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Abstract In keyhole welding, welding quality is closely re-
lated to the stability of the keyhole, which is primarily deter-
mined by keyhole geometry during the welding process.
Three essential attributes to describe the simplified three-
dimensional keyhole shape include keyhole size, penetration
depth, and keyhole inclination angle. However, when using
traditional measurement techniques, it is very challenging to
take in-process measurements of penetration depth and incli-
nation angle, even if the keyhole size can be detected by using
a visual monitoring system. To realize the on-line estimation
of keyhole dynamics and welding defects, a data-based radial
basis function neural network state observer is adopted for
estimating penetration depth and inclination angle in the tran-
sient state when welding parameters change suddenly. First, a
static neural network is trained in advance to establish a cor-
relation between the welding parameters and unobservable
keyhole geometry. The dynamic state observer is trained
based on the transient welding conditions predicted by a nu-
merical model and then used to estimate the time-varying
keyhole geometry. Meanwhile, a coaxial monitoring system
is used to observe the keyhole shape from the top side in real
time, which not only provides input to the neural network but
also indicates the potential welding porosities. The predicted
results are validated by experimental data obtained bywelding
of stainless steel 304 and magnesium alloy AZ31B.

Keywords Laser keyhole welding . Keyhole dynamics
estimation . Radial basis function neural network . Coaxial
monitoring . Porosity detection

1 Introduction

All laser welding techniques can be classified into two basic
categories: keyhole or conduction welding. Keyhole, or deep-
penetration welding, is probably the most popular welding
form. In keyhole welding, vapor pressure holds back the sur-
rounding molten metal and keeps this hole open during the
process. The metal vapor also scatters the laser beam into the
molten metal along the side of the keyhole, thus transferring
energy through the entire depth of the keyhole, resulting in a
weld with a high aspect ratio, as illustrated in Fig. 1.

To ascertain the keyhole dynamics, especially the keyhole
shape during deep-penetration welding, much research has
been conducted on the modeling of keyhole changes in terms
of different physical assumptions. Matsunawa and Semak [1]
developed a simulation model of the front keyhole wall be-
havior on the basis of a hydrodynamic model that assumed
that only the front part of the keyhole wall is exposed to the
high-intensity laser beam and the growth of the keyhole wall
inside the material is due to melt expulsion. To obtain a better
understanding of the keyhole geometry, Lankalapalli et al. [2]
developed a model for estimating penetration depth based on a
two-dimensional heat conduction model and a conical key-
hole assumption. Ronda et al. [3] investigated the relationship
between the shape of the keyhole, surface tension, and a recoil
force based on numerical simulation. However, these simpli-
fied models may not be able to accurately reflect the real
dynamic changes of the keyhole. Ki et al. [4, 5] developed
more complicated and well-considered models based on level-
set equations. Pang et al. [6] proposed a three-dimensional
sharp interface model, which combined three-dimensional
heat transfer, keyhole free surface evolutions, and fluid flow
in the welding process. In this model, not only the keyhole
wall but also periodical keyhole collapse and bubble forma-
tion processes could be simulated successfully. Another mod-
el considering plasma gas, liquid metal, and solid metal was
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proposed to describe the keyhole phenomena of laser welding
[7]. Lately, a multi-phase numerical simulation based on the
level-set model and a sharp interface model was used to accu-
rately capture the dynamics of the keyhole, the molten pool,
and even the plume [8].

Although the various numerical models are capable of de-
scribing the transient keyhole shape, they cannot be used for
real-time applications due to their high computational require-
ments. Because of the great amount of data required for key-
hole analysis and unavoidable time and cost, other studies
focusing on keyhole dynamics have been carried out through
multiple experimental observation techniques.

To monitor the welding process, many detecting systems
have been developed based on different measurement tech-
niques, such as acoustic, infrared, and imaging signals. Li
et al. [9] used the “acoustic mirror” to investigate the ultrasonic
airborne acoustic emission of the weld pool plasma and laser
beam.Wang et al. [10] andHuang et al. [11] measured welding
temperature distributions by an IR thermography system. At
present, since the development of visual imaging techniques
and high computational capability with a reduction of cost, a
vision-based system has become a very popular technique to
monitor the weld pool. Measurements have been conducted
using a high-speed camera and a dot matrix pattern laser so
as to reconstruct the three-dimensional weld pool surface in
gas tungsten arc welding (GTAW) [12, 13]. Kim et al. [14]
investigated the size of keyhole and Zhang et al. [15] extracted
molten pool edges by using coaxial monitoring systems.

A high-speed camera-based vision system has been de-
veloped by Fabbro et al. [16–18] to learn the keyhole be-
havior in full-penetration laser welding. The penetration
depth and keyhole front tilting angle were two significant
areas of focus in this study. The related keyhole dynamic
models were also introduced to validate their experimental
results. A study at Osaka University incorporated more
complicated measurement techniques, utilizing high-speed
video cameras and an X-ray transmission real-time imaging
system to investigate the dynamic phenomena inside the
keyhole and the weld pool on different materials, such as

stainless steel and magnesium alloy [19, 20]. In the process of
deep-penetration laser welding, due to the high energy density
of the heat input source on the workpiece, the material evap-
orates rapidly and the formed keyhole is unstable. As the
liquid flow is very complicated and the keyhole geometry
fluctuates frequently under some welding conditions, this
would influence the quality and performance of the welding
joint. For instance, the bubbles formed from keyhole collapse
and shrinkage cause the keyhole-induced porosity. Based on
the X-ray imaging system, the formation of bubbles and
welding porosities could also be captured in real time
[21–23]. However, the high cost of the whole system and
overly complicated imaging signals of the keyhole make this
monitoring system unsuitable for implementation as a real
welding process control system.

In this work, a coaxial monitoring system is developed to
detect the keyhole shape from the top side. To approximate the
keyhole dynamics in more straightforward and efficient man-
ner under different welding conditions, a data-based static
radial basis function neural network (RBFNN) is trained in
order to establish the relationship among different welding
parameters, system measurements, and unobservable keyhole
dynamics. Further, a dynamic RBFNN identification method
[24, 25] is used to estimate the penetration depth and keyhole
front tilting angle for the transient state welding when some
welding conditions change suddenly. The purpose of using
this observer is to estimate the change of weld pool geometry
due to unknown reasons, such as the nonuniformity of work
material and absorptivity changes. The data-based RBFNN
could be trained based on experimental data and modeling
results in advance so that it could be implemented as a state
observer to provide sufficient feedback of keyhole dynamics
during the laser welding process in real time. Lastly, based on
the visual monitoring system, two approaches are proposed to
estimate in-process welding porosities.

The remainder of the paper is organized as follows:
Section 2 describes the experimental setup of the coaxial vi-
sual monitoring system, while the third section presents the
methodology of using the static RBFNN and the dynamic

Fig. 1 Schematic of keyhole welding

Table 1 Description of IPG YLS-1000 fiber laser

Available output power ≤1000 W

Emission wavelength 1070∼1080 nm

Diameter of feed fiber 200 μm

Dope material Ytterbium

Wall-plug efficiency <30 %

Table 2 Chemical composition of stainless steel 304

Element C Mn P S Si Cr Ni N Fe

Portion (%) 0.08 2 0.045 0.03 0.75 10 10 0.1 Balance
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observer used to predict keyhole dynamics. The fourth section
of the paper contains the actual implementation results with
the RBFNN based on experimental data and the mechanism of
porosity predictions. The final section concludes the paper.

2 Experimental setup

In this work, the keyhole welding process is performed by a fiber
laser (IPG photonics YLS-1000, details of which are shown in
Table 1) with a focal diameter of 200 μm. The laser beam is
transmitted through the fiber to the laser head and its wavelength
is 1070 nm. Stainless steel 304 with a thickness of 2 mm is used
as the substrate material; its chemical composition is listed in
Table 2. Argon is used as a shielding gas and blown into the
weld pool to improve theweldment quality in the experiments. A
three-axis open-architecture controlle integrated with a MAZAK
machining centerr is utilized to control the welding process.

To observe the keyhole from the top side, a coaxial vision-
based monitoring system was designed. The coaxial monitor-
ing system is composed of two dichroic mirrors, a comple-
mentary metal-oxide-semiconductor (CMOS) camera (DFK

42BUC03), an illumination source, and optic filters. The en-
tire monitoring system and the laser head are all mounted on
the Mazak CNC machine. Two dichroic mirrors are set paral-
lel to each other into a parallelogram block so that the output
beam can be perfectly focused on the base material, as sche-
matically shown in Fig. 2.

Both the dichroic mirrors completely reflect the laser beam
around the wavelength of 1070 nm but transmit others, which
makes it possible to capture the weld pool images through the
illumination at different wavelengths. The preset resolution of
the camera is 1280×720 pixels with a maximum frame speed
of 33 frames/s.

To efficiently reduce the impact of disturbing imaging
noises of the plume and plasma that come out from the key-
hole, a 200-mW focus-adaptable green laser with the wave-
length close to 530 nm was selected as the illuminant after the
spectrum analysis of the weld pool. The illuminating area was
adjusted to cover the entire weld pool region. In addition, a
narrow band pass filter with the center wavelength of 532 nm
and a ND16 filter were coupled together in front of the CMOS
camera to make the keyhole area more distinguishable against
the other parts of the weld pool.

Fig. 2 Coaxial visual monitoring
system

Fig. 3 Static radial basis function
neural network model for keyhole
dynamics
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3 Methodology of estimating keyhole dynamics

Keyhole dynamics is very important in the keyhole welding
process because it can directly impact welding quality. How-
ever, an accurate mathematical model that could depict the
keyhole dynamics is not readily available and also would be
difficult to use for real-time applications. Thus, in this section,
the application of a radial basis function neural network is
introduced to identify the keyhole dynamics.

3.1 Radial basis function neural network

In system identification, a neural network is used to approxi-
mate an unknown system. In this study, a radial basis function
neural network is selected to approximate the keyhole dynam-
ics. The output of RBFNN is a linear combination of radial
basis functions of the inputs and neuron parameters [24].

Given a continuous function F: R+→R, and points {Xj
c:j=

1,⋯,p}, Xj
c∈R+, the function F can be defined using radial

basis functions as [24] follows:

tp Xð Þ ¼
Xp

j¼1

λp
jΦ X−Xc

j

��� ���� �
þ λT

0X ð1Þ

where |⋅ | is the Euclidean norm. Φ(·) is the radial basis func-
tionwhose value depends only on the distance from the origin.
X is the input vector. The vector Xj

c contains the centers of the
basis function, which are determined by the training algo-
rithm. The parameters λj

p are the weights between the nodes
of basis function and output layer, and λ0

T is the weight for the
linear term. The value p is the number of basis functions in the

neural network. The goal of using RBFNN is to reduce the
errors between F(X) and tp(X) by choosing the proper coeffi-
cients of λj

p and λ0
T.

3.2 Static RBFNN for keyhole dynamics

In order to generate a dynamic RBFNN to approximate key-
hole dynamics in the transient state of keyhole welding, a
static RBFNN is first developed to capture the correlation
between welding parameters and keyhole geometric features.
Because the welding speed range is from 1 to 4 m/min in this
work, the detected keyhole boundary is quite similar to a cir-
cle. Thus, the keyhole diameter is used as a measurable key-
hole feature. The inputs of the proposed static RBFNN include
laser power, welding speed, and focal diameter, as well as
keyhole diameter. The outputs consist of the penetration depth
and keyhole front tilting angle. The schematic of the static
RBFNN is shown in Fig. 3. The radial basis function used is

Fig. 4 Dynamic radial basis
function neural network model
for keyhole dynamics

Table 3 Designed experiments

Experiment no. Laser power (W) Welding speed (m/min)

1 400 1

2 400 2

3 400 3

4 400 4

5 600 1

6 600 2

7 600 3

8 600 4

9 800 1

10 800 2

11 800 3

12 800 4

13 1000 1

14 1000 2

15 1000 3

16 1000 4
Fig. 5 Structure of estimator based on RBFNN
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the Gaussian function, as shown in Eqs. (2) and (3). X and Xj
c

have been defined in Section 3.1.

Φ rð Þ ¼ exp −r2
� � ð2Þ

r ¼ X−Xc
j

��� ��� ð3Þ

The noteworthy point of the static RBFNN in Fig. 3 is the
scaling factor between the input data and hidden neurons. To
guarantee the accuracy of the neural network, the scaling fac-
tors are utilized to map all the inputs to the same range, from 0
to 1. Considering the upper limit of the laser power as 1000W
and the maximum welding speed used as 4 m/min, the scaling
factors for laser power, welding speed, focal diameter, and
keyhole diameter are respectively 0.001, 0.1, 0.001, and 1.
The orthogonal least square genetic algorithm (OLSGA)
[26] is adopted to train this static RBFNN.

3.3 Dynamic RBFNN for keyhole dynamic estimation

In the welding process, although the well-trained static
RBFNN is able to approximate the penetration depth and key-
hole inclination angle in steady state welding, the keyhole
dynamics in transient state welding cannot be predicted.
Therefore, a dynamic RBFNN model is proposed to approx-
imate the keyhole dynamic process with three state variables:
keyhole diameter, penetration depth, and keyhole inclination
angle. Among these three, the keyhole diameter is a measur-
able state variable, but the other two are unmeasurable. The
dynamic model is illustrated in Fig. 4. In this dynamic model,
the input includes both the welding parameters and the past
values of three state variables.

In modeling the dynamic system, the neural network ap-
proach is to generate an approximation through the input-
output measurements. Once data is collected over a range of
initial conditions for several experiments, the neural network
must be trained to properly approximate the system dynamics.
An unknown plant is described by:

xkþ1 ¼ f xk; ukð Þ þ wk ð4Þ

yk ¼ h xkð Þ þ vk ð5Þ

where state vector xk is n-dimensional and the output vector yk
is assumed to be as m-dimensional. State and measurement
noise vectors wk and vk are assumed to be independent Gauss-
ian white processes with zero mean. The RBFNN then approx-
imates the plant dynamics for each experiment i as follows:

xikþ1 ¼ Λ Λ0½ � Ψ Xi
k

� �
Xi

k

� �
þ wi

k ð6Þ

zik ¼ xik þ ζik ð7Þ

where Xk
i contains the state variables and the input for

experiment i, and Ψ Xi
k

� � ¼ Φ1 Xi
k

� �	
;⋯;Φp Xi

k

� ��T
contains the basis functions corresponding to p centers.
Each row of the matrices Λ and Λ0 correspond to an

element of the approximated vector function bf (·). Since
the parameters appear in the RBFNN as a linear form,
least squares estimation is possible. The state estimator
is designed for use with the RBFNN, and the gain matrix
is derived on the basis of an upper bound covariance
matrix. In addition, the consideration of approximation
error in the estimation algorithm successfully minimizes
filter divergence. The details of the training method and
structure of dynamic observer are discussed completely in
Elanayar and Shin [24].

For the keyhole dynamics, the structure of the dynamic
estimator is shown in Fig. 5. The experiment number i is
determined by the actual transient welding situations that are
considered in the next section.

Fig. 6 Detected keyhole area and keyhole diameter
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Table 4 Average keyhole diameters from images: (150 pixels=1 mm)

Fig. 8 Experimental data for penetration depth (left) and inclination angle (right)
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4 Results and analysis

4.1 Data collection of static RBFNN

Since the training of static RBFNN is based on the input and
output data, experiments are necessary to collect the data for
training the neural network. In consideration of the range of
interest for welding parameters, the experiments are designed
as shown in Table 3. The focal diameter of the laser equipment
is kept at 200 μm, so it is not listed in Table 3 but should still

be regarded as an input for the expandability of the proposed
RBFNN.

4.1.1 Detected keyhole diameters

The keyhole diameters are detected by the coaxial monitoring
system, as shown in Fig. 6. The average values of keyhole
diameters under different welding parameters are plotted in
Fig. 7, and the corresponding captured images are summa-
rized in Table 4. As can be seen, the change of keyhole size
is not quite linear with respect to the change of welding

Fig. 9 Training results and errors of penetration depth

Fig. 10 Training results and errors of inclination angle

Table 5 Test data for penetration depth

Power
(W)

Welding
speed
(m/min)

Focal
diameter
(μm)

Keyhole
diameter
(mm)

Experimental
keyhole
depth (μm)

Neural
network
keyhole depth
(μm)

500 2 200 0.35 981 1007.0

500 3 200 0.324 889 866.2

500 4 200 0.27 687 674.32

Table 6 Test data for inclination angle

Power
(W)

Welding
speed
(m/min)

Focal
diameter
(μm)

Keyhole
diameter
(mm)

Experimental
inclination
angle (°)

Neural
network
inclination
angle (°)

500 2 200 0.35 30.6 31.86

500 4 200 0.27 35.5 36.57
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condition. Generally, an increase in laser power or a decrease
in welding speed makes the keyhole size larger.

4.1.2 Penetration depth and inclination angle

The techniques for measuring penetration depth and inclina-
tion angle are different since both of them cannot be directly
measured from the coaxial monitoring system. Therefore, the
cross section view of the post-processedweld is used to realize
the data collection. The cross section view perpendicular to
the weld provides sufficient information on the penetration
depth. As for the inclination angle, the weld section was cut
along the symmetrical central line in the welding direction.
The longitudinal cross section view shows the angle clearly
at the end of each weld. All the cross sections were ground,
polished, and etched in order to reveal the clear welding

profile. The experimental data for the penetration depth and
inclination angle are plotted in Fig. 8.

4.1.3 Training results of static RBFNN

To conduct off-line training, OLSGA [26] is utilized since it
can better approximate the system features even the data set is
insufficient. The training result for penetration depth is shown
in Fig. 9, while the training result for inclination angle is
shown in Fig. 10. From the error plots, it can be seen that both
errors are very small, less than 1 %, when compared to the
actual data sets.

4.1.4 Testing of neural network

The well-trained static neural network covers the range of
welding power from 400 to 1000 W and the welding speed

Fig. 11 A Penetration depth of a 500W, 2 m/min; b 500W, 3 m/min; and c 500W, 4 m/min.B Inclination angle of a 500W, 2 m/min and b 500W, 4 m/
min

Fig. 12 Training data from numerical simulations (case of changing power)

270 Int J Adv Manuf Technol (2015) 81:263–276



from 1 to 4 m/min. To test the effectiveness of the static
RBFNN, data other than the training sets are used. In this
work, the test experiments are conducted with the laser power
of 500 W and the welding speeds of 2, 3, and 4 m/min. The
comparisons between the actual results and neural network
approximation are summarized in Tables 5 and 6. The corre-
sponding experimental results are also shown in Fig. 11A, B.
When compared with the test results, the errors of the neural
network are all less than 3 %, which means this static neural
network can be utilized to approximate correlations between

the different welding parameters and keyhole geometries in
the steady state welding process.

4.2 Dynamic RBFNN-based observer for keyhole dynamic
estimation

4.2.1 Data training of dynamic RBFNN

As for the dynamic laser welding process, the keyhole geom-
etry is estimated based on the dynamic RBFNN shown in
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Fig. 4. In this work, two groups of experiments are carried out
for transient state laser welding. The first one suddenly chang-
es laser power from 400 to 1000W (changing time is less than
1 ms) with a constant welding speed of 2 m/min. The second
changes the welding speed from 2 to 3 m/min with a constant
acceleration rate of 15 m/s2 and laser power of 1000 W. The
focal diameter used in the experiments is still 200 μm. To train
the dynamic neural network model, the transient data is obtain-
ed from the numerical model [8] with an output every 0.1 ms.
Figure 12 shows the keyhole dynamic changes predicted by this
numeric model with respect to time. The entire transient state
process lasts 41 and 68 ms for the first and second case, respec-
tively. The training results of the dynamic neural network are
shown in Fig. 13a, b. It is obvious that the trained RBFNN is
capable of capturing the keyhole dynamics very well.

4.2.2 Estimation results of dynamic RBFNN observer

After the training, the observer is used to estimate the pene-
tration depth and inclination angle. The actual penetration
depth from the cross section view along the centerline of the
weld is compared with the estimated keyhole penetration
depth. As shown in Fig. 14, the red circles of the actual

Fig. 15 Comparison of numerical model-based actual angle and
estimated angle. a Changing power and b changing speed

Fig. 14 Comparison of estimated
penetration depth and
experimental results for a
changing power and b changing
speed
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penetration depth are located very close to the blue line of
estimated penetration depth. As for the keyhole inclination
angle, the estimated results are compared to the actual
model-based data in Fig. 15, in which predicted incli-
nation angle acceptably represents the actual experimen-
tal result. These results demonstrate the accuracy of
keyhole dynamic estimation via the RBFNN-based
observer.

4.3 Porosity prediction

To predict the potential porosity and evaluate the welding
quality, two approaches with the coaxial monitoring system
are proposed, one of which is based on the predefined bound
of variation and the other derived from the statistical analysis.
As can be seen in the experimental results, the detected key-
hole size has fluctuations even in the steady state of welding.
Under certain welding conditions, variations of the keyhole
size exceed the preset range due to the possibility of a

collapsed keyhole and porosities formed inside the weld pool.
Through analyzing these imaging signals, welding porosities
could be predicted in real time for both stainless steel 304 and
magnesium alloy AZ31B (the composition is shown in
Table 7).

(1) Image binarization: After capturing the images of the
keyhole, the color images are converted to gray ones,
which consist of all pixels with the grayness value from
0 to 255. For the welding of stainless steel, the brightest
part of the captured image is the keyhole area. The
threshold value for image binarization is chosen as 240.
Thus, pixels with grayness value under 240 are reset to 0,
while values above 240 are reset to 255, as shown in
Fig. 16. However, due to the difference of the absorptiv-
ity ratio of the green light, the keyhole for magnesium is
darker than its surroundings, as marked out by red
squares in Fig. 17. The threshold value for image bina-
rization of magnesium welding is chosen as 80 in the

Fig. 16 Keyhole area detection
with stainless steel. a Original
image, b converted gray image,
and c binarized image

Table 7 Chemical composition of magnesium alloy AZ31B

Element Al Zn Mn Si Cu Ca Fe Ni Mg

Portion (%) 2.5–3.5 0.7–1.3 0.2 0.05 0.05 0.04 0.005 0.005 Balance

Fig. 17 Keyhole area detection
with magnesium alloy. a Original
image, b converted gray image,
and c binarized image

Int J Adv Manuf Technol (2015) 81:263–276 273



present work. The converted image and binarization re-
sults are shown in Fig. 17.

(2) Keyhole size determination: To describe the keyhole
size, the total pixel number of the keyhole area is used.
For stainless steel, the binarization is able to clearly sep-
arate the keyhole from the background, and thus, the
pixel number N with grayness value of 255 is regarded
as the size of the keyhole area. On the other hand, some
additional locating techniques are necessary due to the
noises of binarized magnesium images. The relative po-
sition of the keyhole center in an entire captured image is
fixed since the monitoring system cannot be moved dur-
ing the welding process; consequently, only the region
bounded by lines A1, A2, B1, and B2 is considered, as
shown in Fig. 17c. From the actual experimental results,
it is confirmed that no keyhole area is larger than this
bounded region. The total pixel number with grayness
value of 0 inside this predefined search area is used to
determine the keyhole size as N.

(3) Mean value, upper and lower bound: After recording a
series of keyhole images that contain K consecutive
frames, the mean value of the keyhole size is determined

as M ¼ 1
K ∑

K

i¼1
Ni. In the experiment with stainless steel,

the fluctuation below the 10 % is taken as a reasonable
change of the keyhole size and hence the upper and low-
er bounds are defined as 1.1 and 0.9 M, respectively.
When considering the more unstable properties of the

magnesium alloy, fluctuation of keyhole size around
the mean value less than 25 % is assumed to be a rea-
sonable change. Consequently, the upper and lower
bounds for magnesium alloy are, respectively, 1.25 and
0.75 M.

(4) Experiment design for welding quality classification: In
the experiment design, different welding parameters are
selected for resultant welds classified as either good
welding or poor welding. The designed welding param-
eters are listed in Tables 8 and 9. Through the cross-
sectional views of the post-processed welds, as illustrat-
ed in Figs. 18 and 19, the corresponding welding quality
is also determined.

(5) Porosity prediction method 1: If there are calculated key-
hole sizes located out of the lower and upper bounds, it
means that the unusual keyhole changes happened in the
welding process and there is a high chance of porosity
formation in the base material. In Figs. 20a,b and 21b, c,
either many points are outside the predefined regions or
sharp peaks occur in the plots, where the undesired
points are all marked by red dots. On the other hand,
all of the points are within the two bounds in Figs. 20c
and 21a, which means that few welding defects are de-
tected during the welding process. Therefore, the detect-
ed results from Figs. 20 and 21 accurately reflect the
welding qualities summarized in Tables 8 and 9.

(6) Porosity prediction method 2: As the variation of the
keyhole size is a statistical process, the relative standard

Table 8 Designed experiment
parameters for stainless steel Experiment no. Laser power (W) Welding speed (m/min) Welding quality

1 1000 1 Poor

2 1000 2 Poor

3 500 2 Good

Table 9 Designed experiment
parameters for magnesium alloy Experiment no. Laser power (W) Welding speed (m/min) Welding quality

1 700 0.9 Good

2 800 2 Poor

3 900 2 Poor

Fig. 18 Horizontal cross section
view of weld on stainless steel
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error (RSE) can be applied to get a more qualitative
measure of the variance around the mean in estimating

the welding quality, where RSE ¼ σ Standard deviationð Þ
M Mean valueð Þ .

For the case in Fig. 20, RSE1=0.1006 for the first one,
RSE2=0.0633 for the second one, and RSE3=0.0377
for the third one. For the magnesium alloy in Fig. 21,
RSE1=0.1079 for the first one, RSE2=0.2657 for the
second one, and RSE3=0.213 for the third one.

Apparently, themeasurements with lower RSE indicate
that the welding process is likely to run smoothly with
less porosities. Based on experimental results, the
“good welding” could be regarded as welding with
RSE less than 0.05 for stainless steel and less than
0.15 for magnesium alloys.

Fig. 19 Longitudinal cross
section view of weld on
magnesium

Fig. 20 Detected keyhole sizes with stainless steel Fig. 21 Detected keyhole sizes with magnesium alloy
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5 Conclusion

In the keyhole welding process, keyhole dynamics significant-
ly influence welding quality. The proposed static radial basis
function neural network provides an accurate prediction of the
major keyhole features based on the welding conditions and
measurements by the coxial monitoring system. Under the
changing welding parameters, the dynamic radial basis func-
tion neural network observer performs well in estimating the
penetration depth and inclination angle. Additionally, the pro-
posed approaches of porosity prediction based on the visual
monitoring system successfully indicate the occurrence of po-
tential porosities in real-time experimentation.

References

1. Matsunawa A, Semak V (1997) The simulation of front keyhole
wall dynamics during laser welding. J Phys D Appl Phys 30:798–
809

2. Lankalapalli KN, Tu JF, Gartner M (1996) Model for estimating
penetration depth of laser welding processes. J Phys D Appl Phys
29:1831–1841

3. Ronda J, Siwek A (2011) Modelling of laser welding process in the
phase of keyhole formation. Arch Civ Mech Eng 113:739–752

4. Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole
welding: part I. Mathematical modeling, numerical methodology,
role of recoil pressure, multiple reflections, and free surface evolu-
tion. Metall Mater Trans 33A:1817–1830

5. Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole
welding: part II. Simulation of keyhole evolution, velocity, temper-
ature profile, and experimental verification. Metall Mater Trans
33A:1831–1842

6. Pang S, Chen L, Zhou J, Yin Y, Chen T (2011) A three-dimensional
sharp interface model for self-consistent keyhole and weld pool
dynamics in deep penetration laser welding. J Phys D Appl Phys
44:025301

7. Zhao H, Niu W, Zhang B, Lei Y, Kodama M, Ishide T (2011)
Modelling of keyhole dynamics and porosity formation considering
the adaptive keyhole shape and three phase coupling during deep-
penetration laser welding. J Phys D Appl Phys 44:485302

8. TanW, Bailey NS, Shin YC (2013) Investigation of keyhole plume
and molten pool based on a three-dimensional dynamic model with
sharp interface formulation. J Phys D Appl Phys 46:055501

9. Li L (2002) A comparative study of ultrasound emission character-
istics in laser processing. Appl Surf Sci 186:604–610

10. Wang J, Yu H, Qian Y, Yang R (2011) Interference analysis of
infrared temperature measurement in hybrid welding. Tarn TJ
et al. (Eds.): Robotic welding, intelligence and automation; LNEE
88:369–74

11. Huang RS, Liu LM, Song G (2007) Infrared temperature measure-
ment and interference analysis of magnesium alloys in hybrid laser-
TIG welding process. Mater Sci Eng 447:239–243

12. Saeed G, Lou M, Zhang YM (2004) Computation of 3D weld pool
surface from the slope field and point tracking of laser beams. Meas
Sci Technol 15:389–403

13. Song HS, Zhang YM (2007) Three-dimensional reconstruction of
specular surface for a gas tungsten arc weld pool. Meas Sci Technol
18:3751–3767

14. Kim C, Ah D (2012) Coaxial monitoring of keyhole during Yb:
YAG laser welding. Opt Laser Technol 44:1874–1880

15. Zhang Y, Zhang C, Tan L, Li S (2013) Coaxial monitoring of the
fiber laser lap welding of Zn-coated steel sheets using an auxiliary
illuminant. Opt Laser Technol 50:167–175

16. Fabbro R (2010)Melt pool and keyhole behaviour analysis for deep
penetration laser welding. J Phys D Appl Phys 43:445501

17. Fabbro R, Slimani S, Coste F, Briand F (2005) Study of keyhole
behavior for full penetration Nd–Yag CW laser welding. J Phys D
Appl Phys 38:1881–1887

18. Fabbro R, Slimani S, Doudet I, Coste F, Briand F (2006)
Experimental study of the dynamical coupling between the induced
vapor plume and the melt pool for Nd–Yag laser welding. J Phys D
Appl Phys 39:394–400

19. Kawahito Y,MizutaniM, Katayama S (2007) Investigation of high-
power fiber laser welding phenomena of stainless steel. Trans JWRI
362:11–16

20. Wahba M, Katayama S (2012) Laser welding of magnesium alloys.
Trans JWRI 411:11–23

21. Katayama S, Mizutani M, Matsunawa A (2003) Development of
porosity prevention procedures during laser welding. Proc SPIE
4831:281–288

22. Seto N, Katayama S, Matsunawa A (2000) High-speed simulta-
neous observation of plasma and keyhole behavior during high
power CO2 laser welding: effect of shielding gas on porosity for-
mation. J Laser Appl 12:245–250

23. Kaplan AFH, Mizutani M, Matsunawa A, Katayama S (2002)
Unbounded keyhole collapse and bubble formation during pulsed
laser interaction with liquid zinc. J Phys D Appl Phys 35:1218–
1228

24. Elanayar S, Shin YC (1994) Radial basis function neural network
for approximation and estimation of nonlinear stochastic dynamic
systems. IEEE Trans Neural Netw 54:594–603

25. Elanayar S, Shin YC (1995) Robust tool wear estimation with radial
basis function neural networks. Trans. of the ASME, J Dyn Control
Syst 117:459–67

26. Lee CW, Shin YC (2003) Construction of fuzzy systems using
least-squares method and genetic algorithm. Fuzzy Sets Syst 137:
297–323

276 Int J Adv Manuf Technol (2015) 81:263–276


	Estimation...
	Abstract
	Introduction
	Experimental setup
	Methodology of estimating keyhole dynamics
	Radial basis function neural network
	Static RBFNN for keyhole dynamics
	Dynamic RBFNN for keyhole dynamic estimation

	Results and analysis
	Data collection of static RBFNN
	Detected keyhole diameters
	Penetration depth and inclination angle
	Training results of static RBFNN
	Testing of neural network

	Dynamic RBFNN-based observer for keyhole dynamic estimation
	Data training of dynamic RBFNN
	Estimation results of dynamic RBFNN observer

	Porosity prediction

	Conclusion
	References


