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Abstract Reducing expensive raw material waste is an im-
portant goal in the industry. In this paper, two-dimensional
irregular cutting stock problem—a nesting problem that dif-
fers from other in their irregular shape of the pieces—with
demand is studied, in which the required pieces has to be
produced from large rectangular sheet minimizing material
waste. Structure of this problem made it intractable for prac-
tical applications such that exact algorithms are not able to
solve it in a reasonable time. Greedy randomized adaptive
search procedure (GRASP) meta-heuristic algorithm is
adapted to tackle the problem by providing high-quality solu-
tion in an appropriate time. The algorithm does not depend on
the shape (convexity and regularity) of pieces and is able to
deliver an optimum solution for instances up to 30 pieces of 7
different types. In addition, computational results are provided
for different test problems from the related literature.

Keywords Two-dimensional cutting stock problem . Nesting
problem . Irregular cutting stock problem . GRASP procedure

1 Introduction

Cutting stock problem (CSP) belongs to a specific category of
problems called cutting and bin-packing problems. In this
sense, the CSP is one of the well-known problems in the
operation research that can be an effective way in minimizing

material waste. Material waste is a phenomenon of mass pro-
duction, and often, industries are searching some ways to pre-
vent and interrupt the trend. According to many applications
of CSP in glass, steel, wood, space, and apparel industry, it can
be concluded that one of the solutions is to employee the CSP
[25] (also see [35] among the others).

In the CSP, small pieces are cut from the large stocks so that
material waste is minimized. In addition, quality of materials is
also playing an important role in some industries such as textile
and apparel. Every CSP can be divided into twomain parts: the
first part is cutting area, in which the pieces are placed or cut
such as bars, sheets, fabric, wood, etc. The second part is small
pieces that are required and will be cut from the large stocks.

Since the 1950s that computers emerged as fast processors,
the CSP has been more extensively considered and its re-
sponse will have significant practical and industrial impor-
tance. Over the years, two main solution methods have ap-
peared: heuristic approaches and approximations based on
linear programming.

Dimensions (one, two, and three), pattern shapes (regular
or irregular), and number of original board are the main fea-
tures of grouping the problem [14]. Given that, it is an NP—
hard problem, and researchers have tended to use heuristic
approaches that create near-optimal solutions in lieu of achiev-
ing the optimal patterns. In previous works, most of the
discussed problems have only considered large rectangular
sheets and irregular shapes to a lesser degree. So, it seems that
further investigations are required in this regard.

Many studies on two-dimensional cutting stock problems
(2DCSP) have been devoted to the guillotine cuts. Simply
stated, in guillotine cut, cutting occurs in a large rectangular
sheet from one edge to face another. Formulating the problem
in higher dimensions is similar to the one-dimensional case. In
this case, the definition and generation of patterns are more
complicated. The simplest one occurs when the board or
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material and small pieces are rectangular. In the two-
dimensional irregular cutting stock problem (2DICSP), the
required pieces with irregular shapes (polygon, non-convex,
and curve) should be produced from board or large rectangular
sheet minimizing material waste. In [34], a good collection of
all kinds of methods was presented to solve the problem. The
methods based on the approximation and analysis were com-
monly used to reduce the problem complexity.

Nesting problem belongs to the more generic class of
2DICSPs. These problems are not only a scientific challenge,
as they add the geometry handling complexity to the combi-
natorial optimization nature of CSP, but they are also most
relevant in real-world applications [33].

1.1 Literature review

The CSP was first raised in 1939 by Kantorovich who reflects
the history and importance of the problem over the past years.
He investigated the problem in order to organize the lumber
and optimally use materials and began to formulate a linear
programming problem. More research on this problem goes
back to around 1960 to 1980. Among the most well-known
studies, the research by Gilmore and Gomory can be men-
tioned. The most common approach used for this problem is
linear programming. Gilmore and Gomory solved the prob-
lem in 1961 as a linear programming problem (Gilmore and
Gomory, A linear programming approach to the cutting stock
problem, [18]) and (Gilmore and Gomory, A linear program-
ming approach to the cutting stock problem part II, [19]).
Their objective was to minimize the cost, and a large number
of patterns and columns were identified as a weakness of their
methods. Later, their idea of column generation encouraged
many researchers to use the method. In 1964, Pierce was one
of those who used it in the paper industry to reduce material
waste [27]. Hahn [20] posed the problem with dynamic pro-
gramming as the large rectangular sheet, which contained
some defects [20]. Sarker [32] applied the same approach to
solve one-dimensional cutting problem [32]. Hahn solved a
three-stage guillotine CSP, in which large rectangular sheets
had different qualities in different areas and used the dynamic
programming method to solve the maximization of values on
the large rectangular sheet [35]. Beasley extended the problem
to the n-stage and unconstraint guillotine state and used recur-
sive dynamic programming by the idea of normal patterns to
reduce computational time [6]. Non-guillotine idea was first
proposed in 1984 by Biro and Baros [9]; using graph theory,
they introduced an idea for non-guillotine patterns, not aiming
to achieve optimal solutions. In 2003, Kalvelagen implement-
ed column generation method, by which he could count all the
possible patterns for the problem [35]. In 2007, Reinaldo and
Luciano adapted another idea to produce patterns that had
constraints on longitudinal and cross guillotine and 180° rota-
tion cutting; their paper is based on the recursive dynamic

programming method and greedy constructive algorithm
[26]. Arbib and Marinelli [5] investigated a waste minimiza-
tion problem in the glass industry where the cutting process
was performed in two phases, and waste reduction problem
was considered in both phases [5]. In 2009, Yaodong and
Yiping investigated rectangular 2DCSP in the industry of
bridge-building and took advantage of heuristic algorithm
for solving the problem [36]. Haims and Freeman [21] pre-
sented a problem called “template layout” by converting ir-
regular shapes into rectangular shapes and then solving the
problem as a multi-stage problem [21]. Albano presented a
semi-automatic system to produce the optimal layout of irreg-
ular shapes on a large rectangular sheet; his system was called
“computer-assisted layout generation system” [2]. Arbel
discussed cutting timing based on the column generation
method [4]. A heuristic search idea was adapted by Albano
and Sapuppo [3] for the placement of pieces with irregular
shapes inside the large rectangle sheet so that all irregular
pieces were placed and length of the placement was mini-
mized. Roberts [31] conducted a study on L-shape forms
[11], which have the ability to be paired with each other.
Another idea for the CSPwith irregular shapes was considered
by Qu and Sanders [30]. Prasad and Dhande followed the
issue in using CAD software and provided some software in
this regard [29]. CAD systems have applications in the apparel
industry for cutting stocks with irregular shapes and specific
designs. In addition, nesting problem has been examined by
many authors and researchers; however, given the understand-
ing of the problem complexity, none of the authors have pro-
vided a precise mathematical programming model and a suit-
able solving algorithm for guaranteeing the optimal solution.
Adamowicz and Albano [1] used an idea and geometric meth-
od to optimize the placement of irregular shapes inside a rect-
angle using the concept of no-fit polygon (NFP) [1]. At the
same time, recent approaches with better performances were
introduced by Egeblad et al. [15], Bennell and Song [8], and
Leung et al. [23]. In recent years, the general ideas for inves-
tigating nesting problems were presented by Bennell and
Oliveira [7]. In addition, Toledo et al. [33] adapted a mixed
integer model where the binary decision variables
corresponded to dotted-board and piece types [33]. A major
achievement of this model is its lack of sensitivity to board
geometry and piece types that can make it applicable to more
complex problems such as non-convex boards with defects.
Moreover, the number of binary variables did not depend on
the total number of pieces, but depended on the number of
different types of pieces, which facilitated solving the prob-
lemswith a smaller variety of pieces. They studied 45 problem
instances with the new model, solving to optimality 34 in-
stances with various total numbers of pieces and get the opti-
mum solution for cases with 7 types and 21 total numbers of
pieces. By the same token, this method does not have a pleas-
ant scalability. More detailed description of nesting problems
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and cutting and packing problems can be found in [13]. Over
the last 10 years, most efforts have been concerned with the
improvement of meta-heuristic algorithms using local
searches. For example, Tabu Search by Blazewicz et al. [10]
can be noted [10]. Lutifiyya et al. solved ICSP using simulated
annealing [24]. For genetic algorithms, Ismail and Hon [22]
can be mentioned [22]. Many heuristic and meta-heuristic
approaches have been used for this problem. For further de-
tails, see the related literature [35].

The main contribution of this paper is to adapt
greedy randomized adaptive search procedure (GRASP)
and reactive GRASP algorithms for solving 2DICSP
through dotted-board model proposed by Toledo et al.
in [33]. This work reveals the efficiency and perfor-
mance of algorithms without any coherency to the shape
and structure of the pieces. In conjunction with that,
according to the considered instances with varied piece
types, it achieved a quiet appropriate computational time
in comparison to other methods, besides, placing the
maximum number of pieces on a board. Furthermore,
these algorithms were able to deliver an optimum solu-
tion for instances up to 30 total number of pieces of 7
different types in appropriate time. In this case, the re-
quired pieces with irregular shapes should be produced
from large rectangular sheets or boards so that the board
length is minimized.

This paper is organized as follows. In Section 2, the
dotted-board model proposed by Toledo et al. [33],
which is a new mixed integer programming model, is
briefly introduced. Then, in Section 3, the GRASP al-
gorithm is fully introduced and adapted to solve the
2DICSP problem. Afterward, reactive GRASP algorithm
is introduced in Section 4. The computational results
and discussion of the algorithm’s performance are pre-
sented in Section 5. In the last section, some conclu-
sions from the research output and their limitations are
reported.

2 Mathematical model

In nesting problem, the distance between two pieces is calcu-
lated based on their coordinates. The most common way for
displaying irregular shapes is the use of a piece or shape in the
form of polygon. In this study, all pieces or shapes were con-
sidered as polygons and pieces were not allowed to rotate.

In this section, first, the model of 2DICSP taken from the
study by Toledo et al. is introduced. The dotted-board model
for the nesting problem (2DICSP) can be expressed as fol-
lows:

min maxt∈τ ;d∈I FPt c� gx þ xMt
� �� δdt ð1Þ

Subject to

X
d∈I FPt

δdt ¼ qt ; ∀t∈τ ; ð2Þ

δeu þ δdt ≤1 ∀e∈NFPdt;u; ∀t; u∈τ ; ∀d∈IFPt; ð3Þ
δdt ∈ 0; 1f g ∀d∈IFPt; ∀t∈τ ; ð4Þ

where δt
d is a decision variable for a pair (dot and piece type). It

is equal to 1 if the reference point of piece type t is located at
dot d; otherwise, 0. Objective function (1) minimizes the max-
imum length of the board. Constraint (2) ensures that pieces
demand are met, constraint (3) reflects the lack of overlap
between the pieces, and constraint (4) defines the decision
variables only for the dots in which the pieces are inside the
board. The board is considered to be a rectangle with fixed
width W (board width for each instance is fixed). Also, an
upper bound L is defined.

For each piece, a reference point in one of its corners is
considered. By definition of set NFPt,u between two pieces t
and u, we conclude that if the reference point of piece u is
located inside NFPt,u, then the two pieces overlap and inter-
fere. If the reference point of piece u is on the boundary line of
NFPt,u, the two pieces will be in contact with each other;
finally, if the reference point of piece u is located outside
NFPt,u, the two pieces will not be in contact. Here, t and u
are indicative of pieces t,u∈τ; τ={1,…,T}, c shows the col-
umn of board, c∈ ={0,…,7C−1}, d represents the dots
in board, d∈ ={0,…,D}, gx, gy: grid resolution on the
x-axis and y-axis, C: number of columns (L/gx+1), R: number
of rows (W/gy+1), D: total number of dots on board (C×R),
and qt is the demand of piece type t (t∈τ).

IFP concept for a piece in relation to a board shows dots on
the board in which if the reference point of the piece type t is
located, then the entire piece will be inside the board [33].

3 GRASP algorithm

Today, with large-scale problems and the importance of quick
solutions, classic algorithms cannot solve many problems, and
thus, random search algorithms are more utilized. A meta-
heuristic optimization algorithm with small changes can be
used for a variety of optimization problems. The important
point is to use some mechanisms for exiting local optimum
points. One of these algorithms is the so-called greedy ran-
domized adaptive search procedure (GRASP).

Feo et al. use the GRASP for the first time in 1989 [16] to
solve set covering problem. The GRASP is a multi-start meta-
heuristic where each iteration consists of two phases of con-
struction and local search. The construction phase builds a
feasible solution by using a greedy randomized algorithm.
The local search phase works in an iterative fashion by
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successively replacing the current solution with a better one in
the neighborhood and ends when no better solution is found in
the area. The best overall solution is kept as the GRASP result.
In Fig. 1, the overall pseudo-code of the GRASP algorithm for
minimization problem is detailed [17].

3.1 Implementing GRASP for 2DICSP

In this section, a GRASP algorithm is described for the
2DICSP based on dotted-board model. The algorithm is di-
vided into two main parts:

The first part is adapted as the algorithm preprocessing and
provided appropriate data for the main part. The second part
begins with implementing the GRASP algorithm by using the
data generated in the first part.

3.1.1 Preprocessing

In this subsection, three main parameters of the problem as
input to the algorithm are presented: defining the required
pieces and board dimensions including columns (length) and
rows (width). Implementation of this part is done in AIMMS
3.12 software.

Required pieces according to the model are defined as
follows: If a board with C columns and R rows are given,
then the dotted-board contains C×R dots. Each piece has
a reference point for defining the piece on the dotted-
board. The reference points of each piece are defined on
the bottom left corner. An example of a reference point is
given in Fig. 2. The highlighted points are reference
points. If a part of the piece is located inside the square,
the point at the bottom left of the square is activated. If a
piece uses one square, then another piece cannot use the
same square.

In Fig. 3, the activated point of two pieces is
depicted as an example. In fact, each highlighted point
means that the square on the right and upward is used
by the desired piece.

The most important issue in the preprocessing section is the
lack of overlap of pieces. For each piece, the corresponding
zero-one matrix is formed in the dotted-board. In order to
examine the existence of overlap between two pieces, their
zero-one matrixes are compared. In fact, if the pieces will
overlap at the specific dots, then the overlap condition (3)
must be considered for two pieces.

So, if piece type t1 is located in row i1 and column j1 and
piece type t2 is located in row i2 and column j2 and the pieces
overlap, the corresponding matrix element is 1; otherwise, 0.
The overlapped dots are identified for all the pieces. Also, a set
of dots is generated and used as the feasible points in the main
part.

The overlap between each two pieces is modeled through
matrix Ti,j. In this matrix, there is only two non-zero element in
each row corresponding to a conflict between two objects
which leads to a constraint. For example, if there are 4 piece
types and a board with 6 rows and 10 columns, then 240
variables will exist. Also, if the number of overlap between
all pieces (dots) is equal to 1000, a matrix with the size of

1000×240 will be generated. For instance, the matrix Ti; j

¼ 1 0 1
0 1 1

� �
is a binary constraint matrix corresponding

to two constraints of x1+x2≤1 and x2+x3≤1.
But, given that the CSP parameters Gt,c,r are trio

(piece types and column and row for reference point),
respectively, the GRASP algorithm requires a single-

Fig. 1 Pseudo-code of the GRASP meta-heuristic

Fig. 2 Reference point definition

Fig. 3 Point activation of two pieces
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component vector xj. So, usingmap (7), the three components t,
c, and r should be converted into a single-component j and the
main part of the algorithm should be implemented according to
the one-dimensional vector x with component xj.

j ¼ C � Rð Þ � t−1ð Þ þ R� c−1ð Þ þ r ð7Þ

Matrix Ti, j is used to generate binary constraint set ∑
i
T i; jx j≤1.

3.1.2 The GRASP algorithm

To implement the algorithm, it should be taken into consider-
ation that two important factors: lake of overlap between
pieces and the demand, should be met while using the mini-
mum length of the board. In addition, for the construction and
local search phase and also an examination of the lack of
overlap between the pieces, the work is reported by Delorme
et al. is used [12].

3.1.3 Greedy randomized construction

The algorithm inputs are the number of columns and rows of
the board, number of piece types, demand for each piece, the
GRASP parameter, α, and total number of iterations for the
algorithm as well as local search.

Problem solution vector consists of components as xj,
j∈J={0,1,…,T×C×R} (C is column, R is row, and T is
piece types). So, any variable represents a dot of the
board and is corresponding to a particular piece. In fact,
every component of vector x at the end converts into a
trio Gt,c,r based on a mapping (7). According to the
pseudo-code of Fig. 4, first, the set, which is equal to
total number of binary variables of the problem, is equal-
ized to the product of the multiplication of the number of
columns by the number of rows times the number of
piece types (set I). In line (2), all decision variables are
given the initial values and it starts from a feasible solu-
tion. In line (3), a greedy function called Evalj is used so
that the variables are appearing in a fewer number of
binary constraints (overlaps) enjoy a higher priority of
selection. Evalj controls the greedy aspects of the algo-
rithm and plays a significant role in the construction
phase. From lines (4) to (16), the loop of the procedure
is performed and a complete solution for the problem is
produced. Lines (5) and (6) show how to construct the list
of best variables called the restricted candidate list (RCL)
based on two important factors of Evalj and Limit. For the
algorithm parameter, α, we considered fixed value, close
to the purely greedy and random choice according to [17].
In fact, as the greedy function of variables is greater than
or equal to the Limit, the variables are good choices to
have value 1. Lines (7) to (12) are the random selection
of a i* variable from RCL to set to 1.

Condition term considered in line (11) meanings:

1. i* is corresponding to feasible points on board.

Fig. 4 Pseudo-code of the greedy randomized construction phase for the
2DICSP

Fig. 5 Pseudo-code of the local
search for the 2DICSP
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2. Demand of corresponding piece has not satisfied yet.

The line (14) updates the number of pieces that currently
are on board. Finally, all variables that are in conflict with xi*
are set to 0. The algorithm continues until the value of all
variables fixed to 0 or 1 and RCL get empty.

3.1.4 Local search phase

The neighborhood definition is based on the concept of k-p
exchange. A k-p exchange is generating a new solution based
on x where the value of k variables is varying from 1 to 0 and
the value of p variables is changing from 0 to 1.

Only three following characteristics are considered for this part:

1. Due to the number of different combinations in the k-p
exchange, only exchanges of (0-1), (1-2), (1-1), and (2-2)
are used; however, one can employ more combinations;
but, definitely time will increase as well.

2. At the end, the 0-n exchange is used; if none of the two
variables in a binary constraint take 1, one of them set to 1
randomly and then the local search process continues.

3. Finally, after each exchange, two conditions mentioned in
the construction phase must be satisfied.

The local search restarts from the new solution and stops
with the maximum iteration. In Fig. 5, the pseudo-code for the
local search is reported.

Eventually, at the end of the construction phase and
local search, a solution vector is obtained that shows the
minimum length without overlapping pieces while de-
mands are also met.

4 Reactive GRASP

As stated in the description of the GRASP algorithm, the use
of an alternative method for improving the GRASP may have
some advantages. One of which is adjustment of the parameter

automatically based on the quality of the solutions. In this
case, the value of the RCL parameter, α, is not fixed, but
instead is selected at each iteration from a discrete set of pos-
sible values. This selection is associated by the solution values
found along the previous iterations. In Fig. 6, reactive GRASP
or RGRASP is used to avoid parameter adjusting manually.
First, the set of different numbers in the range [0, 1] is chosen
and placed in a set called alphaset. Another parameter is
ProbAlpha which represents the selection probability of each
α in different iterations. Before beginning the iterations, the
selection probability of all values is equal. New possibilities
based on the condition ProbaUpdate are calculated in lines (9)
and (10).

This idea is taken from the work by Prais and Ribeiro [28]
as well as Delorme et al. [12]. In this algorithm, we are gen-
erally seeking for a parameter value (between 0 and 1) that
produces a better solution.

Fig. 6 Pseudo-code of reactive GRASP for the 2DICSP

Fig. 7 Conversion of three dimension with single-dimension vector and
vice versa

Table 1 The details for 2DICSP instances

Instances Total number
of pieces

Number
of dots

Number of
binary variables

Total number of
constraint

RCO1 7×1 144 1008 35,630

RCO2 7×2 256 1792 110,586

RCO3 7×3 368 2576 185,542

RCO4 7×4 480 3360 260,498

RCO5 7×5 608 4256 346,162

BLZ1 7×1 144 1008 34,124

BLZ2 7×2 240 1680 95,000

BLZ3 7×3 352 2464 155,876

BLZ4 7×4 480 3360 237,044

BLZ5 7×5 640 4480 306,969

SHAPES2 8 615 2460 43,079

SHAPES4 16 1148 4592 466,466

SHAPES5 20 1353 5412 612,271

SHAPES7 28 2009 8036 1,109,251

SHAPES9 34 2255 9020 1,831,490

SHAPES15 43 2788 11,152 1,928,374
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Finally, using (7), solutions xj are mapped into a trio Gt,c,r

and plotted. In Fig. 7, a view of this mapping is depicted.

5 Computational results

To evaluate the algorithm performance on 2DICSP, three groups
of instances taken from the Toledo et al. [33] are used which a

brief description of them is presented. BLZ group includes non-
convex pieces andRCO group includes convex pieces. The num-
ber of piece types in both RCO and BLZ instances is seven.
RCOn and BLZn mean that n is the demand number for each
piece which ranges from 1 to 5. For these two groups, the board
width is considered W=15. The third group that has larger di-
mensions is SHAPES. This group includes a variety of four
pieces and is provided in six groups with different demands

Table 2 Computational results for GRASP algorithm

Instances # of pieces Best obj. val. Best solution with GRASP Average time GRASP(s) Gap (%)

α=0.4 α=0.6 α=0.7 α=0.9

RCO1 7 8* 8 8 8 8 1.03 0

RCO2 14 15* 17 16 15 16 5.67 0

RCO3 21 22* 22 23 22 22 14.5 0

RCO4 28 29 30 30 29 28 28.25 −3.4
RCO5 35 37 40 39 38 39 43.92 2.7

BLZ1 7 8* 8 8 8 8 0.909 0

BLZ2 14 14* 15 15 15 16 4.78 7.1

BLZ3 21 20* 23 23 22 23 13.8 10

BLZ4 28 28 31 31 30 31 27.95 7.1

BLZ5 35 35 37 37 36 37 40.3 2.8

SHAPES2 8 14* 15 15 14 14 3.89 0

SHAPES4 16 25* 28 27 27 27 42 8

SHAPES5 20 30 33 33 33 33 79.34 10

SHAPES7 28 45 49 48 47 47 240.56 4.4

SHAPES9 34 54 60 59 57 58 301.67 5.55

SHAPES15 43 54.76 61 59 58 59 311.12 5.9

*Optimum solution

Table 3 Computational results
for RGRASP algorithm Instances # of pieces Best obj. val. (seen) Best obj. val. (RGRASP) Best α Gap (%)

RCO1 7 8* 8* 0.7 0

RCO2 14 15* 16 0.8 6.6

RCO3 21 22* 22* 0.9 0

RCO4 28 29 27 0.8 6.8

RCO5 35 37 38 0.7 −2.7
BLZ1 7 8* 8* 0.8 0

BLZ2 14 14* 14* 0.7 0

BLZ3 21 20* 20* 0.8 0

BLZ4 28 28 30 0.7 7.1

BLZ5 35 35 35 0.75 0

SHAPES2 8 14* 14* 0.9 0

SHAPES4 16 25* 28 0.9 12

SHAPES5 20 30 32 0.8 6.6

SHAPES7 28 45 47 0.7 4.4

SHAPES9 34 54 55 0.75 1.8

SHAPES15 43 54.76 57 0.8 4

*Optimum solution

Int J Adv Manuf Technol (2015) 81:455–464 461



and board width of W=40. The algorithms are coded using C#
2013 programming software implemented onMSI laptop, 4 GB
of RAM memory, a 2.2-GHz processor.

The algorithm presented in Section 3 is implemented on the
basic instances. These instances include 7 to 43 pieces. Table 1
shows the characteristics of the instances where the first col-
umn shows the problem name. The total number of pieces,
dots, variables (multiplying the number of dots by the total
number of pieces), and constraints (total overlaps) are shown
in columns 2, 3, 4, and 5, respectively.

The algorithm run for all instants in Table 1 under different
parameter values α={0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1}. The results for the best parameters are reported in Table 2. For

all instances, the number of iterations for the local search and the
GRASP algorithm were 10 and 200, respectively.

In Table 2, the values marked with an asterisk are correspond-
ing to the optimum value and the other shown the best value
obtained by Cplex12 with the time limit of 18,000 s reported by
Toledo et al. in [6]. The fourth column consists of the best solu-
tions found under different parameters. The average time and the
gap between two approaches are reported in the last two columns.

According to Table 2, the algorithm was able to find the
optimum solution for five out of eight instances (62.5 % suc-
cess). For one instance, the best objective value found is better
than the best published result (RCO4). Average gap for all
instances is equal to 3.75 % while the average time of
GRASP algorithm is 72.48 s, indicating that the algorithm is
able to find good near-optimal solution quickly.

Table 4 The best results of both GRASP and RGRASP algorithms

Instances # of pieces Best obj. val. (published) Best obj. val. (obtained) GRASP or RGRASP Best α

RCO1 7 8* 8* GRASP and RGRASP 0.7

RCO2 14 15* 15* GRASP 0.7

RCO3 21 22* 22* GRASP and RGRASP 0.9

RCO4 28 29 27 RGRASP 0.8

RCO5 35 37 38 GRASP and RGRASP 0.7

BLZ1 7 8* 8* GRASP and RGRASP 0.8

BLZ2 14 14* 14* RGRASP 0.7

BLZ3 21 20* 20* RGRASP 0.8

BLZ4 28 28 30 GRASP and RGRASP 0.7

BLZ5 35 35 35 RGRASP 0.75

SHAPES2 8 14* 14* GRASP and RGRASP 0.9

SHAPES4 16 25* 27 GRASP 0.7

SHAPES5 20 30 32 RGRASP 0.8

SHAPES7 28 45 47 GRASP and RGRASP 0.7

SHAPES9 34 54 55 RGRASP 0.75

SHAPES15 43 54.76 57 RGRASP 0.8

*Optimum solution

Fig. 8 The rate of success of the different values of parameter α
Fig. 9 Right Optimal layout for instance BLZ3. Left Optimal layout for
instance SHAPES4
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In Table 3, the results obtained by the RGRASP algorithm
for the same instances are given. For all instances, the total
number of iterations is equal to 250 and the alphaset={0.1,
0.3, 0.4, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1}. ProbaUpdate con-
dition is applied for every 10 iterations. As mentioned in
Section 4, α automatically is calculated in the RGRASP
algorithm.

The RGRASP algorithm was able to find the optimum
solution for six out of eight instances (75 % success); in one
instance, the best objective value found by the RGRASP al-
gorithm is better than the best published result. Average gap
for all instances is equal to 2.4 %. The best performance is for
α from 0.7 to 0.9.

Table 4 summarizes the best results of both GRASP and
RGRASP algorithms for all the instances. In Table 4, the
fourth column records the results by either GRASP or
RGRASP algorithms and the fifth column is the best objective
value; in the last column, the best α corresponding to the best
solution is reported.

So, for the instances with 35 pieces, the best published
solutions are achieved; for the case of 28 pieces, an improve-
ment is observed. Overall, the RGRASP in 87.75 % and the
GRASP in 56.25 % cases were able to find the best solutions.
In terms of execution time, since the GRASP algorithm lacks
memory, thus, it has better computational time.

In Fig. 8, the rate of success of the different values of
parameter α is depicted.

Overall, for 16 instances, in 9 cases, the proposed algo-
rithms led to the best released solutions and, for the rest, were
close to the best published results with a 2.4 % gap.

According to the results, by increasing the size of board,
the algorithm’s performance will be affected, which is not too
far-fetched. Although the number of decision variables is not
related directly to the number of pieces, the larger number of
pieces makes the board bigger and indirectly increases the
number of variables. For this reason, solving the instances of
SHAPES group is more difficult. Although in this group, the
variety of pieces is lower than other groups; because of larger
pieces, the number of variables and total iterations of the al-
gorithm are increased. The algorithm does not depend on the
shape of pieces and is able to deliver an optimal solution for
the instances of up to 30 pieces. However, the computational
results indicate the relative superiority of the algorithm in
solving the instances of convex (four out of five instances in
the RCO group) and non-convex (four out of five instances in
the BLZ group) shapes. In Fig. 9, some examples of optimized
instances are drawn.

6 Conclusion and further works

In this paper, a new GRASP/reactive GRASP algorithm was
designed for the 2DICSP and the total number of pieces was

increased to the range of 7 to 43. These algorithms build up
the discretization of the board, producing a grid of dots that
become the feasible positioning points for the pieces. In addi-
tion, the performance of the algorithm was evaluated on basic
instances. Computational results showed the capability and
effectiveness of the algorithms. Generally, for 9 out of 16
instances, the best published solutions were accomplished
and were close to the best solutions for other instances with
a 2.4 % average gap. In addition, best values for the algorithm
parameter with regard to the problem were calculated. Al-
though the RGRASP algorithm increased the solution time
naturally, the quality of the solutions was also improved. In
addition, the strength was the independence of proposed algo-
rithms to shape of the pieces (regularity and convexity); more-
over, it was able to achieve an optimal solution for the in-
stances of up to 30 total numbers of pieces with 7 piece types
at a favorable computational time. Finally, we would like to
point out that the algorithm is quite flexible and could be
adapted to accommodate other conditions or constraints. In
addition, for the better performance in local search, it can
make use of other heuristic algorithms such as Tabu search.
In the construction phase, a more suitable standard, in which
Evalj was built, can be considered to improve the quality of
the solutions. Moreover, the use of other preprocessing phases
to reduce the problem size in terms of number of variables and
constraints is valuable.
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