
ORIGINAL ARTICLE

A two-stage ant colony optimization approach based on a directed
graph for process planning

JinFeng Wang1 & Xuehua Wu1
& Xiaoliang Fan1

Received: 15 October 2014 /Accepted: 19 March 2015 /Published online: 9 April 2015
# Springer-Verlag London 2015

Abstract An innovative approach based on the two-stage
ant colony optimization (ACO) approach is used to opti-
mize the process plan with the objective of minimizing
total production costs (TPC) against process constraints.
First, the process planning (PP) problem is represented as
a directed graph that consists of nodes, directed/
undirected arcs, and OR relations. The ant colony finds
the shortest path on the graph to achieve the optimal so-
lution. Second, a two-stage ACO approach is introduced
to deal with the PP problem based on the graph. In the
first stage, the ant colony is guided by pheromones and
heuristic information of the nodes on the graph, which
will be reduced to a simple weighed graph consisting of
the favorable nodes and the directed/undirected arcs
linking those nodes. In the second stage, the ant colony
is guided by heuristic information of nodes and phero-
mones of arcs on the simple graph to achieve the optimal
solution. Third, the simulation experiments for two parts
are conducted to illustrate the application of the two-stage
ACO approach to the PP problem. The compared results
with the results of other algorithms verify the feasibility
and competitiveness of the proposed approach.

Keywords Process planning . Ant colony optimization .

Directed graph . Two-stage

1 Introduction

In a computer-aided process planning (CAPP) system, two
activities must be performed: (1) recognizing features and
(2) selecting and sequencingmachining operations [1–3]. This
paper focuses on the second activity, which is modeled as a PP
problem. For producing a part, the process planning includes
the determination of the machines, cutting tools, and set-ups
for each feature; the selection of the machining operations;
and sequencing of the machining operations against process
constraints. Due to the complexity of the part structures and
the variety of machine shop situations, the PP problem is
difficult to solve. Many approaches have been proposed to
achieve the optimal process plan in the past two decades. In
this paper, an innovative approach based on the two-stage
ACO approach is proposed to optimize the process plan.
The contribution of this article is described as follows:

(1) The PP problem is represented as a directed graph. The
graph consists of nodes, directed/undirected arcs, andOR
relations. The nodes represent all of the alternative oper-
ations (AOs) of each feature. The directed arcs denote the
precedence constraints among the operations. The undi-
rected arcs denote the possible visited path for the ant
colony. The OR relations denote the alternation of oper-
ations affiliated with the same manufacturing feature.

(2) An innovative approach based on the two-stage ACO
approach is used to optimize the process plan based on
the directed graph. In Stage 1, the nodes are the phero-
mone carriers. The ant colony is guided by the phero-
mones and heuristic information of the nodes to form a
set of favorable nodes. The initial graph will be reduced
to a simple weighted graph consisting of the favorable
nodes and the directed/undirected arcs among those
nodes after Stage 1. In stage 2, directed/undirected arcs
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are the pheromone carriers. The ant colony is guided by
heuristic information of the nodes and pheromones of the
arcs to achieve the optimal process plan with the objec-
tive of minimizing the TPC.

2 Previous related works

The application of graph theory in the PP problem can be
traced back to the research by Prabhu et al. r [4]. In their
research, a hybrid unsupervised learning approach was pro-
posed to solve the PP problem. Several graph-based algo-
rithms are incorporated into the unsupervised learning ap-
proach to obtain the optimal tool sequence for the determined
features sequence in a set-up that minimizes the number of
tool changes. Lin et al. [5] proposed a graph-based search
strategy to sequence the machining operations for a prismatic
part with process constraints. The graph is constructed in ref-
erence with alternative machining operations for the features.
According to the predefined precedence constraints, the high-
quality process plan is generated using the graph-search strat-
egy. Huang et al. [6] combined graph theory accompanied by
constraints matrix into the traditional GA. In their approach,
the precedence constraints among operations are formulated
in an operation precedence graph (OPG). The population is
initialized by an elaborately designed topologic sort approach
based on the OPG.

The ACO approach, proposed by Dorigo et al. [7], is a new
swarm intelligence approach to solve the NP-complete com-
binatorial optimization problem. The ACO approach has been
applied to deal with many optimization problems, such as
traveling salesman problem (TSP) [7], vehicle routing prob-
lem (VRP) [8, 9], hole-making process optimization [10, 11],
assembly line balancing problem [12, 13], the jog shop
scheduling problem [14, 15], etc.

The application of ACO to the PP problem was first intro-
duced by Krishna and Mallikarjuna [16]. Krishna and
Mallikarjuna proposed a novel approach to apply the ant col-
ony algorithm as an efficient search technique for the PP prob-
lem by considering various feasibility constraints. In their ap-
proach, a relative cost matrix is generated, taking into consid-
eration the change of machine tools, cutting tools, and ma-
chining parameters. This search considered the potential of
ACO for use in the PP problem simply. Some deep discussion
is lacking, for example, application of the ACO considering
the complex machining environments, the analysis of the
ACO in a large-scale PP problem, etc. Liu et al. [17] converted
the PP problem into a constraint-based TSP using a weight
graph and constructed a mathematical model for the PP prob-
lem against the process constraints. The simulation results for
the complex part are satisfactory, but a detailed explanation for
the adjusted strategy of the ACO parameters is expected to
convince the simulation results.

In addition to the graph theory and ACO, many op-
timization approaches have been developed to solve the
PP problem, such as the genetic algorithm (GA) [2, 18],
the tabu search (TS) approach [3, 19], the simulated
annealing (SA) algorithm [1, 20], particle swarm opti-
mization (PSO) [21, 22], artificial neural networks [23],
and artificial immune system (AIS) [24].

Zhang et al. [18] improved various GAs to solve the PP
problem, for example, a coding strategy based on natural
numbers, selection operators based on the elitist model
and tournament selection, and the use of nonconforming
sequential searching crossover operators. Li et al. [3] pro-
posed a tabu search-based approach to optimize the pro-
cess plan. In their approach, process constraints among
features are mapped to precedence constraints among op-
erations according to their effects on the process plan. Li
et al. [1] developed a hybrid approach integrating GA and
SA approach to optimize process plans for prismatic parts.
The combination of machine costs, cutting tool costs, ma-
chine change costs, tool changes, and setup costs was
used to evaluate the performance of the process planning.
Li et al. [22] proposed a novel PSO algorithm to optimize
the process plan. Efficient encoding, updating, and ran-
dom search methods have been developed to enhance
the performance of the approach. Chan et al. [24] modeled
the machine selection and operation allocation in a flexi-
ble manufacturing system and solved the process problem
using an AIS-based fuzzy goal-programming approach.

Although significant achievements have been got for
solving the PP problem, the potential for further im-
provement still remains [25, 26]. For example, a more
flexible mathematical modeling for PP problem must be
developed and the corresponding handling mechanism
ought to be improved to suit the flexible process plan;
additionally, some practical manufacturing environments
should be considered.

Fig. 1 An example part
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3 Graph-based process planning problem

In CAPP, a part is described by its manufacturing features,
such as holes, slots, etc., which can be recognized by analyz-
ing the geometrical and topological information of the part,
such as the position, dimensions, tolerance, surface finish, etc.
A feature may be mapped to a set of operations (OP), which
consists of one or several alternative operations [2]. An AO
refers to a combination of machine (M), tool (T), and tool
approach direction (TAD). As a result, for a part, the process
plan is a set of operations, which is represented as follows:

PP ¼ OP1;OP2; ⋅⋅⋅;OPif g ð1Þ

OPi is the ith operation of the part, which is defined as
follows:

OPi ¼ AOi1;AOi2; ⋅⋅⋅;AOi j; ⋅⋅⋅;AOin

� � ð2Þ

AOij is the jth alternative operation of the ith operation of
the part, which is defined as follows:

AOi j ¼ Mij; Ti j; TADi j

� � ð3Þ

Mij, Tij, and TADij are the indices of the machine, tool, and
TAD, respectively, by which the alternative operation AOij is
executed.

In process planning for a part, two tasks must be performed,
namely, selecting the operations and sequencing the operations.
Due to the geometrical and manufacturing constraints among
the manufacturing features, the operation sequencing must take
into account the precedence constraints between operations.
Many process constraints have been proposed [1–3, 7]. In gen-
eral, these precedence constraints are as follows [17]:

(1) Primary surfaces prior to the secondary surface.
(2) Rough machining operation prior to finish machining

operation.
(3) Datum surfaces prior to its associated features.
(4) Some good manufacturing practices.

To construct a process plan using the ACO approach,
the process planning problem must be visualized and
represented as a graph. The graph is denoted as
D=(O, C, R), where O is a set of nodes, C is a set
of directed/undirected arcs, and R is a set of OR rela-
tions. The node set of O represents the alternative op-
erations AOij. C represents the precedence constraints
among the operations and the possible visited path for
the ant colony. R represents the alternation of the oper-
ation associated with the same manufacturing feature.

The example part in Fig. 1 is used to illustrate the
graph, which consists of six features and nine
operations.

The operation selection for the example in Fig. 1 is
listed in Table 1. The precedence constraints for the
example are listed in Table 2.

Figure 2 shows the graph for the example part. The
set of nodes includes 17 nodes, O1–O17, which are de-
scribed in Table 3. For node O11, there are 16 arcs
connected with the other nodes. The eight undirected
arcs are connected with nodes O1, O2, O12, O13, O14,
O15, O16, and O17. The other eight directed arcs are
connected with nodes O3, O4, O5, O6, O7, O8, O9, and
O10. The relations of OR denote the alternation of the
operations. For the relation of OR 1 in Fig. 2, O2 has to
be neglected if O1 is chosen.

Table 1 Operation selection for the example part

Feathers Operations Machines Tools TADs Remarks

F1 Milling (OP1) M1 T1 +X, +Z M1: Vertical milling machine
M2: Drilling press

T1: milling cutter

F2 Drilling (OP2) M1,M2 T2 −Z T2: drill1

Tapping (OP3) T3 T3: tapping tool

F3 Drilling (OP4) M1,M2 T4 −X T4: drill

Reaming (OP5) T5 T5: reamer1

F4 Milling (OP6) M1 T6 +Z T6: Slot cutter

F5 Milling (OP7) M1 T7 −Z, +Y T7: chamfer cutter

F6 Drilling (OP8) M1,M2 T8 +X T8: drill3

Reaming (OP9) T9 T9: reamer2

Table 2 Precedence constraints between operations

Features Operations Precedence constraint description Hard or Soft

F1 OP1 OP1 is prior to OP2 and OP3. Hard

OP1 is prior to OP4 and OP5. Soft

F2 OP2 OP2 is prior to OP3. Hard

F3 OP4 OP4 is prior to OP5. Hard

OP4, OP5 OP4 and OP5 are prior to OP6. Hard

F6 OP8 OP8 is prior to OP9. Hard

OP8, OP9 OP8 and OP9 are prior to OP7. Hard

Int J Adv Manuf Technol (2015) 80:839–850 841



While applying the ACO in the process planning
using the graph, the ant colony will be placed on the
initial node visited by the ant colony first. The initial
node determines which operation can be executed first.
For the graph in Fig. 2, the nodes O1, O2, O14, and O15

are likely to be selected as the initial source node be-
cause operations OP1 and OP8 have no precedence op-
erations. To facilitate the execution of ACO in process
planning, a dummy node Ob acting as the initial node is
added to connect the possibly executed operations first
in the graph. The initial node Ob is used to connect
nodes O1, O2, O14, and O15.

4 Process plan evaluation criterion

Many process planning evaluation criteria have been pro-
posed in the past literature. The criterion of minimum
production cost is generally used. The production cost
evaluating process plans are composed of six factors: ma-
chine processing cost (MC), tool processing cost (TC),
machine change cost (MCC), tool change cost (TCC),
set-up cost (SCC), and additional penalty cost (APC)
[1–3, 7, 17]. The calculation procedures of these cost
factors are described in detail below.

1) Total machine cost (TMC)

TMC ¼
Xn

i¼1

MCi ð4Þ

where MCi is the machine cost of the ith machine for an
operation and n is the number of operations.
2) Total tool cost

TTC ¼
Xn

i¼1

TCi ð5Þ

where TCi is the tool cost of the ith tool.
3) Total machine change cost

TMCC ¼ MCC*NMC ð6Þ

where MCC is considered to be the same for each machine
change, and NMC is the number of machine changes, which
can be calculated using Eq. (7) and Eq. (8).

NMC ¼
Xn−1
i¼1

Ω1 Miþ1;Mið Þ ð7Þ

Ω1 x; yð Þ ¼ 1 x≠ y
0 x ¼ y

�
ð8Þ

where Mi is the machine for the ith operation.
4. Total tool change cost

TTCC ¼ TCC*NTC ð9Þ

Table 3 Description of the alternative operations

Nodes Operation Alternative operation Description

O1 OP1 AO11 {M1,T1,+X}

O2 AO12 {M1,T1,+Z}

O3 OP2 AO21 {M1,T2,–Z}

O4 AO22 {M2,T2,–Z}

O5 OP3 AO31 {M1,T3,–Z}

O6 AO32 {M2,T3,–Z}

O7 OP4 AO41 {M1,T4,–X}

O8 AO42 {M2,T4,–X}

O9 OP5 AO51 {M1,T5,–X}

O10 AO52 {M2,T5,–X}

O11 OP6 AO61 {M1,T6,+Z}

O12 OP7 AO71 {M1,T7,–Z}

O13 AO72 {M1,T7,+Y}

O14 OP8 AO81 {M1,T8,+X}

O15 AO82 {M2,T8,+X}

O16 OP9 AO91 {M1,T9,+X}

O17 AO92 {M2,T9,+X}

O5

O6

O2O1

O3

O4

O8

O7

O10 O9

O13

O12

O15

O14

O17

O16

O11

OR4

OR3

OR2

OR1

OR9

OR8

OR7

OR5

Directed arc representing the precedence 
constraints between operations

Undirected arc representing the possible 
paths between operations

Ob

Dummy node

Fig. 2 Graph for the example part
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where TCC is considered to be the same for each tool change,
and NTC is the number of tool changes, which can be calcu-
lated using Eq. (8), Eq. (10) and Eq. (11).

NTC ¼
Xn−1
i¼1

Ω2 Ω1 Miþ1;Mið Þ;Ω1 Tiþ1; Tið Þð Þ ð10Þ

Ω2 x; yð Þ ¼ 0 x ¼ y ¼ 0
1 otherwise

�
ð11Þ

where Ti is the tool for the ith operation.
5) Total set-up cost

TSCC ¼ SCC*NS ð12Þ
where the SCC is considered to be the same for each set-up,
and NS is the number of set-ups, which can be calculated
using Eq. (13) and Eq. (14).

NS ¼ NSCþ 1 ð13Þ

(a) (b)

0

Fig. 3 Two-stage ACO approach
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NSC ¼
Xn−1
i¼1

Ω2 Ω1 Miþ1;Mið Þ;Ω1 TADiþ1;TADiið Þð Þ ð14Þ

where TADi is the TAD for the ith operation.
6) Total additional penalty cost

TAPC ¼ APC*NPC ð15Þ
where APC is the fixed penalty cost and NPC is the number of
violating constraints, which can be calculated using Eq. (16)
and Eq. (17).

NPC ¼
Xn−1
i¼1

Xn

j¼iþ1

Ω3 OPi;OPj

� � ð16Þ

Ω3 x; yð Þ ¼ 1 The sequence of x and y operations violates constraints
0 The sequence of x and y operations meets constraints

�

ð17Þ

The definitions of machine change, tool change, and setup
change have been previously described in detail [1, 3]. In this
paper, the combination of TWC, TTC, TMCC, TTCC, TSCC,
and TAPC will be used as the objective of the process plan-
ning problem, which can be defined as TPC, as calculated by
Eq. (18).

TPC ¼ w1*TMC þ w2*TTCþ w3*TMCCþ w4*TSCC
þ w5*TTCCþ w6*TAPC

ð18Þ

In Eq. (18), w1, w2, w3, w4, w5, and w6 are the weights of
TMC, TTC, TMCC, TTCC, TSCC, and TAPC, respectively,
the value of which is limited to {0, 1}. These weights can be
assigned by referring to the active situations; this approach

(a) Simple graph with reduced nodes after Stage 1 (b) Final visited path

O11

O5

O1

O16

O12

Ob Dummy node

O7

O9

O3

O14

O11

O7

O16

O14

O12

Dummy node

O1

O3

O5

O9

Fig. 4 Disjunctive graph and ant-visited path in stage 2

Table 4 Definitions of symbols

Symbol Meaning

K Number of ants

k Index of ant, k∈[1,K]
u Source node

v Destination node

τ Pheromone

η Heuristic information

α Relative weight of pheromone τuv
β Relative weight of heuristic information ηuv
ρ Pheromone evaporation rate

E Algorithm constant to determine ηuv
Q Algorithm constant to determine Δτ

τ0 Initial value of the pheromone

Sk Set of nodes allowed at the next step by ant k.

Vk Set of nodes visited by ant k

Pk Process plan achieved by ant k

Lk TPC achieved by ant k

Pi Iteration-best process plan

Vi Set of nodes generated by the iteration-best process plan

Li Iteration-best TPC

Ve Final set of nodes

Pe Final process plan

Mite Maximum number of iterations

Nite Number of iteration
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provides the flexibility to customize the optimization objec-
tive function according to various situations [3]. w6 can be
used to switch the penalty function of the “soft” constraints
on or off. If no “soft” constraints are considered, it is assigned
as 0. Otherwise, it is 1.

5 Two-stage ACO approach

As described in Section 3, selecting the operations and sequenc-
ing the operations must be performed in the PP problem. Ac-
cordingly, the two-stage ACO approach in this paper is used to
perform the operation selection and sequencing process in two
consecutive stages. The first stage corresponds to operation se-
lection. The ant colony is deployed on the initial node of the
graph, and these ants traverse the necessary nodes to identify the
set of preferred nodes with the smaller TPC. The character of
this stage is that the nodes of the graph are pheromone carriers.
The second stage corresponds to operation sequencing; the un-
selected nodes in the first stage will be ignored completely in
subsequent ant visits, and the ants will deposit pheromones at
the arcs, with the aim of identifying the most favorable visited
path. The arcs among the nodes are pheromone carriers in this
stage, which is different from the first stage. The procedures of
the two stages are outlined in Fig. 3, and the explanations for the
symbols used are listed in Table 4.

5.1 Stage 1—operation selection

Ant colonyK is deployed at the dummy start nodeOb initially.
The ants traverse all of the necessary nodes in accordance with
the precedence constraints until all of the required operations
are completed and a process plan is generated. Due to the
alternative operations, not all of the nodes in the weight graph
must be visited by the ants. After a node is visited by an ant, all
of the alternative nodes belonging to the same operation will
be ignored. In this stage, the nodes of the weight graph are the
pheromone carriers. To choose the next node v among all of
the possible operation nodes connected to the current node u,
an ant k is guided by a pheromone amount τv and heuristic
information ηv. The heuristic information ηv is calculated as
follows:

ηv ¼
E

PC
ð19Þ

where E is a positive constant, and PC is the processing cost of
the selected node operation, which is calculated as follows:

PC ¼ w1*MCþ w2*TC ð20Þ

Eq. (19) shows that the node with a smaller processing cost
has a higher information value, that is, it is more attractive to
the ants.

The pheromone amount is initially set at τ0 on every node.
The pheromone intensity on the nodes is dynamically updated
after the ant colony has completed the process plans. To avoid
unlimited accumulation of the pheromone, the pheromone
also evaporates at every round of iterations. The pheromone
amount τv can be given as follows:

τ v ¼ 1� ρð Þ*τ v þΔτ kv ð21Þ

where ρ is an evaporation coefficient of the pheromone
on the destination node v. Δτv

k is the quantity of the
pheromone increments on the node v generated by the
ant k after each iteration. The amount of pheromone
deposited on the node v by an ant k is proportional to
a respective Lk. The process plans with smaller Lk will
accumulate a greater amount of pheromone on their cor-
responding nodes. Δτv

k can be given as follows:

Δτ kv ¼
Q

Lk
if ant k passes the node v

0 otherwise

(
ð22Þ

where Q is a positive constant. Lk is the TPC of the process
plan generated by ant k.

The heuristic information ηv and the pheromone amount τv
determine the probability of moving from one node to another
node for an ant. The greater the pheromone amount and the
heuristic information on the nodes, the higher is the selective
probability. For ant k, the selective probability pv

k from the
source node u to the destination node v can be calculated as
follows:

pkv ¼
τ v½ �α ηv½ �βX

w∈Sk

τw½ �α ηw½ �β
v∈Sk

0 v∉Sk

8>><
>>: ð23Þ

where α and β denote the weighting parameters controlling
the relative importance of the pheromone amount and the
heuristic information, respectively.

Table 5 Cost indices for the
example part MC TC MCC SCC TCC APC

M1 M2 T1 T2 T3 T4 T5 T6 T7 T8 T9

40 10 10 3 7 3 8 10 10 3 8 300 60 20 200
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5.2 Stage 2—operation sequencing

If the set of node Ve is determined after stage 1, then the ants
will only be allowed to travel among these nodes. Those nodes
that were not selected in stage 1 will be ignored in Stage 2. In
contrast to stage 1, the arcs of the weight graph are the pher-
omone carriers in stage 2. All of the pheromone values on the
arcs (u, v) that involve those unselected processes would be set
to 0.

For the example part in Fig. 1, after stage 1, the graph in
Fig. 2 is effectively reduced to a simple graph depicted in
Fig. 4a, which contains only the nodes included in set Ve.
The ants must visit all of the nodes on the simple graph along
the arcs connected to each pair of nodes. Thus, the ants deposit
pheromones on the arcs of the graph. The transition probabil-
ity from node u to v for ant k is given as follows:

pkuv ¼
τuv½ �α ηv½ �βX

w∈Sk

τuw½ �α ηw½ �β
v∈Sk

0 v∉Sk

8>><
>>: ð24Þ

The heuristic information ηv is calculated using Eq. (19)
and Eq. (20). The pheromone amount τuv on the arcs (u, v)
can be given as follows:

τuv ¼ 1� ρð Þ*τuv þΔτ kuv ð25Þ

Δτ kuv ¼
Q

Lk
if ant k uses the arc u; vð Þ in its tour

0 otherwise

(
ð26Þ

6 Experiments and results

Two experiments were conducted to illustrate and validate the
feasibility of the two-stage ACO approach. In the first exper-
iment, a walk-through example is used to illustrate the two-
stage ACO approach. The second experiment was conducted
to evaluate the performance of the two-stage ACO approach.
Some computational results for two different parts under dif-
ferent conditions are used to compare this approach with typ-
ical ACO, TS, GA, and SA methods.

6.1 Walk-through example

This paper considers the example part in Fig. 1 to illustrate the
two-stage ACO approach. All of the cost indices are presented
in Table 5, and it is assumed that all of the machines and tools
are available, namelyw1–w6 in Eq. (18) and Eq. (20) are set to 1.

In stage 1, the ant colony travels freely on the graph. More
pheromones will be accumulated on the favorable nodes for the
ant colony. The unfavorable nodes or the alternative operation
nodes will be eliminated from the graph. While the ant colony

Fig. 5 A sample part with 14
features and 14 operations—part
1

Table 6 Optimal process plans for the example part in Fig. 1

Node O1 O14 O16 O7 O9 O11 O12 O3 O5

Operation OP1 OP8 OP9 OP4 OP5 OP6 OP7 OP2 OP3
Machine M1 M1 M1 M1 M1 M1 M1 M1 M1

Tool T1 T8 T9 T4 T5 T6 T7 T2 T3

TAD +X +X +X −X −X +Z −Z −Z −Z
NMC=0, NCC=8, NSC=3. TMC=360, TTC=62, TMCC=0, TTCC=160, TSCC=240, TPC=822.
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finishes the visit of all of the necessary nodes, the graph in Fig. 2
will be reduced to a simple graph, as shown in Fig. 4a.

In stage 2, the ant colony travels through the nodes and arcs
that are still remaining, as shown in Fig. 4a. The pheromone
amount on the arcs and the heuristic information on the nodes
will guide the ants to visit all of the nodes. The final visited
path generated by the ant colony represents the process plan-
ning result with the minimum TPC. Based on the simple graph

in Fig. 4a, the final visited path is shown in Fig. 4b, and the
corresponding process plan is presented in Table 6.

6.2 Comparative experiments

Two prismatic parts are used for the simulated experiments.
The first prismatic part (part 1) is first introduced by Zhang
et al. [2], which consists of 14 features and 14 operations. The

Fig. 6 A sample part with 14 features and 20 operations—part 2
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detail is illustrated in Fig. 5. The second prismatic part (part 2)
is first introduced Li et al. [1], which consists of 14 features
and 20 operations. The detail is illustrated in Fig. 6. The ma-
chining information and precedence constraints of part 1 and
part 2 are illustrated in detail in the work of Li et al. [3]

Two conditions are used to test the proposed approach on
part 1 in Fig. 5:

(1) All machines and tools are available, and w1–w6 in
Eq. (18) and Eq. (20) are set to 1.

(2) All machines and tools are available, and w2=w5=0,
w1=w3=w4=w6=1.

For part 1, 20 trials were independently carried out to eval-
uate the two-stage ACO approach under conditions (1) and
(2). Experimental observation has demonstrated that K=25,
ρ=0.75, α=1, β=1, E=50, Q=2000, τ0=1, and Mite=200
are the best choices of these parameters. The best process
plans generated under conditions (1) and (2) are listed in
Table 7.

Comparison of the results with those of the GA, the SA
approach by Li et al. [1], the TS by Li et al. [3], and the ACO
by Liu et al. [17] are presented in Table 8.

Under condition (1), among 20 trial results, TPC (1328.0)
occurs 18 times, TPC (1348) occurs 1 time, and TPC (1343)
occurs 1 time. The mean TPC (1329.0) is the best results
among all of five algorithms. Under condition (2), TPC
(1170.0) occurs 20 times in 20 trials, which is better than the
performances of TS [3], SA, and GA [1] and is the same as the
performance of ACO [17].

In addition to the above two conditions, an additional con-
dition is used to test the two-stage ACO approach for part 2 in
Fig. 6, which is described as follows:

(3) Machine M2 and tool T7 are down, w2=w5=0, w1=
w3=w4=w6=1.

For part 2, 20 trials were independently carried out to eval-
uate the proposed approach under conditions (1), (2), and (3).
Experimental observation has demonstrated that K=40, ρ=
0.75, α=1, β=1, E=100, Q=3000, τ0=1, and Mite=200 are
the best choices of these parameters. The best process plans
generated under conditions (1), (2), and (3) are listed in Table 9.
The comparison of the results of the proposed approach with
those of the GA, the SA approach by Li et al. [1], the TS by Li
et al. [3], and the HGA by Huang et al. [6] are presented in
Table 10.

Under condition (1), compared to the other approaches, the
improved performance of the two-stage approach, with a min-
imum TPC (2525.0), was demonstrated. In addition, all of the
costs, including mean TPC (2552.4), maximum TPC (2557),
andminimumTPC (2525.0), are better than the costs achieved
by the other four algorithms. Under condition (2), a lower
TPC (2090.0) was found using the two-stage ACO approach
compared to the other approaches. The maximum TPC
(2380.0) is the same as the result of the SA and is superior
to the results of the TS and GA. Under condition (3), the
minimum TPC (2590) is inferior to the result of the TS and

Table 7 The best process plans
for part 1 corresponding to
conditions (1) and (2)

Condition (1)

Operation 6 1 7 9 12 5 3 4 8 10 11 13 14 2

Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Tool 2 1 1 1 1 5 5 5 5 5 5 5 1 8

TAD −Z −Z −Z −Z −Z −Z +Y +Y +X −Y −Y −Y −Y −Y
NMC=0, NTC=4, NSC=3, NPC=1, TMCC=0, TTCC=60, TSCC=480, TMC=490, TTC=98, TAPC =200,
TPC=1328

Condition (2)

Operation 6 7 12 1 9 2 5 13 8 3 4 10 11 14

Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Tool 2 1 1 1 1 8 5 5 5 5 5 5 5 1

TAD −Z −Z −Z −Z −Z −Z −Z −Z +X +Y +Y −Y −Y −Y
NMC=0, NSC=3, NPC=1, TMCC=0, TSCC=480, TMC=490, TAPC=200, TPC=1170

Table 8 Comparison of the results of the proposed approach to those of
other algorithms for part 1

Condition Proposed approach ACO TS SA GA

(1)

Mean 1329.0 1329.5 1342.6 1373.5 1611.0

Maximum 1348.0 1343.0 1378.0 1518.0 1778.0

Minimum 1328.0 1328.0 1328.0 1328.0 1478.0

(2)

Mean 1170.0 1170.0 1194.0 1217.0 1482.0

Maximum 1170.0 1170.0 1290.0 1345.0 1650.0

Minimum 1170.0 1170.0 1170.0 1170.0 1410.0
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is the same as the result of the SA. The mean TPC (2600.8)
using the proposed approach is better than the results of the
TS, SA, and GA. In general, the performance of the proposed
approach for part 2 is better than the performances of the other
four algorithms.

7 Conclusions

A two-stage ACO approach was proposed to solve the PP
problem for prismatic parts. In the proposed approach, a
directed graph is used to represent the PP problem. The
graph consists of nodes, directed/undirected arcs, and OR

relations. Artificial ants travel freely on the graph to con-
struct process plans in two stages. The operation nodes are
selected in the first stage, which reduces the graph to a
simple graph. In the second stage, the selected operations
on the simple graph are sequenced to generate the feasible
process plans. As evident from the experimental results, the
two-stage approach is able to provide a feasible solution
method for the PP problem. For the different complex pris-
matic parts considered, the approach can effectively generate
several optimal process plans with the same minimal TPC.
In comparison with the other algorithm, the two-stage ACO
approach was found to have better performance on some
aspects under the same conditions.

The results of this paper illustrated the application of
a two-stage ACO in the PP problem. On the basis of
the simulation results, the two-stage ACO approach was
found to be competitive with the other algorithms con-
sidered. However, some improvements to this approach
should be pursued in future studies. First, due to the
complexity of the setting of parameters for the ACO
approach, a detailed consideration of the simplification
of the parameters setting process for the ACO approach
should be performed, and tests for large-scale PP prob-
lems should be conducted to verify the feasibility of
this approach. Furthermore, a self-adjustment mecha-
nism on those parameter values could be made to re-
duce the amount of time spent on tuning the experi-
ments. Second, more appropriate criteria should be used
to evaluate the process plans. For example, considering
the effect of carbon dioxide pollution on the environ-
ment caused by the machining process, minimization of

Table 9 The best process plans corresponding to conditions (1), (2), and (3)

Condition (1)

Operation 1 3 5 6 2 18 11 12 13 17 7 8 9 19 14 20 10 4 15 16

Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1

Tool 6 6 6 6 6 6 7 3 9 7 7 2 9 9 10 10 10 2 1 5

TAD +Z +X +X –Z –Z –Z –Z –Z –Z –X –a –a –a +Z –Z +Z –a –Z –Z –Z

NMC=2, NTC=10, NSC=10, TMCC=320, TTCC=200, TSCC=1000, TMC=770, TTC=235 TPC=2525

Condition (2)

Operation 1 2 18 11 6 12 13 19 17 3 5 7 8 9 10 20 14 4 15 16

Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1

Tool 7 7 7 7 7 3 9 9 7 7 7 7 3 9 10 10 10 2 1 5

TAD +Z –Z –Z –Z –Z –Z –Z +Z –X +X +X –a –a –a –a +Z –Z –Z –Z –Z

NMC=2, NSC=8, TMCC=320, TSCC=1000, TMC=770, TPC=2090

Condition (3)

Operation 1 6 2 5 11 12 13 14 18 17 7 8 9 10 19 20 3 4 15 16

Machine 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1

Tool 6 6 6 6 8 2 9 10 6 8 8 2 9 10 9 10 6 2 1 5

TAD +Z –Z –Z –Z –Z –Z –Z –Z –X –X –a –a –a –a +Z +Z +X –Z –Z –Z

NMC=1, NSC=6, TMCC=160, TSCC=700, TMC=1730, TPC=2590

Table 10 Comparison of the results of the proposed approach to those
of other algorithms for Part 2

Condition Proposed approach HGA TS SA GA

(1)

Mean 2552.4 – 2609.6 2668.5 2796.0

Maximum 2557.0 – 2690.0 2829.0 2885.0

Minimum 2525.0 2527.0 2527.0 2535.0 2667.0

(2)

Mean 2120.5 – 2208.0 2287.0 2370.0

Maximum 2380.0 – 2390.0 2380.0 2580.0

Minimum 2090.0 2120.0 2120.0 2120.0 2220.0

(3)

Mean 2600.8 – 2630.0 2630.0 2705.0

Maximum 2740.0 – 2740.0 2740.0 2840.0

Minimum 2590.0 – 2580.0 2590.0 2600.0
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the amount of carbon emissions should be used to eval-
uate the process plans.
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