δθ(1) Δθ(2) Δθ(3) Δθ(4)

ΔθB 0 1.00 0 0

ΔθC 0 −1.50 0 0

ΔθA 2.00 0 0 0

ΔθD 0 0 0 1.50
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Fig. 9 Differential rotation vectors variation in different weight value
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In the same way, the covariance of assembly accuracy re-
quirement of multi-axis horizontal machining center can be
expressed as follows:

PXY ¼ 0:6907σz2saddle

PYZ ¼ 0:1661σx2column þ 0:2712σx2saddle þ 0:1351σx2bed

PXZ ¼ 0:3219σy2column þ 0:2658σy2bed

POZ−X ¼ 0:1097σx2column þ 0:1791σx2saddle þ 0:3286σx2spindlebox þ 0:0892σx2bed

POZ−Y ¼ 0:1924σy2column þ 0:2279σy2saddle þ 0:317σy2spindlebox þ 0:1589σy2bed

POX−Y ¼ 0:0166σy2column þ 0:3211σy2saddle þ 0:3914σy2spindlebox þ 0:0137σy2bed

POY−X ¼ 0:0058σx2column þ 0:0095σx2saddle þ 0:4057σx2spindlebox þ 0:0048σx2bed

PTX−Z ¼ 0:2046σz2column þ 0:1734σz2bed þ 0:4771σz2carriage þ 0:6616σz2table

PTZ−X ¼ 0:5071σx2carriage þ 0:6847σx2table

PTY−Z ¼ 0:1682σz2column þ 0:4067σz2saddle þ 0:1425σz2bed þ 0:4678σz2carriage þ 0:6551σz2table

PTY−X ¼ 0:1213σx2column þ 0:1981σx2saddle þ 0:0987σx2bed þ 0:4794σx2carriage þ 0:6652σx2table

ð28Þ

where σx, σy, and σz are standard deviations of angular errors
of x-, y-, and z-axis.

The relationship between cost and KC tolerance can
be set as a reciprocal or exponential function. The cost-
objective problem can be solved using some optimiza-
tion algorithms, such as simulated annealing or genetic
algorithm.

By using reciprocal function and simulated annealing algo-
rithm, the angular tolerances of each component can be cal-
culated as shown in Table 5.

The calculation does not include the three angular
errors (spindle box rz, slide carriage ry, and rotating
table rz). This is due to the fact that in the horizontal
machining center, the rotations of end components are
free (about y-axis for table and z-axis for spindle box).
Thus, in tolerance allocation, angular tolerances around
these rotation axes can be neglected.

5 Conclusions

The machining error is due to the kinematic errors of all the
motion and rotation axes and the relative position and orien-
tation of two axes. Translation errors can be easily compen-
sated by feeding system. Assembly accuracy requirement of
machine tools mainly involves the angular errors between
motion or rotation axes, which are generated by the mounting
surfaces of components in assemblies. This paper represents
the variation propagation along DFC establishing coordinates
associated on the KCs.

The step-by-step assembly process is represented as a dis-
crete dynamic system by SSM. Differential rotary vector is
introduced to model the rotary error accumulation or reduction
of concerned KCs in assembly process. The essential process
of measurement and adjustment in machine tool assembly is
mathematically expressed in terms of the observation matrix
and adjustment vector in state space equation. Incoming error
is defined as the machining error of component yield to toler-
ance design. Moreover, based on the integrated modeling and
definition of variation control in design and assembly stages,
algorithms of control theory can be used to ensure the final
assembly accuracy. The evaluation of Kalman gain in each
assembly step allows to minimize the loss of final accuracy
and remachining costs of assembly planning. The system can
be solved by using optimal control theory. The determination
of variation accumulation and reduction in assembly process
allows formulating the relation between incoming machining
error and final assembly accuracy. If the machining error is

Table 5 Tolerance allocation for each component (×10−5 rad)

Column Saddle Spindle box

Trx Try Trz Trx Try Trz Trx Try Trz
2.4 1.8 1.2 2.2 1.8 1.8 2.3 2.4 –

Bed Slide carriage Rotate table

Trx Try Trz Trx Try Trz Trx Try Trz
1.4 2.1 1.2 1.4 – 1.0 1.0 – 1.0
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assumed having Gaussian distribution, the covariance of final
angular errors can be evaluated and the tolerance allocation of
KCs, in turn, can be implemented.

Since variation propagation in assembly process is
modeled as SSM, concepts and methods in control theory
can be exploited to solve the dimension problems. This paper
applies the optimal control theory to determine the adjustment
characteristics and values under a given assembly sequence.
Algorithms are developed to search for a better assembly pro-
cess, including assembly sequences, auxiliary installation or
measurement fixture design, and process tolerance allocation.
Geometric error testing is a significant subject in machine
tools research. The results suggest that the state space model
can be applied to future researches related to optimal estima-
tion in measurement uncertainty evaluation and measurement
strategy planning.
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