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Abstract The cases where a functional relationship be-
tween a response variable and one or more explanatory
variables is used to monitor the quality of a product or
process appear to be common in practice. This relation-
ship usually is referred to as profile with parameters
that are rarely known and have to be estimated prior
to starting online monitoring. Phase II initiates after a
statistically in-control condition is established, and pa-
rameters of the underlying distribution are estimated. It
is obvious that phase II analysis of control charting is
affected by errors in the estimated parameters. In this
paper, the effect of estimation error on phase II analysis
of simple linear profiles is studied. The in-control and
out-of-control performance of the exponentially weight-
ed moving average (EWMA)-3 method are evaluated
using average run length (ARL) criterion. Overall, the
in-control ARL in average decreases about 96.7 % when
we have m=100 samples in phase I to estimate the
parameters. This value reduces to 2.4 % for m=900
for a fixed sample size of n=4. The behavior of the
EWMA-3 chart in the out-of-control situation totally
depends on the direction of the occurring shifts and
whether the ill-estimated parameter is overestimated or
underestimated.

Keywords Estimation error . Exponentiallyweightedmoving
average . Statistical process control . Simple linear profiles .
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1 Introduction

For many industrial applications, the quality of a process may
be better represented by a functional relationship among one
or more response variables and one or more predictors. This
functional relationship is called profile. Statistical profile
monitoring, a relatively new subarea of statistical quality con-
trol, deals with monitoring schemes when the quality of a
process or product is better characterized by a linear or non-
linear profile. Most of work in the profile monitoring literature
has focused on phase II which is the ongoing monitoring of a
quality characteristic over time. Two monitoring schemes are
proposed by Kang and Albin [7] for phase II analysis of sim-
ple linear profiles. Their first method consists of a Hotelling T2

control chart for monitoring linear profile parameters, and
their second method is based on a combined exponentially
weighted moving average (EWMA) and range (R) chart to
monitor average residuals between a sample and a reference
line. A EWMA-3 approach consisting of three individual
charts for monitoring intercept, slope, and standard deviation
has been suggested by Kim et al. [8]. Zou et al. [23] developed
a control chart based on a change-point model for monitoring
simple linear profiles. A multivariate EWMA control scheme
has been developed by Zou et al. [22] in order to monitor
linear profiles in phase II. A self-starting control chart based
on recursive residuals has been proposed by Zou et al. [24] for
monitoring simple linear profiles. Most of the literature in
phase II profile monitoring considers fixed explanatory vari-
ables. However, in some cases we might deal with random
predictors. A detailed study has been performed by
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Noorossana et al. [13] on the performance of different moni-
toring schemes when having random explanatory variables.
When the explanatory variables are random, a part of this
randomness might be carried out by measurement error.
Noorossana and Zerehsaz [14] developed some methods to
account for the measurement error in the explanatory variable.

Phase I analysis of simple linear profiles is the retrospective
analysis of the data and it is usually performed with the pur-
pose of estimating the parameters of the baseline model in a
statistically in-control situation. There are several methods in
the profile monitoring literature that can be applied for phase I
control of profiles. Mahmoud and Woodall [10] have applied
the well-known F-test existing in the multiple linear regres-
sion literature to monitor simple linear profiles. A change-
point method is suggested by [9] in order to perform retro-
spective analysis of simple linear profiles. All these studies are
based on the fact that error terms in the underlying functional
model are independently and identically distributed nor-
mal random variables. It is obvious that these assump-
tions may fail under certain conditions. When any of
these assumptions fails to hold then one cannot apply
the usual methods. A linear mixed-effect model is sug-
gested by Jensen et al. [3] to monitor simple linear
profiles in phase I when independence assumption of
the random errors does not hold. The proposed method
accounts for within autocorrelation structure. The prob-
lem of within autocorrelation in simple linear profiles in
phase II has been addressed by Soleimani et al. [17]. A
change-point approach is developed by Yeh and
Zerehsaz [21] for phase I control of linear profiles with
individual observations. For a more thorough literature
review in this context, please refer to Woodall [19].

As it was stated earlier, quality of the estimates ob-
tained in the phase I analysis could affect the perfor-
mance of control schemes in phase II. Many authors
have contributed to the investigation of the effect of
parameter estimation in control charting. A comprehen-
sive study has been done by Quesenberry [15] on the
effect of sample size on the estimated limits of X and X
control charts. An estimator for process standard devia-
tion is proposed in order to improve performance of X
control chart (Del Castillo [1]). A robust control chart is
developed by Wu et al. [20] to deal with the problem of
estimation error. Jones et al. [6] investigated the effect
of estimation error on the performance of EWMA con-
trol chart. Jones [5] provides a new design procedure in
order to modify the performance of EWMA control
chart with estimated parameters. Shu et al. [16] studied
the performance of cause-selecting control charts with
estimated parameters. Jensen et al. [4] provide a good
literature review on estimation error issues.

Having a detailed study in the literature of estimation error,
we can notice that small amounts of error in the estimated

parameters in phase I can significantly affect the charting per-
formance in phase II. This issue might reveal itself as either
numerous false alarms causing additional cost for finding the
nonexistent root causes for out-of-control observations or de-
teriorated detection power of an out-of-control sample. De-
pending on the nature of the process, each of these problems
might overweigh the other in the sense of loss of time
and cost. To the best of our knowledge, the effect of
estimation error on the performance of common control
charts used for monitoring simple linear profiles has not
been studied. In this paper, we tried to perform a thor-
ough study on the effect of estimation error on the
performance of EWMA-3 control scheme. The reason
for considering this control scheme is that EWMA-3
appears to be one of the most effective methods for
phase II monitoring of simple linear profiles.

The next section provides a brief description on
EWMA-3 control chart. The repercussion of each pa-
rameter estimate on the performance of EWMA-3 meth-
od is investigated in Section 3. In Section 4, the role of
reference sample size (m) and subgroup size (n) on the
performance of EWMA-3 control scheme in the pres-
ence of estimation error is investigated. An illustrative
example is provided in Section 5 to show how estima-
tion error can affect performance of EWMA-3 chart.
Our concluding remarks are provided in the final
section.

2 The EWMA-3 method

This method presented by Kim et al. [8] seems to be
one of the most appropriate approaches for phase II
monitoring of simple linear profiles (Woodall et al.
[18]). The EWMA-3 control chart has two advantages
over the other methods. First, this chart outperforms the
other control charts in detecting the shifts in the param-
eters. Second, one may easily identify which of the
parameters has contributed to the out-of-control condi-
tion. The basic idea of applying this method originates
from the fact that if we code the independent variables
in a simple linear regression model, the intercept and
slope estimators will be independent from each other.
Hence, we will be able to apply three control charts
to monitor the intercept, slope, and standard deviation
separately.

The underlying regression model is expressed as

yi ¼ β0 þ β1xi þ εi i ¼ 1; 2 … n ð1Þ
where β0 and β1 are the regression coefficients, xis are
the explanatory variables, and εis are independent nor-
mal random variables with mean zero and constant
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variance σ2. The use of least square error method leads
to the following estimators for the simple linear profile
parameters

bβ0 ¼ y−bβ1x; bβ1 ¼
Sxy

Sxx
ð2Þ

where Sxx ¼ ∑
n

i¼1
xi−xð Þ2 and Sxy ¼ ∑

n

i¼1
xi−xð Þ yi−yð Þ.By

coding xi to x
0
i ¼ xi−x, we can use three separate control charts

for monitoring intercept, slope, and standard deviation. In this
case, the model introduced in Eq. (1) can be rewritten as

yi ¼ A0 þ A1x
0
i þ εi i ¼ 1; 2 … n ð3Þ

where A0 ¼ β0 þ β1x, β1=A1, and x
0
i ¼ xi−x. This is true be-

cause we can write

yi ¼ β0 þ β1xi þ εi þ β1x−β1x

¼ β0 þ β1xþ β1 xi−xð Þ þ εi ¼ A0 þ A1x
0
;

The three EWMA statistics are calculated as

EW M AI jð Þ ¼ θ bA0 j þ 1−θð Þ EWMAI j−1ð Þ j ¼ 1 ; 2

EW M AS jð Þ ¼ θ bA1 j þ 1−θð Þ EWMAS j−1ð Þ j ¼ 1 ; 2
EWMAN jð Þ ¼ max θ MSE j−σ2

� �þ 1−θð ÞEWMAN j−1ð Þ; 0� �
j ¼ 1; 2

ð4Þ
where EWMAI(0) = A0, EWMAS(0) = A1, EWMAN(0) = 0,
and θ is a smoothing constant. Small values of θ increase the
power of EWMA chart for detecting small shifts in the param-

eters (Montgomery [11]). Also, bA0 j ¼ y and bA1 j ¼ bβ1 ¼ Sxy
Sxx.

The upper and lower control limits for the three EWMA

control charts are defined as

L C LI ¼ A0 þ LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
σ2

n

r
L C LI ¼ A0− LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
σ2

n

r
U C LS ¼ A1 þ LS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
σ2

Sxx

r
L C LS ¼ A1− LS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
σ2

Sxx

r
UCLN ¼ þLN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
var MSE j

� �r
ð5Þ

where LI, LS, and LN are positive constants that can be adjusted

to give a desired in-control ARL, and var MSE j

� � ¼ 2σ4

n−2 (Kim
et al. [8]).

3 Effect of parameter estimation on the performance
of EWMA-3 control

In this section, we investigate the effect of estimation error on the
performance of EWMA-3 scheme when only one parameter is
subject to estimation error in phase I analysis. This investigation
helps us to understand the magnitude of the effect of the estima-
tion error on the control chart scheme and take precaution mea-
sures in advance.

3.1 Estimation error in the intercept

In the EWMA-3 control scheme, neither the EWMAS nor the
EWMAN chart undergoes changes when the intercept parameter

Table 1 Properties of the EWMA-3 control chart

EWMAI EWMAS EWMAN

LI LCLI UCLI ARL0 LS LCLS UCLS ARL0 LN UCLN ARL0

3.0156 12.4974 13.5026 584.4 3.0109 1.7756 2.2244 584.3 4.0734 1.3578 584.6

Table 2 ARL values with regard
to EWMA-3 control chart under
intercept shifts from β0 to β0+λσ
with different amounts of
intercept estimation

λ

The estimated β0 Percentile 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

3 50 200 59.1 16.2 7.9 5.1 3.8 3.1 2.6 2.3 2.1 1.9

2.96 35 183.5 42.8 12.8 6.1 3.8 2.6 1.9 1.5 1.2 1 1

2.99 45 191 52.4 13.9 6.6 4 2.7 2 1.5 1.3 1 1

3.01 55 193.2 63.4 17.8 8 6.2 5.8 4.1 3.6 2.8 2.7 2

3.04 65 184 79.2 19.9 9.7 6.4 5 4.2 3.7 3.3 3.1 2.9
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is estimated with error. The estimation error in the intercept pa-
rameter has no effect on the expected value and standard devia-
tion of EWMAI statistic. This issue, however, may affect both the
EWMAI(0) and its control limits. Assume that instead of consid-
ering the true parameter β0, we incorrectly apply β

′
0 in the com-

putation of control limits. As pointed out earlier, in the EWMA-3
chart, the intercept parameter is computed asA0 ¼ β0 þ β1x. As
a result, the amount of lower and upper control limits could be
obtained by

LCLI ¼ A
0
0−LIσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð Þn;

s
UCLI ¼;A

0
0 þ LIσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð Þn

s
;

where A
0
0 ¼ β

0
0 þ β1x is the ill-estimated intercept. Apparently,

the performance of EWMA-3 control chart would be influenced
largely because the control limits of EWMAI chart depart from
their real values in the presence of estimation error. To evaluate
the behavior of EWMA-3 approach in this case, a simulation
study has been carried out in MATLAB software. We assume
that the underlying model is given by the following relationship

yi j ¼ 3þ 2xi þ εi j i ¼ 1; 2; … 4 j ¼ 1; 2;

where the independent variable xi takes values 2, 4, 6, and 8
and εijs follow a normal distributionwithmean zero and con-
stant variance σ2=1. Centering the xi variables leads to the
new intercept parameter A0 ¼ β0 þ x β1ð Þ ¼ 13. Conse-
quently, the control limits will be constructed using A0 in
the known parameter situation. The in-control ARL with
knownparameters is set tobe roughly200, and the smoothing
constant is considered 0.2. These values give us a reasonable
detection power for small to moderate shifts while having an

appropriate false-alarm rate for a EWMA chart. The out-of-
control situation is simulated based on sustained changes in
the parameters of the profile. That is, the shifted parameter
remains out of control until the endof simulation.BothARL0

andARLI values are computed using 10,000 simulations. To
bemorespecific, inorder tocompute theARLvalues,westart
simulating the samples while a counter counts the number of
in-control observations prior to receiving an out-of-control
point. We repeat this operation 10,000 times and take the
average of these 10,000 run length values. The resulting av-
eragegivesus theARLvalue.Additional specificationsof the
simulationstudycanbe found inTable1 (knownparameters).
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Fig. 2 Out-of-control performance of EWMA-3 chart when the intercept
parameter is estimated
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Tables 2 and 4 give ARL values for shifts in the intercept,
slope, and standard deviation parameters when β0 parameter is
estimated inaccurately. It is assumed that there exists a set of
m=30 historical data each containing n=4 pairs of (xi, yi) ob-
servations to use for estimating the parameters in phase I. Fur-
thermore, it is assumed that the values for the slope and error
variance are known or are estimated without any error.

As it is known, the samplemean of the intercept estimator bβ0

follows a normal distribution with mean (median) β0 and var-

iance
σ2 1

nþ x2

Sxx

� �
m . Various percentiles of the bβ0 distribution have

been considered in our study. Hence, the first column of Ta-

bles 2 and 4 includes different percentiles of bβ0 distribution.
These amounts, indeed, represent the ill-estimated intercept.
The 50th percentile is the true intercept parameter.

First, consider the in-control situation. Whereas the parame-
ter is either overestimated or underestimated, the control limits
of EWMAI chart deviate from their actual amounts; a large
percent of EWMAI’s distribution would be located out of the
control limits. Figure 1 demonstrates this fact. Hence, in this
situation, more false alarms will be received from the EWMA-3
chart. This can be observed in Table 2.

The behavior of EWMA-3 approach in the out-of-control
state depends generally on the fact that the intercept parameter
is overestimated or underestimated. Suppose that the estimated
intercept is given by β′0=β0+δ where δ is an either positive or
negative constant. Providing that an underestimation occurs (δ<

0), the control limits will drift toward the left, and the right side of
EWMAI distribution will fall outside the upper control limit.
Clearly, when the intercept parameter shifts from β0 to β0+λσ,
the expected value of EWMAI statistic will be equal to A0+λσ.
This shift is detectedmore rapidly than the known parameter case
as the EWMAI distribution moves to the right direction. In other
words, a bigger percentage of the EWMAI distribution will be
placed beyond UCLI by enlargement of the intercept parameter.

Performance of the EWMAI control chart in the overesti-
mation case is entirely associated with the kind of relationship
between λσ and δ. According to Fig. 1, the existence of a
positive shift in the intercept imposes the distribution of
EWMAI statistic to transfer toward the right direction. When
λσ is smaller than δ a remarkable portion of the distribution
will fall inside the control limits when the shift size increases.
This implies that the detection power of EWMA-3 con-
trol chart will be even more diminished for the larger
shift sizes. A simulation analysis is performed in order
to illustrate this point. We assume that δ parameter

equals +0.25; hence, we have A
0
0 ¼ β

0
0 þ β1x ¼ 13:25.

The ARL values have been calculated for different in-
tercept shifts. Again, we assume that the underlying
model is given by the following relationship:

yi j ¼ 3þ 2xi þ εi j i ¼ 1; 2; … 4 j ¼ 1; 2;

xi takes values 2, 4, 6, and 8 and εijs follow a normal
distribution with mean zero and constant variance σ2=1.

Table 3 ARL values with regard to EWMA-3 control chart under slope shifts from β1 to β1+βσ with different amounts of intercept estimation

β

The estimated β0 Percentile 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

3 50 101.6 36.5 17.0 10.3 7.2 5.5 4.5 3.8 3.3 2.9

2.96 35 76.7 28.4 13.8 8.2 5.6 4.1 3.2 2.6 2.1 3.8

2.99 45 94.1 33.4 15.3 8.8 6 4.4 3.4 2.7 2.2 3.9

3.01 55 110.9 39.9 19 11.7 8.3 6.6 5.5 4.8 4.3 3.9

3.04 65 128.9 47.5 21 12.5 8.8 6.8 5.7 4.9 4.4 4

Table 4 ARL values with regard
to EWMA-3 control chart under
standard deviation shifts from σ to
γσ with different amounts of
intercept estimation

γ

The estimated β0 Percentile 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

3 50 31.6 11.7 6.5 4.5 3.4 2.7 2.3 2.1 1.8 1.7

2.96 35 30.6 10.6 5.4 3.4 2.4 1.8 1.4 1.1 1 1

2.99 45 30.2 10.7 5.3 3.3 2.3 1.8 1.4 1.1 1 1

3.01 55 30.9 10.6 5.4 3.4 2.4 1.8 1.4 1.1 1 1

3.04 65 30.3 10.3 5.3 3.4 2.4 1.8 1.4 1.1 1 1
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Figure 2 shows that the performance of EWMA-3 chart
deteriorates regularly. The ARLI criterion reaches its
maximum amount when λσ=δ. This situation is exactly
similar to the in-control state.

There is a possibility that the shift size λσ could be
larger than the estimation error δ. In this case, the
EWMA-3 chart may discover the intercept shifts more
slowly compared to the case that the parameter is
known. The ability of this chart improves as the shift
size gets larger (see Table 2). Table 3 shows the ARL
values for shifts in slope from β1 to β1+βσ. It is
obvious that the expected value of EWMAI chart
moves from A0 to A0 þ xβσ. In this case, the results
can be interpreted in a similar manner as the previous
situation when one encounters intercept shifts. Results
in Table 4 indicate that EWMA-3 approach can detect
shifts in the standard deviation quicker than the
known parameter case. This is because the EWMAI

chart provides more alarms when estimating β0 param-
eter with error.

3.2 Estimation error in the slope

Estimation error in the slope parameter may influ-
ence both the EWMAI and EWMAS control limits.
Since EWMAI control limits are computed based on
A0 parameter where A0 ¼ β0 þ β1x, then slope estima-
tion could affect the lower and upper control limits

of EWMAI statistic. The EWMAS control limits are
given by

LCLS ¼ β
0
1−LSσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð ÞSxx

s
;UCLS

¼ β
0
1 þ LSσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð ÞSxx

s
;

where β ′
1=β1+ δ is the slope parameter subject to

estimation error. The in-control ARL decreases in
this situation. Table 5 shows the ARL values for a
possible range of intercept shifts. Apparently, the
EWMAS chart produces more false alarms except
when no error exists in estimating the slope parame-
ter. Underestimating the slope parameter moves the
control limits of EWMAI and EWMAS to the left
direction. Hence, the out-of-control ARL values will
be smaller than the ARL values when no estimation
error is present. Similar to what we discussed in
Subsection 3.1, in the overestimation condition, the
ARLI values are affected by the relationship between
δ and λσ parameters.

The charting performance of EWMA-3 control chart
under the slope parameter shifts from β1 to β1+βσ is
tabulated in Table 6. It is obvious that the expected
values of the EWMAI and EWMAS statistics in this
case can be expressed as β0 þ βσx and β1+βσ, respec-

Table 5 ARL values with regard to EWMA-3 control chart under intercept shifts from β0 to β0+λσ with different amounts of slope estimation

λ

The estimated β1 Percentile 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2 50 200 59.1 16.2 7.9 5.1 3.8 3.1 2.6 2.3 2.1 1.9

1.93 35 146.4 31.6 11.4 6.4 4.5 3.5 2.8 2.4 2.2 2 1.8

1.97 45 190.2 46.5 14.1 7.3 4.9 3.7 3 2.5 2.2 2 1.9

2.03 55 188.2 70.9 18.1 8.3 5.3 3.9 3.1 2.6 2.3 2.1 1.9

2.07 65 146.9 105.8 24.2 9.8 5.9 4.2 3.3 2.7 2.4 2.1 1.9

Table 6 ARL values with regard to EWMA-3 control chart under slope shifts from β1 to β1+βσ with different amounts of slope estimation

β

The estimated β1 Percentile 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

2 50 101.6 36.5 17.0 10.3 7.2 5.5 4.5 3.8 3.3 2.9

1.93285 35 50.3 20.4 11 7.1 5.2 4.1 3.4 2.9 2.5 2.3

1.97246 45 78.9 29.1 14 8.4 5.9 4.5 3.6 3 2.7 2.4

2.02754 55 125.7 43.5 18.2 10.1 6.7 5 3.9 3.3 2.8 2.5

2.06715 65 172 66.3 25 12.7 7.9 5.6 4.3 3.5 3 2.6
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tively. As it is known, the associated control limits for
both statistics change since the slope parameter is esti-
mated with error. That is, we will apply β′1=β1+δ pa-
rameter to establish the control limits of EWMA-3
method instead of β1. In the EWMAS chart, as long
as δ>0, parameter is greater than βσ where β>0, the
detection power will be reduced as the shift size in-
creases. The worst state happens when we have δ=βσ.
Now, suppose that we have δ<βσ. The EWMAS chart
may be less capable to detect β1 shifts in comparison to
the known parameter case. On the other hand, the abil-
ity of this chart will improve when the magnitude of
shifts becomes larger. It is noticeable that the same sit-
uation may occur in the EWMAI chart with this differ-
ence that in this chart, the relationship between δ and β
σx parameters has to be considered to describe the
results.

If the slope parameter is underestimated, regardless of
the fact that the process is in or out of control, both
EWMAI and EWMAS charts yield more alarms. Based
on what was stated, estimation error in β1 leads to more
false alarms in the in-control state. As it is known,
standard deviation shifts are detected barely by the
EWMAN chart implying that the other two charts are
not affected by changes in the error variance. The
EWMA-3 chart is able to discover the standard devia-
tion changes quicker compared to the case that the
slope parameter is estimated faultlessly inasmuch as

the EWMAI and EWMAS charts alarm more frequently.
Results in Table 7 can easily reflect this fact.

3.3 Estimation error in variance

Estimation of standard deviation is more serious com-
pared to the other two parameters since this parameter
affects the control limits of all three charts. We assume
that σ' 2 = δσ2 is used incorrectly instead of σ2. Thus,
the control limits may be given by

LCLI ¼ A0−LIσ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð Þn

s
; UCLI ¼ A0 þ LIσ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð Þn

s
;

LCLS ¼ A1−LSσ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð ÞSxx

s
; UCLS

¼ A1 þ LSσ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð ÞSxx

s
;

UCLN ¼ LN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
2σ

04

n−2

s

It is worth mentioning that the expected value of EWMAN

statistic can be computed as

E EWMAN½ � ¼ σ2−σ
02 ¼ 1−δð Þσ2;

Table 7 ARL values with regard
to EWMA-3 control chart under
standard deviation shifts from σ to
γσ with different amounts of
slope estimation

γ

The estimated β1 Percentile 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

2 50 33.5 12.7 7.2 5.1 3.9 3.2 2.8 2.5 2.3 2.1

1.93285 35 27.6 10.3 5.8 3.9 3 2.5 2.1 1.9 1.7 1.6

1.97246 45 29.8 10.7 5.9 4 3 2.5 2.1 1.9 1.7 1.6

2.02754 55 30 10.6 5.8 4 3 2.5 2.1 1.9 1.7 1.6

2.06715 65 27.5 10.4 5.8 3.9 3 2.5 2.1 1.9 1.7 1.6

Table 8 ARL values with regard
to EWMA-3 control chart under
intercept shifts from β0 to β0+λσ
with different amounts of
variance estimation

λ

σ2 Percentile 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1 50 200 59.1 16.2 7.9 5.1 3.8 3.1 2.6 2.3 2.1 1.9

0.7198 35 123.7 44.5 13.9 7.2 4.8 3.6 2.9 2.5 2.2 2 1.8

0.87156 45 163 52.6 15.1 7.5 4.9 3.7 3 2.5 2.2 2 1.9

1.11636 55 211.5 61.1 16.3 7.9 5.1 3.8 3.1 2.6 2.3 2.1 1.9

1.31803 65 284.7 71 17.6 8.3 5.3 3.9 3.2 2.7 2.3 2.1 1.9
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The overestimation of variance clearly widens the control
limits leading to large in-control and out-of-control ARL values.
The performance of EWMA-3 approach improves when σ2 pa-
rameter is underestimated. Tables 8, 9, and 10 provide the ARL
values for a variety of shifts with regard to the intercept, slope,
and standard deviation when estimation error exists.

4 Sample size requirements for EWMA-3 control
chart under estimation error

The estimation error problem usually involves all the param-
eters. In essence, when the number of subgroups is not big
enough in phase I, the intercept, slope, and standard deviation
parameters are determined with error. The interpretation of
results is not straightforward in contrast to the case where only
one parameter is ill estimated. In this section, we study the in-
control performance of EWMA-3 chart characterized by
ARL0 metric. As pointed out earlier, either the overestimation
or underestimation of β0 and β1 parameters increases the false
alarms in the EWMA-3 chart. Underestimating the variance
parameter leads to more signals when process is in control.
Consequently, the EWMA-3 chart always generates more sig-
nals in the presence of estimation error. Note that the
abovementioned statement may not be true if the error vari-
ance is severely overestimated.

In spite of the fact that the conditional ARL0 on a given set
of β0, β1, and σ2 parameters is a specified constant, the un-
conditional in-control average run length can be considered as

a random variable. As it was stated earlier, the number of
subgroups (m) and the sample size (n) can significantly affect
the accuracy and precision of the estimates. Thus, it is not
surprising that these parameters possibly affect the ARL0 dis-
tribution. Figure 3 demonstrates the empirical distribution of

Table 9 ARL values with regard
to EWMA-3 control chart under
slope shifts from β1 to β1+βσ
with different amounts of
variance estimation

β

σ2 Percentile 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

1 50 101.6 36.5 17.0 10.3 7.2 5.5 4.5 3.8 3.3 2.9

0.7198 35 69.2 27.8 13.5 8.2 5.7 4.4 3.5 3 2.6 2.3

0.87156 45 83.5 32.1 14.9 8.8 6 4.6 3.7 3.1 2.7 2.4

1.11636 55 104.1 37.1 17.2 11.3 7.4 6.7 4.8 4.2 3.7 3.1

1.31803 65 128.2 41.2 19.8 10.9 8.7 7.5 6.4 5 4.3 3.9

Table 10 ARL values with regard to EWMA-3 control chart under
standard deviation shifts from σ to γσ with different amounts of
variance estimation

γ

σ2 Percentile 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

1 50 33.5 12.7 7.2 5.1 3.9 3.2 2.8 2.5 2.3 2.1

0.7198 35 21.7 8.6 5 3.5 2.8 2.3 2 1.8 1.6 1.5

0.87156 45 26.3 9.7 5.5 3.8 2.9 2.4 2.1 1.8 1.7 1.5

1.11636 55 35.8 13 6.5 4 3.1 2.5 2.1 1.9 2.6 2.5

1.31803 65 38.8 13.6 7.6 5.3 4.2 3.5 3.1 2.9 2.8 2.5

a Pr(ARL0 < ARL0
*)

b Pr(ARL0 > ARL0
*)

Fig. 3 Empirical distribution of ARL0 variable for variousms a P(ARL0
<ARL0*) and b P(ARL0>ARL0*)
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unconditional ARL0 for various amounts of m with four pairs
of observations, i.e., n=4. The in-control ARL with known
parameters is set to 200.

It is noticeable that for smaller values of m, it is more prob-
able that the EWMA-3 chart triggers alarms quicklywith higher
probability (see Fig. 3a). Moreover, it is more probable that the
ARL0 variable takes a large value unless the number of sub-
groups m is as large as possible (see Fig. 3b).

Table 11 gives different probabilities for different ARL0

values. Let us assume that we estimate the profile parameters
using 30 subgroups of size 4. Further, assume that 6.4 % of the
distribution of ARL0 is located between 170 and 230. This
amount increases to 67.7 % in case we apply 500 subgroups
in order to estimate the parameters. This indicates that by taking
larger reference sample size to estimate the parameters, the
ARL0 variable will be located around the real in-control ARL
(200 in our case) with higher probability.

Another noteworthy issue when establishing a control chart
is the sample size n. So far, we have considered only one value
for this parameter, i.e., n=4. Figure 4 depicts ARL0 distribution

for three values of sample size, i.e., n=4, 10, and 15. The
number of subgroups is adjusted to 30.

It is clear that the ARL0 distribution is steeper when the
sample size is not large. Apparently, choosing small sample
sizes to estimate the parameters enhances the probability of
producing frequent false alarms by the EWMA-3 control chart.

According to what has been mentioned by Quesenberry
[15], the false-alarm rate in the early observations can be con-
sidered as an effective criterion to decide on how large a refer-
ence sample size is needed to set up a control chart. He actually
computed the amount of increase in the false-alarm rate in the

first twenty observations for the X charts when parameters are
estimated compared to that in the known parameter case. Some
other researchers like Jones et al. [6] and Shu et al. [16] have
used this metric. It should be pointed out that although false-
alarm probability might decrease in some situations, we might
see an enlargement in this criterion in average. Table 12 pro-
vides the percent average increase of false-alarm rates in the

Table 11 Magnitudes of p(200−τ≤ARL0≤200+τ) for various
amounts of τ and m (the in-control ARL in the known parameter case
equals 200)

m 10 30 50 70 90 110
τ

m=30 0.021 0.064 0.098 0.149 0.212 0.282

m=100 0.053 0.137 0.232 0.323 0.431 0.57

m=200 0.07 0.219 0.354 0.492 0.642 0.788

m=300 0.099 0.276 0.445 0.615 0.769 0.873

m=400 0.304 0.624 0.791 0.893 0.957 0.985

m=500 0.361 0.679 0.84 0.907 0.96 0.99

Table 12 Average percent increase in early false-alarm rate for
different reference sample size values

n m

100 300 500 700 900

4 96.9 28.7 17.6 12.5 2.4

10 90 22.6 14.3 8.9 1.2

15 83 19.7 11.9 6.6 1

Fig. 4 Empirical distribution of ARL0 variable for various ns (m=30)

Table 13 The measured and standard values for different days

Number of sample Level of xi Independent
variable (xi)

Response
variable (yij)

1 1 0.76 1.12

1 2 3.29 3.49

1 3 8.89 9.11

2 1 0.76 0.99

2 2 3.29 3.53

2 3 8.89 8.89

3 1 0.76 1.05

3 2 3.29 3.46

3 3 8.89 9.02

4 1 0.76 0.76

4 2 3.29 3.75

4 3 8.89 9.3

5 1 0.76 0.96

5 2 3.29 3.53

5 3 8.89 9.05

6 1 0.76 1.03

6 2 3.29 3.52

6 3 8.89 9.02
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first twenty observations for different values of reference sam-
ple size m and sample size n. When m is set equal to 900, the
probability of false alarms increases about 2.4 %, which is
negligible. Obviously, this is not the case for smaller reference
sample sizes. It is obvious that the number of observations n
affects the percent increase in the early false-alarm rates. How-
ever, there is more flexibility to manipulate the reference sam-
ple size m compared to the sample size n.

5 An illustrative example

In order to demonstrate how the EWMA-3 chart performswhen
parameters are subject to estimation error, we consider a real

calibration example in an optical imaging system discussed in
NIST/SEMATECH e-Handbook of Statistical Methods [12].
The dataset includes line widths of photomask reference stan-
dards on ten units. Thus, there are 40 measurements available
for estimating the calibration relationship in phase I. The esti-
mated profile is yij = 0.2817 + 0.9767xi, and the standard
deviation parameter equals 0.06826 μm. Gupta et al. [2] also
consider this example. There exists six other samples each in-
cluding three different units (lower (level 1), middle (level 2),
and upper (level 3)) over the measurement range (see Table 13).

Figure 5 reveals the established EWMA-3 chart. It is obvi-
ous that the EWMAS and EWMAN charts signal on 4th sam-
ple (4th day). The in-control ARL is set to be 200.

Fig. 5 the EWMA3 chart for monitoring the linear calibration profile Fig. 6 the EWMA3 control scheme with estimated parameters
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In practice, the estimated parameters differ from the actual
parameters. Here, we assume that the underlying calibration
function yij = 0.2817 + 0.9767xi + εij is the real profile,
and εijs are independent normal random variables with mean
zero and constant variance 0.0047. Now, let us assume that the
40 measurements are used to estimate the profile parameters in
phase I yielding β0=0.2428, β1=0.9799, and σ2=0.0062.
In this situation, the EWMA-3 control scheme will act in a
different way. This fact can be seen easily in Fig. 6.

The EWMAS and EWMAN charts seem to be in control in
all six samples. This, however, is not the case in Fig. 5. The
EWMAI chart, moreover, alarms in the last sampling point.
This indicates that the estimation error can change the charting
performance of EWMA-3 approach drastically.

6 Conclusion

The main purpose of this study is to evaluate the performance of
the EWMA-3 control chart in phase II when the profile param-
eters are estimated in phase I. Obviously, one of the best solutions
for this issue is to find an appropriate value for the reference
sample size in phase I. We used different criteria to study both
the in-control and out-of-control performance of EWMA-3 chart,
and finally provided a framework for choosing both the reference
sample size and the number of observations in the profile.

The unfavorable effects of estimation error on the perfor-
mance of EWMA-3 chart can lead to wrong decisions. The
estimation error may lead to two main issues: (1) increase in
the false alarms and (2) reduction in the detection power. For
the first case, both over- and underestimations of profile pa-
rameters increase the false-alarm rate. As an example, when
we use 500 samples in phase I to estimate the parameters of a
profile with ten points, the false-alarm rate increases about
14 %. This insinuates that both the reference sample size
and sample size must be as large as possible in order to reduce
the drastic effects of estimation error. For the latter case of out-
of-control situation, the performance of the control charts de-
pends on the direction of the shifts and the fact that whether
the parameters are underestimated or overestimated. To be
more specific, when the intercept parameter is estimated with
error, the EWMAI charting performance in the in-control sit-
uation will diminish. Obviously, neither the EWMAS nor the
EWMAN charts are affected by the ill-estimated intercept pa-
rameter. The existence of estimation error in the slope param-
eter influences both the EWMAI and EWMAS charts. In both
charts, the false-alarm rate increases under in-control condi-
tions. Finally, the overestimation of the standard deviation
parameter leads to a decrease in the ARL values. The under-
estimation of the standard deviation parameter, conversely,
decreases the ARL magnitudes.

Although the linear or nonlinear profiles appear to be in-
creasingly common in practical applications, estimation error

can yield misleading results indicating the need for a consid-
erable attention during the estimation phase of control charts.
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