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Abstract Process route planning selects and defines the
whole machining process involved in transforming
workblanks into end products. Our research finds that the
decisions of processing methods, machines, cutting tools,
and sequence of process stages during process route planning
have significant impact on carbon emissions of the following
manufacture processes. Firstly, a carbon emission and effi-
ciency estimation model of process route is established to
achieve the goal of reducing carbon emissions as well as in-
creasing efficiency based on the machining features analyz-
ing. Then, the mathematical model to express process route
optimization problem is developed with objectives on mini-
mizing the total carbon emission and total process time. A
non-dominated sorting genetic algorithm is introduced to
solve this problem, and a simulation study on amachine motor
seat is conducted in order to verify the feasibility and practi-
cability of the proposed model. The result of the experiment

shows that our model can achieve the goal of reducing emis-
sion as well as maintaining system efficiency.

Keywords Process route planning . High efficiency and low
carbon .Multi-objective optimization . Genetic algorithm

1 Introduction

In the twenty-first century, resources and environment prob-
lems, with an increasingly worsening degree, become a seri-
ous threaten to the survival and development of society. Dur-
ing this critical time, an advanced manufacturing mode—
green manufacturing (GM)—which is suitable for a sustain-
able development strategic is presented.With GM thought, the
ultimate goal in manufacturing is reducing and minimizing
environmental impact and resource consumption during a
product life cycle, which includes design, synthesis, process-
ing, packaging, transportation, and the use of products in con-
tinuous or discrete manufacturing industries [1, 2].

In our research, the goal of process route planning is to
determine the detailed manufacturing requirements for
transforming workblanks into specific end products with less
carbon emission during the whole machining process. During
process route planning, the processes and operations, together
with the necessary machining resources and parameters, are
determined with a major attention on carbon emission, as well
as efficiency, quality, and cost.

Process route planning has been extensively studied and
integrated with typical production environment, for example,
in the distributed manufacture [3] and shop manufacture sys-
tems [4, 5]. However, most of the existing research in this area
evaluates the process route based on one or more of the con-
ventional management goals, such as minimum number of
setups, shortest processing time, and minimum machining
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cost. With the development of low-carbon manufacturing, our
research finds that the decisions of processing methods, ma-
chines, cutting tools, and sequence of process stages during
process route planning have significant impact on carbon
emission of the whole machining process. Process route plan-
ning with low carbon emission objective is worth studying
while no research has begun on it yet.

In general, the planning problemmainly includes two parts:
the processing method selection and process stage sequenc-
ing. In the selection stage, each machine features should be
considered, so that one or several processing methods, involv-
ing the selection of machines, cutting tools, and tool approach
directions based on the feature geometry and available re-
sources can be determined [6]. In the view of low-carbon
manufacturing, during the selection, more factors related to
carbon emission should also be taken into account, for exam-
ple, the energy consumption of machines, the usage of cutting
fluids, and the usage and wear pattern of cutting tools. In the
sequencing stage, the sequence all process stages require for
the component is determined. The optimization decision must
complete the two parts simultaneously to achieve an optimal
or near-optimal process route against certain criteria. Howev-
er, with low carbon concept, our research present a low carbon
and high efficiency model, which aims to minimizing carbon
emission and maximizing efficiency of the whole machining
process.

This paper reports our research on optimizing process route
planning by considering carbon emission as well as efficiency.
Based on analyzing the machining features of the component,
we first establish a carbon emission and efficiency estimation
model of process route, through which the carbon emission of
typical processingmethod can be estimated in general. Then, a
mathematical model to express process route optimization
problem is developed with objectives to minimize the total
carbon emission and total process time. To solve this problem,
a non-dominated sorting genetic algorithm (NSGA-II) is in-
troduced. Furthermore, we conduct a simulation study on
making a machine motor seat to verify the feasibility and
practicability of the proposed model. The result of the exper-
iment shows that our model can achieve the goal of reducing
emission as well as maintaining system efficiency.

The paper is structured as follows. Section 2 reviews relat-
ed research. We present our model in Section 3. After the
introduction of our optimization algorithm in Section 4, we
describe the simulation case study in Section 5. The paper is
concluded with the discussion of our contribution and the
future research direction.

2 Literature reviews

Process route planning has been well studied in traditional
manufacture systems, and numerous approaches have been

proposed to obtain optimal or near-optimal solutions. With
respect to different evaluation criteria of process route plan-
ning problem, the existing research can be classified into the
following directions: research on cost factors, research on time
optimization, and research on other practical criteria.

The cost factors are most commonly used as evaluation
criteria in traditional process route planning optimization.
The machine cost, tool cost, machine change cost, tool change
cost, and setup change cost were proposed and used either
individually or collectively to evaluate the process route of
components and parts [7]. Ma et al. [8] described an approach
to model the constraints of process planning problems in a
concurrent manner. An algorithm based on simulated anneal-
ing was developed to search for the optimal solution, and the
cost factors were used flexibly as an objective function. Hua
et al. [9] presented a fuzzy logic neural network to determine
the priorities of alternative machining operations for each fea-
ture and use a genetic algorithm (GA) as a global search tech-
nology to obtain the global optimal solution for operation
sequencing optimization. Salehi et al. [10] divided a process
planning problem into two stages. At the first stage, the feasi-
ble sequences of operations were generated based on the anal-
ysis of constraints and using a GA. Then, at the detailed plan-
ning stage, GAwas used again to obtain the optimized oper-
ations sequence and the optimized selection of the machining
resources for each operation. Lian et al. [11] took various
flexibilities into consideration and employed an imperialist
competitive algorithm to minimize total weighted sum of
manufacturing costs in process planning optimization. Liu
et al. [12] mapped a process planning to a constraint-based
traveling salesman problem and implemented an ant colony
optimization algorithm to solve this problem.

Research integrating process planning with scheduling
evaluates the performance of process route optimization based
on time. Kim et al. [4] investigated the integration problem in
job shopmanufacturing systems. The two functions of process
planning and scheduling were interwoven target on minimize
makespan and mean flow time. Symbiotic evolutionary algo-
rithm (SEA) was presented to handle the combination optimi-
zation problem. Shao et al. [5] studied the same problem and
developed a new integration model with a modified GA-based
approach to facilitate the integration and optimization of the
two functions. Li et al. [13] systematically defined a set of
performance criteria based on time, including single or com-
bination of makespan, the balanced level of machine utiliza-
tion, job tardiness, and manufacturing cost. Based on these
criteria, some research optimized the process planning
problem by using particle swarm algorithm [14, 15],
ant colony optimization algorithms [16], and evolution-
ary algorithm [17].

Other criteria have also been presented to meet various
practical requirements. Li et al. [18] considered process route
planning in a dynamic workshop environment aimed to
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achieve the global lowest machining cost. Li et al. [3] studied
a process planning in distribute manufacture environment. To
achieve the highest efficiency, processing time and cost were
presented as optimization objectives, and GAwas adapted to
search the optimal or near-optimal process plan. Shin et al.
[19] addressed the process planning problem in flexible man-
ufacture system. Three objectives—balancing the machine
workload, minimizing part movements, and minimizing tool
changes—were taken into account, and a multi-objective SEA
was presented to solve multi-objective process planning
problem.

A review of the related work reveals that most of the
existing research focuses on process route planning problem
in conventional manufacture environment, with simple eval-
uation criteria like cost and time, endeavoring to improve
production efficiency. Process route planning in low-carbon
manufacture environment has not been fully investigated and
is in urgent need of exploitation and research. As far as we
know, our research is one of the early attempting to address the
process route planning problem with low carbon emission
concept. To evaluate the performances, we propose a new
framework model of carbon emission and efficiency, through
which the carbon emission and total processing time of the
process route can be analyzed and calculated.

3 The optimization model of process route planning

In this section, feature and machining elements are first intro-
duced to describe the process route planning problem. Then,
the framework of carbon emission and efficiency estimation
model is established in Section 3.2. In Section 3.3, the process
route planning problem is expressed in detail as a constraint
combinatorial optimization problem.

3.1 Feature element and machining element

Features are widely used to describe parts and components in
process route planning and optimization decision making. In
general, each component is composed of one or several basic
machining features, such as holes, faces, steps, and chamfers.
These features can be divided into two categories: the main
and the auxiliary features. The main features are used to build
the overall structure of the component that cannot be split
again in geometric topology, such as faces, excircles, and
holes. The auxiliary features are local geometric structure of
the main feature that modifies it in some extent, such as cham-
fers, keyways, and threads.

Each machining feature, as a standard shape, has a
uniform processing technique which contains a series of
process stages. Generally, for one process stage, there is
usually more than one processing method to choose. Pro-
cess route planning for components not only devotes to

deal with multiple features processing, but also faces the
challenge of selecting the processing methods and related
resources in multiple process stages, as shown in Fig. 1.
A component contains a series of machining features, each
of which has several process stages. In each process stage,
alternative processing methods with choice of variety pro-
cessing resources are provided, leading a high flexibility in
process route planning and optimization decision-making.

For the convenience of describing the process route plan-
ning problem here, we introduce the definition of feature ele-
ment and machining element first.

In a component, all the features constitute to a feature ele-
ment set F, where each feature is known as a feature element.
It can be written as:

F ¼ F1; F2;⋯Fi;⋯; Fnf g

Fi is the i
th feature of the component, and the total number

of feature elements is represented as n.
The core of a machining element is machining feature, with

related information during processing. In this paper, a machin-
ing element includes machining feature, process stage, pro-
cessing method, processing resource, and the clamping posi-
tion. It can be written as:

mei j ¼ Fi; S j;Pl;Ru;D
� �

where, Fi is the ith feature of the component; Sj is the jth

process stage of feature Fi; Pl is the l
th processing method of

Sj; and Ru is the uth processing resources of Sj and D is the
clamping position of Sj.

Generally, during the component machining process, the
same processing method can be achieved by using different
combinations of processing resources, such as machines, cut-
ting tools, fixtures, etc. Hence, Ru can also be perceived as a
set of processing resources. Let m={m1,m2,⋯,mo} represent
the set of machine tools, t={t1, t2,⋯, tp} the set of cutting
tools, f={f1,f2,⋯,fq} the set of fixtures, and o, p, and q the
total number of machines, cutting tools, and fixtures, respec-
tively. Ru can be expressed as Ru={ms,tk,fr}, where 1≤s≤o,
1≤k≤p, 1≤r≤q.

The machining element set of a component can be written
as:

ME ¼ me1;me2;⋯;menf g
where men is the set of all the machining elements of Fn.

For a component, a process route is a certain combina-
tion of all elements in machining element set. For exam-
ple, if a process route is written as x={mea1,mea2,⋯,mea '
n}, this process route x begins at mea1 and end with mea’n.
Hence, the process route planning problem can be sum-
marized as a problem of feature element analyzing and
machining element sequencing.
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3.2 Framework of carbon emission and efficiency
estimation model

A framework of carbon emission and efficiency estimation
model is developed to evaluate the performances of the pro-
cess route plans. This model includes categorizing and calcu-
lating the total carbon emission of a process route as well as
processing time and defines a set of functions to support the
relevant calculations.

3.2.1 Carbon emission function

In process route planning, minimizing the total carbon emis-
sion from all processing method during the whole machining
process is proposed as an objective. In order to provide a
simple and effective way to calculate the carbon emission,
the processing methods are classified into two categories: cold
and hot processing, and general calculation functions are pro-
posed to estimate the carbon emission during machining
process.

1. Carbon emission from cold processing

Cold processing is the major component of machining pro-
cess. Carbon emission from a cold processing method is gen-
erated by electric consumption, cutting fluid consumed, and
cutting tool wear and tearing [20]. For a cold processing meth-
od i, during processing, its carbon emission can be calculated
as:

CEi ¼ CEe
i þ CE f

i þ CEt
i ð1Þ

where CEi
e is the carbon emission from electric consumption

the processing machine during i; CEi
f is the carbon emission

from cutting fluid consumption in i; CEi
t is the carbon emis-

sion from cutting tools using and wearing in i. If i is the dry-
type processing that do not need cutting fluid during

processing, then the CEi
f is set as zero.

a. Calculation of CEi
e

Energy consumption of mechanical processing equip-
ment mainly includes cutting energy consumption and
auxiliary energy consumption. Cutting energy consumption
refers to the energy consumed by cutting tool driving
systems (main drive system and feed drive system); aux-
iliary energy consumption is the energy used to support
auxiliary systems (illuminating system, lubricating and
cooling system, and stamping system) in processing. CEi

e

can be calculated as:

CEe
i ¼ CEFelec � ECcut

i þ ECau
i

� � ð2Þ

where CEFelec is carbon emission factor of electrical ener-
gy, ECi

cut is cutting energy consumption of i, and can be
calculated via some mathematical methods, such as theo-
retical calculation method [20, 21], energy density method
[22], average process energy method [23], and so on. In
this paper, a simplified theoretical calculation method is
employed, and the cutting energy consumption can be
estimated as:

ECcut
i ¼ Punload

i þ Pcut
i þ Padd

i

� �� ti ð3Þ

where Pi
unload is the unload power, Pi

cut is the cutting pow-
er, and Pi

add is the additional load loss power during ma-
chine processing of method i. ti is the machining time.

ECi
au is auxiliary energy consumption of i and can be cal-

culated as:

ECau
i ¼ Pau

i � Ti ð4Þ

where Pi
au is the total power consumption of all auxiliary sys-

tem of the machine used for processing method i, and Ti is the
processing time (including machining time and idling time).

Fig. 1 The processing hierarchy
chart of mechanical parts

1184 Int J Adv Manuf Technol (2015) 80:1181–1196



b. Calculation of CEi
f

In general, different types of cutting fluid are required
based on processing method types. When the carbon emission
factors and change interval of each cutting fluids vary consid-
erably, it leads to a big difference in carbon emission when
varieties alternative processing methods are available. The
carbon emission of cutting fluid in processing method i can
be calculated as:

CE f
i ¼ Ti

T f
i

� CEFoil
i � CCi þ ACið Þ þ CEFwf

i � CCi þ ACið Þ
δi

� �

ð5Þ
where Ti

f is the cutting fluid change interval, which is set
between 1 month and 3 months in general. CEFi

oil is the car-
bon emission factor of cutting fluid,CEFi

wf is the carbon emis-
sion factor of cutting fluid disposal. CCi and ACi represent the
initial dosage and the additional consumption of cutting fluid.
δi is the concentration of cutting fluid.

c. Calculation of CEi
t

Similar as the cutting fluid we discuss above, the
cutting tools are diverse used in different kind of pro-
cessing method types. Even in the same processing
method, there is usually more than one kind of cutting
tool can be used. Thus, carbon emission generated from
cutting tools using and wearing appears different due to
different carbon emission factors and cutting tool
lifecycles. It can be calculated as:

CEt
i ¼

ti
T t
i

� CEFt
i �Wt

i ð6Þ

where Ti
t is the cutting tool’s lifecycle, CEFi

t is the car-
bon emission factor of the cutting tool and Wi

t is the
quality of the cutting tool.

2. Carbon emission from hot processing method

In the machining process, while cold working process
plays the major role, it also involves some hot processing
methods like thermal treatment, weld, and so on. Our research
only discusses the heat treatment here, which is common in
mechanical machining process. For metal heat treatment, the
most frequently used heating method is electric furnace
heating. The furnace runs using electricity as its main power
source to both generate heat and push the air through the
central heating system. The carbon emission generated can
be determined as:

CEht
j ¼ CEFelec � ECht

j ð7Þ

where j is the jth process stage that heating method is used.
CEFelec is the carbon emission factor of electric energy. ECj

ht

is the electric consumption of the jth process stage, which
can be estimated according to heat treatment process power
consumption quota:

ECht
j ¼ Nb � K j

1 � K j
2 � K j

3 � K j
4 � K j

5 ð8Þ

Nb is standard process power consumption of heat treat-
ment, and its value is set as 1.08×106 J/kg. K1

j , K2
j , K3

j , K4
j ,

K5
j respectively represent the technology conversion factor,

the heatingmode factor, the productionmode factor, the work-
piece material factor, and the load factor of process stage j.
The values of these factors are available in standards literature
[24].

Then, the calculation function of hot processing method
can be written as:

CEht
j ¼ CEFelec � Nb � K j

1 � K j
2 � K j

3 � K j
4 � K j

5 ð9Þ

To sum up, if a process route contains n process stages that
use the cold processing method and m process stages of hot
processingmethod, the total carbon emission of the machining
process can be calculated as:

CE ¼
Xn

i¼1

CEe
i þ CEc

i þ CEt
i

� �

þ
Xm
j¼1

CEFelec � ECht
j

� 	

¼
Xn

i¼1

CEFelec � Putidle þ Piti þ Pau
i T i

� �� þ Ti

T f
i

� CEFoil
i � CCi þ ACið Þ þ CEFwf

i � CCi þ ACið Þ
δi

� �

þ ti
T t
i

� CEFt
i �Wt

i




þ
Xm
j¼1

CEFelec � Nb � K j
1 � K j

2 � K j
3 � K j

4 � K j
5

� �

ð10Þ

3.2.2 High efficiency function

To ensure the efficiency of our low carbon processing model,
we take the total process time of process route as another
optimization objective, which include machining processing
time (MPT), machine change time (MCT), cutting tool change
time (TCT), and fixture change time (FCT). They are de-
scribed in detail as followed.
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1. Machining processing time (MPT)

Let ti be the processing time of the processing meth-
od used in stage i, and there are n process stages in the
process route. The total machining processing time can
be calculated as:

MPT ¼
Xn

i¼1

ti ð11Þ

2. Machine change time (MCT)

Machine change is defined as two adjacent process stages
used different machines. The total machine change time can
be calculated as:

MCT ¼ MCTI �
Xn−1
i¼1

Ψm Miþ1−Mið Þ ð12Þ

Ψm Miþ1−Mið Þ ¼ 1 if Mi≠Miþ1

0 if Mi ¼ Miþ1

�
ð13Þ

where MCTI is machine change time factor (time for one
change), Mi is the machine that the ith stage used. Ψm is the
machine change indicator.

3. Cutting tool change time (TCT)

Cutting tool change is two adjacent process stages use dif-
ferent cutting tools. It can be calculated as:

TCT ¼ TCTI �
Xn−1
i¼1

Ψ t T iþ1−Tið Þ ð14Þ

Ψ t T iþ1−Tið Þ ¼ 1 if T i≠Tiþ1

0 if T i ¼ Tiþ1

�
ð15Þ

where TCTI is cutting tool change time factor (time for one
change), Ti is the cutting tool that ith stage used. Ψt is the
cutting tool change indicator.

4. Fixture change time (FCT)

Fixture change is two adjacent process stages use different
fixtures. It can be calculated as:

FCT ¼ FCTI �
Xn−1
i¼1

Ψ f Fiþ1−Fið Þ ð16Þ

Ψ f Fiþ1−Fið Þ ¼ 1 if Fi≠Fiþ1

0 if Fi ¼ Fiþ1

�
ð17Þ

where FCTI is fixture change time factor (time for one
change), Fi is the fixture that i

th stages used. Ψf is the fixture
change indicator.

In sum, the total process time of process route can be cal-
culated as:

TPT ¼ MPT þMCT þ TCT þ FCT

¼
Xn

i¼1

ti þþMCTI �
Xn−1
i¼1

Ψm Miþ1−Mið Þ þ TCTI

�
Xn−1
i¼1

Ψ t T iþ1−Tið Þ þ FCTI

�
Xn−1
i¼1

Ψ f Fiþ1−Fið Þ ð18Þ

3.3 Process route optimization problem

3.3.1 Constraints

In process route planning, the geometr ic and
manufacturing constraints between manufacturing fea-
tures should be considered when determining or opti-
mizing the operation sequence. We summarized the re-
lated research by Li et al. [18] and Qiao et al. [25] and
divide these constraints into two mandatory categories:
rationality and optimal constraints. One optimal solution
of process route optimization must satisfy rationality
constraints and try to gratify optimal constraints. Thus,
the basic idea of process route planning optimization is
first to find out the set of all rationality process routes
that meet rationality constraints and then evaluate them
according to the optimal constraint standards in order to
find out the optimal or near-optimal process route of the
component.

Currently, rationality constraints in machining process in-
clude primary surfaces prior to secondary surfaces, rough ma-
chining operation prior to finish machining operation, planes
prior to its associated features, and clamping or supporting
faces should be machined later. Other constraints such as less
carbon emission, less machine change, less cutting tool
change, and less clamping times are considered as optimal
constraints.

3.3.2 Optimization problem

The process route planning problem is defined as machining
element scheduling optimization problem that aims to reduce
carbon emission and improve efficiency, with different re-
stricted conditions. Therefore, the process route planning
problem can be treated as a constraint combinatorial
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optimization problem mathematically which considers the or-
der of machining elements as optimization variable. The
mathematical model is:

min f xð Þ ¼ F CE; TPTð Þ
x ¼ mea1;mea2;⋯;mea0nð Þ

S: T :
hj xð Þ ¼ 0; j ¼ 1; 2; ⋯; l
gi xð Þ≤0; i ¼ 1; 2; ⋯; m
x∈Ω; Ω ¼ x1; x2;⋯; xn!ð Þ

8<
:

ð19Þ

where f(x) is the objective function and it refers to minimizing
the carbon emission and total processing time. hj(x), gi(x) are
the rationality constraints and the optimal constraints
discussed above. Ω is the set of all different sequence of ma-
chining elements of the component, and x is one particular
solution inΩ. Theoretically, there are n! elements in Ω, while
in fact the number is far less than n! because of the constraints
in process route planning.

4 Solving optimization model based on NSGA-II

GA is a heuristic algorithm that mimics the process of natural
selection, such as inheritance, crossover, mutation, and selec-
tion. It has been used in a variety of applications such as
tactical asset allocation [26], job scheduling [27], machine-
part assemble and disassemble [28, 29], and other engineering
fields. Among the existing GA, NSGA-II [30] is one of the
most prominent algorithms for solving multi-objective opti-
mization problems. In our research, this algorithm is
employed and adapted to solve the process route planning
optimization problem, with two objectives on minimizing

carbon emission and total processing time. To satisfy the ac-
tual problem proposed above, a representation scheme based
on machining feature, with corresponding genetic operations
and fitness evaluation functions, is introduced and described
in detail as follows. The key components and the evolution
process of the adapted NSGA-II are shown in Fig. 2.

4.1 Individual representation

Individual representation in NSGA-II should be natural, clear,
and not redundant. In this paper, a representation scheme
based on machining feature is presented. Each chromosome
represents a complete process route plan, including the se-
quence of process stages of all machining features, as well
as related selection of machines and cutting tools.

As shown in Fig. 3, a complete chromosome is composed
of three substrings, the process stages code substring Si, the
machine code substringMi, and the cutting tool code substring
Ti.. The length of each substrings are equal to the total number
of process stages of component i.

In Si, process stages are encoded by features; each gene X
stands for a process stage of feature X, and the process stage

Generate initial population via an encoding scheme

Evaluate population

Select a portion of the existing population via non-dominated

sorting and crowding distance for a new generation

Crossover and mutation

Decode and

output the

scheduling

scheme

N

Y
If the number of

generation reached?

Individual representation

Determination

Fitness evaluation

Genetic operations

Fig. 2 The flow chart of the evolution process

Si

Mi

Ti

1 2 2 3 4 4 3 3 5 6 1 1 5 2

1 1 1 1 3 3 2 2 1 1 2 2 3 3

7 7 7 7 1 1 1 2 2 1 1 2 7 7

Fig. 3 The encoding scheme of a chromosome

1 1 1 2 2 2 3 3 3 4 4 5 5 6

1 1 1 1 3 3 2 2 2 1 1 1 3 3

7 7 2 2 1 1 7 7 7 2 2 2 7 7

P2

P1

O1

1 1 1

1 1 1

7 7 2

1 2 2 3 4 4 3 3 5 6 1 1 5 2

1 1 1 1 3 3 2 2 1 1 2 2 3 3

7 7 7 7 1 1 1 2 2 1 1 2 7 7

Crossover Point Crossover Point

4 5 5 6

1 1 3 3

2 2 7 7

1

1

7

1 1 5

2 2 3

1 2 7

4

3

1

5 6

1 1

2 1

2 2 3

1 1 1

7 7 7

4 3 3

3 2 2

1 1 2

2

3

7

Fig. 4 Improved two-point crossover

1 1 1 2 2 2 3 3 3 4 4 5 5 6

1 1 1 1 3 3 2 2 2 1 1 1 3 3
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O1

1

1

7

3

2

7

4

1

2
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2

7
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Fig. 5 Mutation operation for the whole chromosome
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physically positioned earlier in string will be processed first.
This can be explained as:

The number of gene X appears in Si is equal to the number
of process stages in feature X. For example, in Fig. 3, there are
three occurrences of ‘1’ in Si, which means there are three
process stages in feature 1 (F1).

The first X in Si represents the first process stage of feature
X; the secondX represents the second process stage, and so on.
All the genes of X in this substring compose the processing
route of feature X.

Mi is generated by machine number, where each gene rep-
resents the machine used in the process stage of the same
location in Si. For example, in Fig. 3, the first gene in Mi is
7, which refers to the process stage in Si; the first stage of F1 is
processed by machine 7. Similarly, the cutting tool code is
generated by cutting tool numbers with relevant position of

process stages. In Fig. 3, the first gene in Ti is 1, which refers
to the 1st stage of F1 is processed by using cutting tool 1.

4.2 Genetic operations

During each successive generation, a proportion of the
existing population is selected to breed a new generation
through genetic operators: crossover (also called recombina-
tion) and mutation. Based on our optimization problem and
representation scheme, traditional crossover and mutation
methods are modified in order to satisfy the rationality con-
straints of process route problem.

4.2.1 Crossover

An improved two-point crossover is imported to avoid illegal
individuals. As in Fig. 4, the procedure of the crossover can be
described as follows:

Step 1 Select two crossover points randomly.
Step 2 Copy the genes of Siwith relatedMi and Ti before the

first crossover points and after the second crossover
points of P1 to the same positions of the offspring.
Delete these genes of Siwith related toMi and Ti from
P2 sequentially.

P1

O1

1 3 1 2 2 2 4 3 1 3 4 5 5 6

1 2 1 2 3 3 1 2 1 2 1 1 1 3

7 7 2 7 1 1 2 7 7 7 2 2 7 7

1 3 1 2 2 2 4 3 1 3 4 5 5 6

1 2 1 1 3 3 1 2 1 2 1 1 3 3

7 7 2 2 1 1 2 7 7 7 2 2 7 7

Fig. 6 Mutation operation for Mi and Ti

Fig. 7 The three basic
orthographic views of machine
motor seat
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Step 3 Copy the remaining genes of P2 to the undetermined
positions of the offspring sequentially as they appear
in P2.

4.2.2 Mutation

For the whole chromosome, two-point insert is implemented
as mutation operation, as illustrated in Fig. 5. In the parent
string, two genes are randomly chosen and are inserted to
other two randomly selected positions.

Then, single-point mutation is used only in Mi and Ti, as
shown in Fig. 6. ForMi, one gene is randomly chosen first and
alternated it with another available machine for this process
stage. Then, the related gene in Ti is replaced with available
cutting tool number. For Ti, one gene was randomly chosen
and alternated it with another available cutting tool for this
process stage.

4.3 Fitness evaluation

In GA-based algorithms, the fitness evaluation scheme
should be designed so that a wide spread of solutions
close to the Pareto optimal solutions can be searched. In
NSGA-II, a fast non-dominated sorting approach is used
to reduce computational complexity and crowding dis-
tance calculation is introduced to maintain diversity
among population [30]. Individual solutions can be
evaluated through the non-dominated level and
crowding distance.

1. Non-dominated sorting approach

In this paper, we adopt a fast non-dominated sorting
approach presented by Deb et al. [30]. The carbon
emission and total processing time are chosen as fitness
functions, and each individual solution in the current
population is compared through the measure of fitness
in order to categorize them into different non-dominated
fronts. The members with lower non-dominated level
with better fitness values are more likely to be chosen
to breed a new generation.

2. Crowding distance calculation

To preserve the population’s diversity, crowded-
comparison approach was introduced in the process of indi-
vidual evaluation. For an individual i, crowding distance di
can be calculate by sum up all the distance of the left and right
neighbors of i along each of the fitness function. In our paper,
it can be represented as:

Table 1 machining features and
corresponding process stages Feature ID Feature type Process stages Remark

F1 Excircle Rough turning–half finish turning–finish turning

F2 The left face Rough turning–half finish turning–finish turning

F3 The right face Rough turning–half finish turning–finish turning

F4 Hole Rough turning–finish turning ϕ114.3

F5 Hole Rough turning–finish turning ϕ52

F6 Hole Rough turning–finish turning ϕ42

F7 4 sides Rough milling–finish milling 174×174

F8 4 steps Rough milling–finish milling 230×230

F9 Hole Finish turning ϕ65

F10 Hole Drilling ϕ11×7

F11 Hole Drilling ϕM12×4

F12 Hole Tapping ϕM12×4

F13 Step face of inner hole Finish turning ϕ52

F14 Step face of inner hole Finish turning ϕ114.3

F15 Chamfer Finish turning

F16 Hole chamfer Finish turning

Table 2 Machine information list

Machine ID Machine name Power (kw)

M01 Lathe 10

M02 CNC lathe 22

M03 CNC vertical miller 15

M04 Vertical miller 11

M05 Radial drill 4

M06 Radial drill 3

M07 CNC lathe 18.5
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d ið Þ ¼ f CE iþ 1ð Þ− f CE i−1ð Þj j
þ f TPT iþ 1ð Þ− f TPT i−1ð Þj j ð20Þ

where fCE(i) and fTPT(i) are the values of carbon emission and
total processing time of i.

The fitness value of i can be calculated as:

evali ¼ r ið Þ þ 1

1þ d ið Þ ð21Þ

where r(i) and d(i) represent the non-dominated level and
crowding distance in this level of individual i respectively.
The one with lower fitness value is regarded as relatively good
and more suitable for inheritance.

5 Case study

To validate our model and algorithm, we conducted a
simulation-based case study on manufacturing a machine mo-
tor seat. Figure 7 shows the three basic orthographic views of
the machine motor seat. In this section, we first analyze the
machining features of the component. Then, the simulation
study is introduced. Finally, we present and discuss the results
of the experiment.

5.1 Machining feature analysis

The machine motor seat contains as many as 16 main machin-
ing features, such as excircle, face, hole, step, step face of
inner hole, chamfer, and hole chamfer. Themachining features
with their corresponding process stages are detailed in Table 1.

Tables 2 and 3 show the machine information and cutting
tool information, including machine power, lifecycle, and
quality of cutting tool [31]. In this research, the carbon emis-
sion factor of electricity is 0.7125 kgCO2/kWh based on the
reference data from development and reform commission of
China [32]. Cemented carbide cutting tools are chosen during
the whole machining process, of which the emission factor is
30.153 kgCO2/kg [33]. For the convenience of calculation, we
unify the parameters of the cutting fluids used in all machines.

The emission factor of cutting fluid making and disposal are
500 kgCO2/m

3 and 200 kgCO2/m
3. The initial and additional

dosages of cutting fluid are 0.0085 and 0.0045 m3, the con-
centration is 0.5 and the cutting fluid change interval is
2 months.

Based on Tables 1, 2, and 3, the alternatives of machine and
cutting tool for each process stage are listed in Table 4, where
columns 1 and 5, columns 2 and 6 show the features and the
related process stages. The machine and cutting tool alterna-
tives are shown in columns 3 and 7, with their processing time
in columns 4 and 8. In practice, the machine change time and
cutting tool change time are uncertain and varies greatly in
different situations. In this case, a series of statistics data are
collected in advance, and the average values are chosen as the
unit machine change time and cutting tool change time, which
are 3 min and 2 min, respectively.

5.2 Simulation experiments

5.2.1 Encode

Before the algorithm is implemented, process stages as well as
machines and cutting tools should be encoded first. As shown
in Table 4, there are 16 features and 27 process stages in the
machine motor set. Each process stage is identified by process
stage ID shown in Table 5. It includes two parts of information
of the features and processing orders. For example, the pro-
cess state O0102 represents the second process stage of feature
1. Machine code and cutting tool code are listed in Table 6.

5.2.2 Optimizations based on different evaluation criteria

To test the performance of the algorithm and validate the ef-
fectiveness of the low carbon emission and high efficiency
optimization model we conducted, simulations were based
on different evaluation criteria. Criterion 1 meets the require-
ments of our low carbon emission and high efficiency model,
while criteria 2 and 3 are set as contrasts:

Criterion 1 Minimizing both carbon emission and total pro-
cessing time.

Table 3 Cutting tool information
list Cutting tool ID Cutting tool name Lifecycle (min) Quality (g) Main application

T01 Lathe tool 1 60 9.5 Turning

T02 Lathe tool 2 100 10 Turning

T03 Lathe tool 3 90 9 Turning

T04 Milling tool 1 240 7.5 Milling

T05 Milling tool 2 180 5 Milling

T06 Drill 1 60 375 Drilling

T07 Drill 2 75 475 Drilling

T08 Screw tap 75 275 Tapping
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Criterion 2 Minimizing carbon emission only
Criterion 3 Minimizing total processing time only.

For criterion 1, NSGA-II was adopted to find the Pareto
optimal solutions for both low carbon emission and high effi-
ciency. For criteria 2 and 3, GA was used in optimization to
find the best solution with a single objective of minimum
carbon emission or total processing time. All the optimization
simulation experiments were operated byMatlab. Because the
performance of NSGA-II and GA are not guaranteed and can

never be assessed on the basis of a single run, in each case, 50
trials were conducted repeatedly.

The parameters for NSGA-II and GA were set as follow:
the population size was 60; the iteration number was 200, and
crossover and mutation probabilities are 0.85 and 0.05,
respectively.

Table 5 Operation code
Process stage
code

Process stage
ID

Description Process stage
code

Process stage
ID

Description

1 O0101 Rough turning F1 6 O0602 Finish turning
F6

1 O0102 Half finish turning
F1

7 O0701 Rough milling
F7

1 O0103 Finish turning F1 7 O0702 Finish milling
F7

2 O0201 Rough turning F2 8 O0801 Rough milling
F8

2 O0202 Half finish turning
F2

8 O0802 Finish milling
F8

2 O0203 Finish turning F2 9 O0901 Finish turning
F9

3 O0301 Rough turning F3 10 O1001 Drilling F10

3 O0302 Half finish turning
F3

11 O1101 Drilling F11

3 O0303 Finish turning F3 12 O1201 Tapping F12

4 O0401 Rough turning F4 13 O1301 Finish turning
F13

4 O0402 Finish turning F4 14 O1401 Finish turning
F14

5 O0501 Rough turning F5 15 O1501 Finish turning
F15

5 O0502 Finish turning F5 16 O1601 Finish turning
F16

6 O0601 Rough turning F6

Table 6 Machine code and cutting tool code

Machine code Machine ID Cutting tool code Cutting tool ID

1 M01 1 T01

2 M02 2 T02

3 M03 3 T03

4 M04 4 T04

5 M05 5 T05

6 M06 6 T06

7 M07 7 T07

8 T08
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Fig. 8 The results of optimization experiments in three criterions
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5.3 Result analysis

5.3.1 Algorithm performance analysis

Figure 8 shows the result of the three sets of optimization
experiments. Simulations with criterion 1 are multi-objective
optimization, in which a series of Pareto optimal solutions are
obtained with a single run. For the convenience of compari-
son, the average value of carbon emission and total processing

time of these Pareto optimal solutions were calculated as the
result of each trial. These results are marked as filled dots in
Fig. 8. Simulations with criterion 2 only focus on optimizing
the carbon emission objective, after a single run a best solution
with minimize carbon emission can be gained. The total pro-
cessing time for each solution was also calculated, and these
results are marked as crosses in Fig. 8. The results of simula-
tions with criterion 3, which aims to minimize total processing
time, are marked as diamonds in Fig. 8.

Basically, as shown in Fig. 8, simulations with criteria 2 and 3
show a tendency of better performance in one objective with a
great sacrifice of the other one. Optimizations with criterion 1
gain a tradeoff between two objectives, and lower the carbon
emission and reduce the total processing time simultaneously.
This can also be verified by the convergence characteristic in
Fig. 9. Figure 9a, b illustrate the tendency of the average value
of carbon emission and total processing time in iteration process.
The convergence curves are obtained from statistic data of each
50 trials. It is clear that the optimization algorithmwith criterion 1
performs a good property in convergence and optimality. In other
words, the NSGA-II we proposed is a promising approach to
solve process route optimization problem with low carbon emis-
sion and high efficiency consideration.

5.3.2 Effectiveness analysis of high efficiency and low
emission optimization model

Table 7 show the average of carbon emission, total processing
time, machine change, and cutting tool change of 50 trials
with each criterion obtained from simulations. One of the best
process routes with each criterion is shown in Table 8.

Comparing the optimization results, we find that optimiza-
tion target on high efficiency (criterion 3) provides a process
route with less change of machine and cutting tool in order to
save processing time. However, the selections are concentrat-
ed, and machines and cutting tools are more likely to hold on
even though there are better alternatives with less emission for
the next process stage. Thus the optimal solutions obtained
from this optimization model may lead to high carbon emis-
sions. On other hand, the low carbon optimization model (cri-
terion 2) results in a process route with frequently change of
machines and cutting tools for the sake of the lowest carbon
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Fig. 9 The convergence curves

Table 7 Optimization results
Carbon emission
(CE)/(kg)

Total processing time
(TPT)/(min)

Machine change
(MC)/(times)

Cutting tool change
(TC)/(times)

Criterion
1

9.91 79.99 4.60 9.48

Criterion
2

9.75 91.75 6.08 13.58

Criterion
3

10.71 75.73 3.38 8.12
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emission in each process stage, which truly can decrease the
carbon emission with an unreasonable long processing time.

On low carbon emission and high efficiency, optimization
model (criterion 1) has a better tradeoff between emission and
efficiency objectives in process route optimization problem. It
reduces 7.47 % of carbon emissions on average, compared
with traditional efficiency-based optimization. It saves
12.82 % of processing time on average, compared with opti-
mization only considering carbon emission. As a solution, it
provides a set of process routes that reduce the carbon emis-
sion without too much loss in efficiency.

6 Conclusions

This article presents an approach of process route optimization
to reduce carbon emission and improve efficiency in green

manufacturing system. Machining features are introduced,
and a carbon emission and efficiency estimation model of
process route is established. The total carbon emission and
total process time are selected as optimization objectives.
We also introduced NSGA-II to solve the problem and used
a case to validate the proposed model.

The results of our case studies show that, in the existing
manufacturing environment, there is still more energy-saving
probability without any change of facilities. The manufacturer
can make a lower carbon emission manufacturing mode by opti-
mization the processing route of products. This research also pro-
poses a framework to estimate the carbon emission of processing
routes which can be modified and applied to other research.

Our research still has some limitations. First, our method
focuses on reducing the carbon emissions by optimizing the
process route planning. In manufacturing, process route plan-
ning and scheduling are both essential functional modules in

Table 8 One of the best process
routes with each criterion Criterion 1 Criterion 2 Criterion 3

Process
stage
ID

Machine
ID

Cutting
tool
ID

Process
stage
ID

Machine
ID

Cutting
tool
ID

Process
stage
ID

Machine
ID

Cutting
tool
ID

O0701 M03 T05 O0101 M07 T03 O0801 M04 T05

O0101 M07 T03 O0301 M07 T03 O0701 M04 T05

O0102 M07 T03 O0701 M04 T05 O0702 M04 T05

O0301 M07 T03 O0801 M04 T05 O0802 M04 T05

O0801 M04 T05 O0802 M04 T04 O0101 M07 T03

O0702 M04 T05 O0102 M07 T03 O0301 M07 T03

O0802 M04 T04 O0302 M07 T03 O0102 M07 T03

O0302 M07 T01 O0702 M03 T05 O0103 M07 T03

O0303 M07 T03 O0103 M07 T01 O0302 M07 T03

O0103 M07 T03 O0303 M07 T01 O0303 M07 T03

O0501 M07 T03 O0601 M07 T01 O0901 M07 T03

O0502 M07 T03 O0401 M07 T01 O0201 M07 T03

O0901 M07 T03 O0501 M07 T01 O0501 M07 T03

O0601 M07 T03 O0602 M07 T01 O0401 M07 T01

O0602 M07 T03 O0402 M07 T01 O0502 M07 T01

O0201 M07 T03 O0901 M07 T01 O0402 M07 T01

O0202 M07 T03 O0201 M07 T01 O0202 M07 T01

O0401 M07 T03 O0502 M07 T01 O0203 M07 T01

O0203 M07 T03 O0202 M07 T03 O0601 M07 T01

O0402 M07 T03 O0203 M07 T01 O0602 M07 T01

O1301 M07 T01 O1401 M07 T03 O1301 M07 T01

O1401 M07 T01 O1301 M07 T03 O1401 M07 T03

O1601 M07 T01 O1601 M02 T01 O1501 M02 T01

O1501 M07 T01 O1501 M02 T01 O1601 M02 T01

O1101 M06 T07 O1001 M06 T07 O1101 M06 T07

O1001 M06 T07 O1101 M06 T07 O1001 M06 T07

O1201 M06 T08 O1201 M06 T08 O1201 M06 T08

CE=9.82 TPT=78.70 MC=4
TC=9

CE=9.68 TPT=90.20 MC=6
TC=12

CE=10.78 TPT=73.20 MC=3
TC=7
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product development and manufacturing, and they are usually
complementary. Therefore, research on integrating process
route planning and scheduling tightly to achieve the global
optimization of reduce reducing carbon emission during
manufacturing process is necessary and worth proceeding
with in the future. Second, the carbon emission in manufactur-
ing system involves many complex factors. Our model only
considers a couple of factors. This paper simplified the calcu-
lation model to validate the possibility of reducing emission.
In the next research step, more practical production conditions
should be considered in our model.
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