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Abstract In this article, we consider the T2 control chart for
bivariate samples of size n with observations that are not only
cross-correlated but also autocorrelated. The cross-covariance
matrix of the sample mean vectors were derived with the as-
sumption that the observations are described by a first-order
vector autoregressive model—VAR (1). To counteract the un-
desired effect of autocorrelation, we build up the samples tak-
ing one item from the production line and skipping one, two,
or more before selecting the next one. The skipping strategy
always improves the chart’s performance, except when only
one variable is affected by the assignable cause, and the ob-
servations of this variable are not autocorrelated. If only one
item is skipped, the average run length (ARL) reduces in more
than 30 %, on average. If two items are skipped, this number
increases to 40 %.

Keywords Autocorrelation . Skipping strategy . Hotelling T2

chart . VAR (1) model

1 Introduction

In many modern processes, the multivariate observations
gathered in rational subgroups of size n are not only cross-

correlated but also autocorrelated. Pan and Jarret [1] describe
many of these processes. A typical approach to study the per-
formance of control charts for autocorrelated processes is to fit
a time-series model. The first-order autoregressive model, AR
(1), and the first-order vector autoregressive model, VAR (1),
have been adopted in many studies dealing with univariate
and multivariate control charts [2–14].

The autocorrelation among sample items has a serious im-
pact on the performance of the control charts. To counteract
the undesired effect of autocorrelation on the performance of

the X chart, Costa and Castagliola [15] proposed a sampling
strategy denoted as “s-skip.” According to this strategy, sam-
ples are obtained by collecting one item from the production
line and then skipping s consecutive items before selecting the
next one. More recently, Franco et al. [16] investigated the

skipping strategy on the economic-statistical design of the X
chart used to control AR (1) processes. The practical appeal of
skipping observations lies in the fact that the chart’s perfor-
mance enhances substantially when a few observations are
skipped. Based on that, we also consider the skipping strategy
to improve the performance of the T2 chart. The deduction of
the cross-covariance matrix of the sample mean vector ΓX

� �
under the skipping strategy is not simple but necessary to
obtain λ, the square root of the non-centrality parameter of
the chi-square distribution. As the power of the T2 chart is a
function of λ, the knowledge of the cross-covariance matrix
greatly facilitates the investigation of the cross-correlation and
autocorrelation effects on the performance of the T2 chart.

The combined effect of autocorrelation and cross-
correlation on the performance of the T2 chart under the skip-
ping strategy is worthy of investigation. Some motivational
examples dealing with multivariate autocorrelated processes
are in Section 2. In Section 3 (and Appendix), we obtained the
cross-covariance matrix of the sample mean vector ΓX

� �
con-

sidering the skipping strategy and bivariate observations given
by a VAR (1). In Section 4, we investigate the effects of
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autocorrelation and cross-correlation on the performance of
the bivariate T2 chart under the skipping strategy. Section 5
presents a guide to choosing the skipping parameter. In Sec-
tion 6, an illustrative example is provided to show how the
skipping strategy helps to reduce the negative effect of the
autocorrelation. Finally, Section 7 presents the main conclu-
sions and future research.

2 Illustrations of processes which are autocorrelated

The assumption of independent observations is not even ap-
proximately satisfied in some manufacturing process; that is,
the successive observations in these processes are dependent.
According toMontgomery [17], in manymodern manufactur-
ing processes, the data of the quality characteristics are
autocorrelated, especially when the samples are collected ac-
cording to the rational subgroup concept. Autocorrelation is
usually caused by the high frequency of sampling due to the
automatedmeasurement and inspection procedures, where ev-
ery quality characteristic is measured on every unit in time
order of production [18].

Illustrations of processes, which are both multivariate and
autocorrelated, are numerous in the production of industrial
gases, silicon chips, and highly technical computer-driven
products and accessories [1, 19]. For example, Jarret and
Pan [19] describe the fiber optic production, where the prep-
aration of the silicon dioxide rod, made from the condensation
of silicon and oxygen gases, requires the control of some
autocorrelated quality characteristics, like temperature and
pressure.

In service industries, the processes are autocorrelated
due to the inertia of human behaviors and cross-
correlated because of the interactions among various hu-
man actions and activities. Pan and Jarret [1] give an
example where the number of visits to a restaurant at a
tourist attraction may be serially dependent and related
to the room occupation percentage of nearby overnight
residences and the cost and convenience of transporta-
t ion . Fur thermore , the la t t e r fac tors a re a l so
autocorrelated and cross-correlated to each other. In an-
other example, Pan and Jarret [1] describe some multi-
variate and autocorrelated business management
problems.

Recently, Huang and Bisgaard [13] provided a motivation-
al example dealing with a set of autocorrelated multivariate
data from a ceramic furnace, where the data are observations
of temperatures measured in different locations. They also
provided a detailed discussion of a two-dimensional VAR
(1) model, the one considered in this article.

In summary, a growing number of processes, the mainte-
nance of the production quality requires the control of several
quality characteristics. Dealing with more than one quality

characteristic increases the chances of finding autocorrelated
variables; consequently, the design and use of multivariate
charts require the knowledge of not only the cross-
correlations but also the autocorrelations among observations,
and, more than that, strategies to counteract their negative
effect on the chart’s performance.

3 The autoregressive model and the cross-covariance
matrix

The autocorrelation measures the dependence between
observations of the same quality characteristic, while
the cross-correlation measures the dependence between
variables. The vector autoregressive model for cross and
serially correlated data has been adopted in recent stud-
ies dealing with multivariate control charts [10, 11, 13].
It follows:

X t−μ ¼ Φ X t−1−μð Þ þ εt ð1Þ
where Xt~Np(μ, Γ) is the (p×1) vector of observations at time
t (p is the number of variables), μ is the mean vector, εt is an
independent multivariate normal random vector with a mean
vector of zeros and covariance matrix Σe, and Φ is a (p×p)
matrix of autocorrelation parameters. According to Kalgonda
and Kulkarni [8], the cross-covariance matrix of Xt has the
following property: Γ=ΦΓΦ'+Σe. After some algebra, we ob-
tain

Vec Γ ¼ Ip2−Φ⊗Φ
� �−1

Vec Σe ð2Þ

where⊗ is the Kronecker product and Vec is the operator that
transform a matrix into a vector by stacking its columns.

To study the effects of the auto- and cross-correlation on
the performance of the T2 chart, we consider a bivariate sta-
tionary process (p=2) with

Φ ¼ a 0
0 b

� �
ð3Þ

Σe ¼ σ2
eX

σeXY

σeXY σ2
eY

 !
¼ σ2

eX
ρσeX σeY

ρσeX σeY σ2
eY

 !
ð4Þ

where ρ is the correlation of X and Y.
From (2), (3) and (4) follows:

Γ ¼ σ2
X σXY

σXY σ2
Y

� �

¼ 1−a2
� �−1

σ2
eX

1−abð Þ−1σeXY

1−abð Þ−1σeXY 1−b2
� �−1

σ2
eY

 !
ð5Þ
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Leoni at al. [20] obtained the cross-covariance matrix

ΓX of the sample mean vector X when the sample

items are collected according to the rational subgroup
concept:

ΓX ¼

σ2
X

n
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n

Xn−1
j¼1

n− jð Þa j

" #
σXY

n
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where n is the size of the samples.
It is well known that the autocorrelation has a negative impact

on the performance of theX chart; Leoni et al. [20] proved that the
autocorrelations also reduce the ability of the T2 chart to signal.

The cross-covariance matrix of the sample mean vector for
samples of size n, built-up according to the s-skip strategy, is
developed in Appendix:

ΓX ¼

σ2
X

n
1þ 2

n

Xn−1
j¼1

n− jð Þa sþ1ð Þ j
" #

σXY

n
1þ 1

n
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n

Xn−1
j¼1

n− jð Þb sþ1ð Þ j
" #

σXY

n
1þ 1

n

Xn−1
j¼1

n− jð Þa sþ1ð Þ j þ 1

n

Xn−1
j¼1

n− jð Þb sþ1ð Þ j
" #

σ2
Y

n
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" #

0
BBBBB@

1
CCCCCA ð7Þ

In the absence of autocorrelation (a=b=0), ΓX reduces to

ΨX ¼ n−1Σe. As the non-centrality parameter of the T2 distri-
bution is function of the inverse of the cross-covariance matrix,

the behavior of Γ−1
X

is important to study the effect of the auto-

and cross-correlation and the skipping strategy on the perfor-

mance of the T2 chart. The elements θij of Γ
−1
X

are complex:

Γ−1
X

¼ θ11 θ12
θ12 θ22

� �
ð8Þ

Table 1 brings the values of θ11, θ22, and θ12 for ρ∈(0,0.7), n=
4, and several combinations of a and b. The elements of themain

diagonal ofΓ−1
X
increasewith ρ, the cross-correlation, andwith s,

the number of skipped items, but decrease with the autocorrela-
tions, (a, b). When the variables are independent, the elements of

the secondary diagonal of Γ−1
X

are zero, that is, θ12=0. In the

presence of the cross-correlation, they become negative.

4 The effect of the auto- and cross-correlation
on the performance of the T2 control chart

The Hotelling T2 control chart is the most referenced
control scheme for detecting mean shifts in multivariate

Table 1 The inverse cross-covariance matrix values; a and b∈(0, 0.2, 0.5, 0.7); ρ∈(0,0.7).

ρ 0 0.7

s a 0.0 0.0 0.2 0.0 0.5 0.0 0.7 0.0 0.0 0.2 0.0 0.5 0.0 0.7

b 0.0 0.2 0.2 0.5 0.5 0.7 0.7 0.0 0.2 0.2 0.5 0.5 0.7 0.7

0 θ11 4.00 4.00 2.86 4.00 1.45 4.00 0.75 7.84 7.70 5.60 6.87 2.85 5.86 1.48

θ22 4.00 2.86 2.86 1.45 1.45 0.75 0.75 7.84 5.50 5.50 2.50 2.85 1.10 1.48

θ12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −5.49 −4.51 −3.92 −2.68 −2.00 −1.43 −1.03
1 θ11 4.00 4.00 3.62 4.00 2.08 4.00 1.00 7.84 7.56 7.09 6.45 4.07 5.58 1.97

θ22 4.00 3.62 3.62 2.08 2.08 1.00 1.00 7.84 6.83 7.09 3.35 4.07 1.40 1.97

θ12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −5.49 −4.93 −4.96 −2.87 −2.85 −1.48 −1.38
2 θ11 4.00 4.00 3.79 4.00 2.49 4.00 1.23 7.84 7.55 7.44 6.36 4.88 5.45 2.42

θ22 4.00 3.79 3.79 2.49 2.49 1.23 1.23 7.84 7.16 7.44 3.96 4.88 1.68 2.42

θ12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −5.49 −5.05 −5.21 −3.05 −3.42 −1.56 −1.69
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processes [21]. When the in-control mean vector
μ0=(μ0X ,μ0Y)′ and the cross-covariance matrix of the
sample mean vector ΓX are known, the monitoring sta-
tistic for Hotelling’s T2 control chart is given by

T2 ¼ X−μ0

� �0
Γ−1

X
X−μ0

� � ð9Þ

The terms of the cross-covariance matrix ΓX of the

sample mean vector X depend on the elements of the

Table 2 The ARL values for the T2 control chart, δ1=δ2.

(a, b) (0, 0) (0, 0.2) (0, 0.5) (0, 0.7)

s 0 1 2 0 1 2 0 1 2

δ1 δ2 ARL ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.0 0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40

ρ=0.0

0.50 0.50 27.73 34.43 29.74 28.78 46.56 40.51 37.09 55.16 51.84 49.02

0.75 0.75 7.74 9.99 8.40 8.09 14.47 12.17 10.92 17.96 16.58 15.44

1.00 1.00 3.06 3.89 3.30 3.18 5.63 4.72 4.24 7.07 6.50 6.03

1.25 1.25 1.68 2.02 1.78 1.73 2.78 2.38 2.18 3.43 3.17 2.96

1.50 1.50 1.21 1.36 1.25 1.23 1.71 1.53 1.43 2.03 1.90 1.80

ρ=0.3

0.50 0.50 39.83 48.07 42.20 40.96 59.46 53.24 49.45 64.48 61.80 59.30

0.75 0.75 11.92 15.06 12.79 12.33 19.80 17.16 15.61 22.03 20.84 19.74

1.00 1.00 4.62 5.87 4.97 4.79 7.86 6.74 6.10 8.83 8.30 7.83

1.25 1.25 2.34 2.89 2.49 2.41 3.79 3.28 2.99 4.24 3.99 3.77

1.50 1.50 1.51 1.77 1.58 1.54 2.21 1.95 1.81 2.43 2.31 2.20

ρ=0.7

0.50 0.50 55.82 64.12 58.39 56.95 67.08 66.04 63.61 65.51 67.22 67.16

0.75 0.75 18.24 21.87 19.34 18.72 23.23 22.75 21.64 22.51 23.29 23.26

1.00 1.00 7.19 8.76 7.66 7.40 9.36 9.14 8.66 9.04 9.39 9.37

1.25 1.25 3.48 4.20 3.70 3.57 4.49 4.38 4.16 4.34 4.50 4.49

1.50 1.50 2.06 2.42 2.16 2.10 2.56 2.51 2.39 2.48 2.56 2.56

(a, b) (0, 0) (0.2, 0.2) (0.5, 0.5) (0.7, 0.7)

s 0 1 2 0 1 2 0 1 2

δ1 δ2 ARL ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.0 0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40

ρ=0.0

0.50 0.50 27.73 43.87 31.98 29.90 93.65 64.57 52.09 159.45 129.50 108.90

0.75 0.75 7.74 13.43 9.15 8.45 36.68 22.08 16.69 80.52 58.64 45.48

1.00 1.00 3.06 5.22 3.57 3.31 15.74 8.85 6.54 41.01 27.61 20.29

1.25 1.25 1.68 2.60 1.89 1.79 7.62 4.25 3.19 21.85 13.98 9.98

1.50 1.50 1.21 1.63 1.30 1.26 4.19 2.44 1.91 12.35 7.71 5.46

ρ=0.3

0.50 0.50 39.83 60.48 45.39 42.68 118.51 85.46 70.57 187.11 156.80 135.09

0.75 0.75 11.92 20.25 14.01 12.98 51.43 32.28 24.86 103.84 78.44 62.47

1.00 1.00 4.62 8.05 5.45 5.04 23.53 13.57 10.09 56.91 39.68 29.85

1.25 1.25 2.34 3.88 2.70 2.52 11.72 6.53 4.83 31.98 21.04 15.25

1.50 1.50 1.51 2.25 1.68 1.59 6.43 3.61 2.73 18.70 11.86 8.43

ρ=0.7

0.50 0.50 55.82 81.12 62.78 59.41 145.92 109.97 92.97 214.55 185.10 163.19

0.75 0.75 18.24 30.04 21.27 19.78 70.22 46.13 36.31 130.24 102.03 83.48

1.00 1.00 7.19 12.50 8.49 7.85 34.52 20.64 15.55 76.85 55.62 42.94

1.25 1.25 3.48 6.00 4.08 3.78 17.96 10.17 7.52 45.73 31.13 23.04

1.50 1.50 2.06 3.33 2.35 2.20 10.02 5.57 4.13 27.90 18.16 13.08
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Table 3 The ARL values for the T2 control chart, δ1 or δ2=0

(a, b) (0, 0) (0, 0.2) (0, 0.5) (0, 0.7)

s 0 1 2 0 1 2 0 1 2

δ1 δ2 ARL ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.0 0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40

ρ=0.0

0.00 0.50 67.32 95.27 75.12 71.36 163.04 126.03 108.04 230.33 201.94 180.35

0.50 0.00 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32 67.32

0.00 1.00 9.41 16.19 11.09 10.26 42.87 26.28 20.02 90.63 67.10 52.66

1.00 0.00 9.41 9.41 9.41 9.41 9.41 9.41 9.41 9.41 9.41 9.41

0.00 1.50 2.57 4.31 2.98 2.77 13.05 7.28 5.39 35.03 23.24 16.92

1.50 0.00 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57

ρ=0.3

0.00 0.50 60.48 87.08 68.09 64.54 154.61 118.79 101.38 224.59 196.46 175.07

0.50 0.00 60.48 60.61 60.75 60.76 61.50 62.03 62.16 62.91 63.40 63.63

0.00 1.00 8.05 13.99 9.57 8.84 38.60 23.63 17.96 85.39 63.18 49.52

1.00 0.00 8.05 8.08 8.10 8.10 8.25 8.35 8.37 8.52 8.62 8.66

0.00 1.50 2.25 3.72 2.61 2.44 11.47 6.46 4.80 32.25 21.45 15.64

1.50 0.00 2.25 2.26 2.26 2.26 2.30 2.32 2.33 2.36 2.38 2.39

ρ=0.7

0.00 0.50 28.53 46.04 34.59 32.41 107.78 81.44 68.10 192.22 167.20 147.73

0.50 0.00 28.53 29.27 30.07 30.10 34.34 37.40 38.16 42.47 45.26 46.61

0.00 1.00 3.15 5.55 3.91 3.63 19.93 12.57 9.57 60.27 45.09 35.34

1.00 0.00 3.15 3.24 3.34 3.34 3.87 4.28 4.39 5.01 5.43 5.64

0.00 1.50 1.23 1.70 1.37 1.31 5.36 3.35 2.61 20.16 13.90 10.30

1.50 0.00 1.23 1.24 1.26 1.26 1.36 1.44 1.46 1.58 1.67 1.72

(a, b) (0, 0) (0.2, 0.2) (0.5, 0.5) (0.7, 0.7)

s 0 1 2 0 1 2 0 1 2

δ1 δ2 ARL ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.0 0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40

ρ=0.0

0.00 0.50 67.32 95.27 75.12 71.36 163.04 126.03 108.04 230.33 201.94 180.35

0.50 0.00 67.32 95.27 75.12 71.36 163.04 126.03 108.04 230.33 201.94 180.35

0.00 1.00 9.41 16.19 11.09 10.26 42.87 26.28 20.02 90.63 67.10 52.66

1.00 0.00 9.41 16.19 11.09 10.26 42.87 26.28 20.02 90.63 67.10 52.66

0.00 1.50 2.57 4.31 2.98 2.77 13.05 7.28 5.39 35.03 23.24 16.92

1.50 0.00 2.57 4.31 2.98 2.77 13.05 7.28 5.39 35.03 23.24 16.92

ρ=0.3

0.00 0.50 60.48 86.92 67.80 64.26 153.08 116.62 99.17 221.26 192.21 170.40

0.50 0.00 60.48 86.92 67.80 64.26 153.08 116.62 99.17 221.26 192.21 170.40

0.00 1.00 8.05 13.94 9.51 8.79 37.86 22.87 17.31 82.48 60.27 46.86

1.00 0.00 8.05 13.94 9.51 8.79 37.86 22.87 17.31 82.48 60.27 46.86

0.00 1.50 2.25 3.71 2.59 2.42 11.20 6.23 4.62 30.74 20.16 14.58

1.50 0.00 2.25 3.71 2.59 2.42 11.20 6.23 4.62 30.74 20.16 14.58

ρ=0.7

0.00 0.50 28.53 45.00 32.87 30.75 95.44 66.03 53.36 161.55 131.52 110.81

0.50 0.00 28.53 45.00 32.87 30.75 95.44 66.03 53.36 161.55 131.52 110.81

0.00 1.00 3.15 5.39 3.68 3.42 16.24 9.14 6.76 42.09 28.40 20.91

1.00 0.00 3.15 5.39 3.68 3.42 16.24 9.14 6.76 42.09 28.40 20.91

0.00 1.50 1.23 1.66 1.32 1.28 4.32 2.51 1.96 12.75 7.96 5.65

1.50 0.00 1.23 1.66 1.32 1.28 4.32 2.51 1.96 12.75 7.96 5.65
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Table 4 The ARL values for the T2 control chart, δ1≠δ2

(a, b) (0, 0) (0, 0.2) (0, 0.5) (0, 0.7)

s 0 1 2 0 1 2 0 1 2

δ1 δ2 ARL ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.0 0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40

ρ=0.0

0.50 1.00 6.50 9.99 7.42 6.97 20.48 14.41 11.75 33.41 27.67 23.58

1.00 0.50 6.50 7.17 6.72 6.62 8.15 7.69 7.41 8.72 8.51 8.32

0.50 1.50 2.22 3.43 2.51 2.37 8.44 5.28 4.12 17.76 13.15 10.33

1.50 0.50 2.22 2.31 2.25 2.23 2.43 2.37 2.34 2.49 2.47 2.45

1.00 1.50 1.61 2.10 1.74 1.67 3.54 2.71 2.34 5.25 4.50 3.96

1.50 1.00 1.61 1.79 1.66 1.64 2.09 1.94 1.85 2.29 2.22 2.15

ρ=0.3

0.50 1.00 8.76 14.02 10.10 9.43 29.07 20.06 16.14 44.37 36.84 31.38

1.00 0.50 8.76 9.15 8.87 8.81 9.40 9.26 9.12 9.40 9.40 9.35

0.50 1.50 2.56 4.24 2.96 2.76 11.48 6.80 5.15 24.25 17.56 13.54

1.50 0.50 2.56 2.57 2.57 2.57 2.55 2.57 2.57 2.53 2.55 2.56

1.00 1.50 2.12 2.98 2.34 2.23 5.23 3.88 3.27 7.18 6.18 5.43

1.50 1.00 2.12 2.31 2.18 2.15 2.51 2.40 2.32 2.56 2.53 2.49

ρ=0.7

0.50 1.00 8.30 15.70 10.27 9.38 39.85 25.91 19.99 58.22 49.07 41.80

1.00 0.50 8.30 7.56 8.24 8.35 6.92 7.97 8.38 7.20 7.91 8.32

0.50 1.50 1.88 3.35 2.26 2.09 1.75 6.84 4.93 32.26 22.39 16.67

1.50 0.50 1.88 1.77 1.89 1.91 12.74 1.94 2.02 1.89 2.03 2.12

1.00 1.50 2.56 4.19 2.98 2.77 7.87 5.75 4.69 9.24 8.45 7.60

1.50 1.00 2.56 2.45 2.55 2.56 2.24 2.46 2.53 2.22 2.38 2.47

(a, b) (0, 0) (0.2, 0.2) (0.5, 0.5) (0.7, 0.7)

s 0 1 2 0 1 2 0 1 2

δ1 δ2 ARL ARL ARL ARL ARL ARL ARL ARL ARL ARL

0.0 0.0 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40

ρ=0.0

0.50 1.00 6.50 11.33 7.68 7.10 31.74 18.81 14.13 72.02 51.69 39.67

1.00 0.50 6.50 11.33 7.68 7.10 31.74 18.81 14.13 72.02 51.69 39.67

0.50 1.50 2.22 3.64 2.55 2.38 11.00 6.12 4.53 30.26 19.82 14.33

1.50 0.50 2.22 3.64 2.55 2.38 11.00 6.12 4.53 30.26 19.82 14.33

1.00 1.50 1.61 2.46 1.80 1.71 7.14 3.99 3.00 20.60 13.13 9.36

1.50 1.00 1.61 2.46 1.80 1.71 7.14 3.99 3.00 20.60 13.13 9.36

ρ=0.3

0.50 1.00 8.76 15.13 10.34 9.56 40.53 24.67 18.74 86.86 63.93 49.96

1.00 0.50 8.76 15.13 10.34 9.56 40.53 24.67 18.74 86.86 63.93 49.96

0.50 1.50 2.56 4.30 2.97 2.77 13.02 7.27 5.37 34.97 23.19 16.89

1.50 0.50 2.56 4.30 2.97 2.77 13.02 7.27 5.37 34.97 23.19 16.89

1.00 1.50 2.12 3.46 2.44 2.28 10.43 5.80 4.30 28.90 18.86 13.61

1.50 1.00 2.12 3.46 2.44 2.28 10.43 5.80 4.30 28.90 18.86 13.61

ρ=0.7

0.50 1.00 8.30 14.37 9.80 9.06 38.82 23.52 17.82 84.07 61.60 47.98

1.00 0.50 8.30 14.37 9.80 9.06 38.82 23.52 17.82 84.07 61.60 47.98

0.50 1.50 1.88 2.99 2.14 2.01 8.90 4.95 3.69 25.15 16.24 11.65

1.50 0.50 1.88 2.99 2.14 2.01 8.90 4.95 3.69 25.15 16.24 11.65

1.00 1.50 2.56 4.29 2.97 2.77 13.00 7.26 5.37 34.93 23.16 16.86

1.50 1.00 2.56 4.29 2.97 2.77 13.00 7.26 5.37 34.93 23.16 16.86
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two matrices, Φ and Σe, see expression (7). During
the in-control period, T2 follows a chi-square distribu-
tion with p degrees of freedom (χp

2). Similarly, to the
work of Champ et al. [22], the upper control limit of
the chart is chosen to be the (1−α)th quantile of the
chi-square distribution to achieve a desired in-control
average run length (ARL) of 1/α. The chi-square ap-
proximation makes more conservative control limits
than the original F distribution [23]. After the assign-
able cause occurrence, the mean vector changes to
μ1=(μ1X ,μ1Y)′ and the distribution of the monitoring
statistic T2 changes to a non-central chi-square distri-
bution (χ(p,λ)

2 ) with non-centrality parameter

λ2 ¼ δ′ΓX
−1δ, where δ is the standardized mean vector

shif t δ ¼ δX ; δYð Þ0 ¼ μ1X −μ0X
σeX

; μ1Y−μ0Y
σeY

� 	0

, see Wu and

Makis [24] and Franco et al. [25]. Without loss of
generalization, we consider μ01=μ02=0. In the ab-
sence of autocorrelated variables, the non-centrality

pa r ame t e r i s g i ven by λ2 ¼ δ′Ψ−1
X
δ. As δ′ΓX

−1δ

<δ′Ψ−1
X
δ, we conclude that the autocorrelation reduces

the ability of the chart in signaling an assignable
cause. According to expressions (8) and (9),

T2 ¼ X 1 þ δ1
� �2

θ11 þ X 2 þ δ2
� �2

θ22

þ 2 X 1 þ δ1
� �

X 2 þ δ2
� �

θ12 ð10Þ

where X 1 and X 2 are the sample means of the two quality
characteristics used to control the bivariate process.

To study the effects of the auto- and cross-correlation
on the performance of the T2 chart, we assume a bivar-
iate process and samples of size n=4 build up without
skipping items (s=0) and skipping one or two items,
that is s∈ (1, 2). The ARL measures the performance
of the T2 chart. When the process is in-control, the
ARL measures the rate of false alarms. A chart with a
larger in-control ARL (ARL0) has a lower false alarm
rate than other charts. A chart with a smaller out-of-
control ARL has a better ability to detect process
changes than other charts. In practice, a large sample
is preliminarily taken to estimate the cross-covariance
matrix Γ and, subsequently, the parameters (a, b, ρ);
see Eq. 5.

The ARL value is given by

ARL ¼ 1−Pr χ2
p;λð Þ < CL

� 	h i−1
ð11Þ

The CL is the control limit of the T2 chart; it is
computed using Eq. 11 with an in-control ARL=
370.4 and λ=0. The ARLs in Tables 2, 3, and 4 were
computed with Eq. 11. We considered uncorrelated var-
iables, ρ=0, and variables with low and high correla-
tion, ρ=0.3 or 0.7. To investigate the effect of the
autocorrelations on the overall performance of the bi-
variate T2 charts, Tables 2 and 4 consider the cases in
which the two variables are affected by the assignable
cause (in Table 2, δ1= δ2, and in Table 4, δ1≠δ2).
Table 3 considers the cases in which only one variable

Fig. 1 TheARL values for the T2

control chart when the variable
affected by the assignable cause is
the autocorrelated one: a=0.5, b=
0.5, δ1=0, δ2∈(0.75, 1.00, 1.25,
1.50)

Fig. 2 TheARL values for the T2

control chart when the variable
affected by the assignable cause is
the autocorrelated one: a=0.5, b=
0.5, δ1=δ2∈(0.75, 1.00, 1.25,
1.50)
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Fig. 3 TheARL values for the T2

control chart when the variable
affected by the assignable cause is
the autocorrelated one: a=0, b=
0.5, δ1=0, δ2∈(0.75, 1.00, 1.25,
1.50)

Fig. 4 TheARL values for the T2

control chart when the variable
affected by the assignable cause is
the autocorrelated one: a=0, b=
0.7, δ1=0, δ2∈(0.75, 1.00, 1.25,
1.50)

Fig. 5 The non-centrality
parameter: a=b∈(0.2, 0.5, 0.7),
δ1=δ2∈(0.5, 1.0)
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is affected by the assignable cause (δ1 or δ2=0). It was
also considered independent and autocorrelated obser-
vations, that is, a, b∈ (0, 0.2, 0.5, 0.7), and samples of
size n=4.

In the absence of autocorrelation (a=b=0) or in the
presence of two variables with the same level of au-
tocorrelation (a=b≠0), a higher dependence between
the two variables improves the performance of the T2

chart in signaling shifts in only one variable (δ1≠0;
δ2=0 or δ1=0; δ2≠0). For instance, in Table 3, when
the variables are independent and uncorrelated (a=
b=ρ=0) and (δ1, δ2)=(0, 1.0), the T2 chart requires,
on average, 9.41 samples to signal. This number de-
creases to 3.15 when the variables are highly corre-
lated (a = b = 0, ρ = 0.7). When the variables are
autocorrelated (a=b=0.5, ρ=0) and (δ1, δ2)=(0, 1.0),
the T2 chart requires, on average, 42.87 samples to
signal. This number decreases to 16.24 when the var-
iables are highly correlated (a=b=0.5, ρ=0.7). In the-
se last two cases of uncorrelated and highly correlated

variables, the skipping strategy (s=2) reduces the
ARLs, respectively, from 42.87 to 20.02 and from
16.24 to 6.76, see Fig. 1 and Table 3.

A contrary effect is observed when the assignable
cause shifts both variables. For instance, in Table 2,
when the variables are independent and uncorrelated
(a=b=ρ=0) and (δ1, δ2)=(1.0, 1.0), the T2 chart re-
quires, on average, 3.06 samples to signal. This number
increases to 7.19 when the variables are highly correlat-
ed (a = b = 0 , ρ = 0 .7 ) . When the va r i ab l e s a re
autocorrelated (a=b=0.5, ρ=0) and (δ1, δ2)=(1.0, 1.0),
the T2 chart requires, on average, 15.74 samples to sig-
nal. This number increases to 34.52 when the variables
are highly correlated (a=b=0.5, ρ=0.7). In these last
two cases of uncorrelated and highly correlated vari-
ables, skipping strategy (s=2) reduces the ARLs, re-
spectively, from 15.74 to 6.54 and from 34.52 to
15.55, see Fig. 2 and Table 2.

If only one variable is autocorrelated and only one
variable is affected by the assignable cause (a≠0; b=

Fig. 6 The non-centrality
parameter: a=b∈(0.2, 0.5, 0.7),
δ1∈(0.5, 1.0), δ2=0.0

Int J Adv Manuf Technol (2015) 80:1547–1559 1555



0 or a=0; b≠0 and δ1≠0; δ2=0 or δ1=0; δ2≠0), a
higher dependence between the two variables im-
proves the T2 chart’s performance. For instance, in
Table 3, if the assignable cause changes the mean of
the independent variable (a, b, δ1, δ2)=(0, 0.2, 1.0, 0)
and the two variables are uncorrelated (ρ=0), the T2

chart requires, on average, 9.41 samples to signal.
This number decreases to 3.24 when the variables
are highly correlated (ρ=0.7). In this case, the skip-
ping strategy does not improve the chart’s perfor-
mance. When the assignable cause changes the mean
of the autocorrelated variable (a, b, δ1, δ2)=(0, 0.2, 0,
1.0) and the two variables are uncorrelated (ρ=0), the
T2 chart requires, on average, 16.19 samples to signal.
This number decreases to 5.55 when the variables are
highly correlated (ρ=0.7). In this last case, applying
the skipping strategy (s=2), the ARLs, respectively,
decrease to 10.26 and 3.63, see Figs. 3 and 4 for
the case that b=0.7.

5 The choice of the skipping parameter

The power of the T2 chart depends on the non-centrality pa-
rameter of the chi-square distribution (λ2), that is, as the non-
centrality increases, the power of the T2 improves. Because of
that, it is interesting to investigate the way the non-centrality
parameter increases with s.

Figures 5, 6, 7, and 8 present the results of this investigation
for samples of size n=4, skipping s=0, 1,…, 20 observations.
According to Fig. 8, the skipping strategy is not recommended
for cases in which only one variable is autocorrelated and the
practitioner knows in advance that the autocorrelated variable
is robust to the occurrence of assignable causes, that is, the
mean of this variable rarely goes off-target. Excluding these
cases, the non-centrality always increases with s. It is interest-
ing to note that the non-centrality increase is significant when
skipping one, two, or three observations; after that, the in-
crease is marginal, except when the level of the autocorrela-
tions are high (a and/or b are equal to 0.7).

Fig. 7 The non-centrality
parameter: a∈(0.2, 0.5, 0.7), b=0,
δ1∈(0.5, 1.0), δ2=0.0
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Taking account the trade-off between the gain in chart’s
performance and the additional effort to select the four sample
items, the skip of one or two observations seems to be the best
option for variables with low level of autocorrelation (a and/or
b are equal to 0.2). If the level of the autocorrelation is mod-

erate (a and/or b are equal to 0.5), the skip of two or three
observations seems to be the ideal decision. The non-
centrality also increases with the cross-correlation, except
when the two variables are autocorrelated and the disturbance
simultaneously changes their mean position.

6 Illustrative example

Let us consider a bivariate process that has two quality char-
acteristics to be controlled: the tensile strength and diameter of
a textile fiber [17]. They are correlated to each other with ρ=
0.78 and

μ0 ¼ 115:9; 0:0106ð Þ0 ;
X

e
¼ σ2eX σeXY

σeXY σ2
ey

 !
¼ 1:23 0:79

0:79 0:83

� �

The quality engineer has decided to use the T2 chart with
samples of size n=4. In Table 5, two scenarios are compared:
the scenario where the tensile strength and diameter are both

Fig. 8 The non-centrality
parameter: a=0, b∈(0.2, 0.5, 0.7),
δ1∈(0.5, 1.0), δ2=0.0

Table 5 The ARL for the T2 chart

(a, b) (0, 0) (0.4, 0.4)

s 0 1 2 3

δ1 δ2

0 0.5 4.20 14.53 8.27 6.54 5.95

1 0 2.86 9.72 5.48 4.35 3.97

0.5 1 14.23 42.92 26.68 21.63 19.84

0.5 0 25.98 68.77 45.61 37.90 35.08

0 1 1.69 5.08 2.94 2.39 2.21

0.5 0.5 53.97 117.18 85.07 73.41 69.01

1 1 6.87 23.06 13.49 10.72 9.76
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non-autocorrelated variables (a=b=0), and the scenario
where the tensile strength and diameter are both
autocorrelated variables (a=b=0.4). Even moderate au-
tocorrelations reduce significantly the speed with which
the T2 chart detects changes in the process mean vector;
in the first scenario, the ARL corresponding to (δ1=0.5,
δ2=1.0) is 14.23; in the second scenario, this number
increases more than 300 % (ARL=42.92). The skipping
strategy helps to reduce the negative effect of the auto-
correlation, with s=1, the ARL reduces to 26.69, and
with s=2, the ARL reduces to 21.63.

7 Conclusions

In this paper, we considered the skipping strategy to
reduce the negative effect of the autocorrelations on
the performance of the T2 control chart. The skipping
strategy enhances the chart’s performance when the
mean of the autocorrelated variables goes off-target.
The property that the cross-correlation improves the
chart’s performance when one of the two variables is
robust to mean shifts is also observed with the skipping
strategy. However, it is not recommended to apply the
sampling strategy when a bivariate process has only one
autocorrelated variable and this variable is robust to
mean shifts. In order to preserve the rational subgroup
concept, it is highly recommended to select the sample
units skipping no more than three units.

It is worthwhile to note that the skipping strategy
can be applied with the exponentially weight moving
average, cumulative sum, adaptive, or synthetic
schemes.

Conflict of interest The authors declare that they have no conflict of
interest.

Appendix—the cross-covariance matrix
of the sample mean vector under the skipping
strategy

If the n units of the sample are collected close together in time,
and the length of the sampling interval is large enough to
eliminate any dependence between samples, the vector with
the observations of the jth unit is described by a first-order
autoregressive model:

X j ¼
Xj

i¼1

Φ j−iεi ; j ¼ 1; 2;…; n: ðA1Þ

where εi~Np(μ; Σ) withΣ=(aij)p×p, aij=1 if i=j, aij=ρ if i≠j,
and Φ=diag(a;b;…)p×p.

According to the first-order autoregressive model:

Var X j

� � ¼ Φ j−1� �
Γ Φ j−1� �0 þ Φ j−2� �

Σe Φ j−2� �0 þ…þΣe ðA2Þ
where Γ=ΦΓΦ′+Σe. The cross-covariance matrix of the sam-
ple mean vector ΓX

� �
is given by

ΓX ¼ Var
X 1 þ X 2 þ…þ X n

n

� �
ðA3Þ

When the samples are built by taking one item from pro-
duction line and skipping one (s=1), two (s=2), three (s=3),
or more before selecting the next, the cross-covariance matrix
of the sample mean vector ΓX

� �
is given by

ΓX ¼ 1

n2
Var

Xn−1
i¼0

X 1þ sþ1ð Þi

" #

¼ 1

n2

I þ Φ sþ1ð Þ þ Φ2 sþ1ð Þ þ…þ Φ n−1ð Þ sþ1ð Þ
� 	

Γ I þ Φ sþ1ð Þ þ Φ2 sþ1ð Þ þ…þ Φ n−1ð Þ sþ1ð Þ
� 	0

þ
Φs þ Φ2s−1 þ…þ Φ n−1ð Þs−1
� 	

Σe Φs þ Φ2s−1 þ…þ Φ n−1ð Þs−1
� 	0

þ
Φs−1 þ Φ2s þ…þ Φ n−1ð Þs
� 	

Σe Φs−1 þ Φ2s þ…þ Φ n−1ð Þs
� 	0

þ…þ ΦΣeΦ
0 þΣe

2
666664

3
777775 ðA4Þ
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From (A1), (A2), (A3), and (A4), it follows that

ΓX ¼ 1

n2
Xn−1
Ï
s¼0

Φ sþ1ð Þi

0
B@

1
CAΓ

Xn−1
Ï
s¼0

Φ sþ1ð Þi

0
B@

1
CA

0

þ
Xn−1
k¼1

Xsþ1

j¼1

Xk
Ï
s¼1

Φ sþ1ð Þi− j

0
B@

1
CAΣe

Xk
Ï
s¼1

Φ sþ1ð Þi− j

0
B@

1
CA

02
664

3
775

8>><
>>:

9>>=
>>;

8>><
>>:

9>>=
>>;

ðA5Þ

After some algebra, for the bivariate case, Eq. (A5) leads to

ΓX ¼

σ2
X

n
1þ 2

n

Xn−1
j¼1

n− jð Þa sþ1ð Þ j
" #

σXY

n
1þ 1

n

Xn−1
j¼1

n− jð Þa sþ1ð Þ j þ 1

n

Xn−1
j¼1

n− jð Þb sþ1ð Þ j
" #

σXY

n
1þ 1

n

Xn−1
j¼1

n− jð Þa sþ1ð Þ j þ 1

n

Xn−1
j¼1

n− jð Þb sþ1ð Þ j
" #

σ2
Y

n
1þ 2

n

Xn−1
j¼1

n− jð Þb sþ1ð Þ j
" #

0
BBBBB@

1
CCCCCA ðA6Þ

where σ2
X ¼ σ2eX

1−a2, σ
2
Y ¼ σ2eY

1−b2, and σXY ¼ σeXY
1−ab.
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