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Abstract This paper aims to accomplish onlinemonitoring of
precision optics grinding with processing condition factors
based on theoretical analysis and through grinding experi-
ments. The model for monitoring surface quality of optical
elements online (OSQMM) which contains identification
model (IM) and interpolation·factor-support vector regression
(i•f-SVR) is proposed. IM is applied to analyze and determine
which kind of processing condition factors and which kind of
its feature parameters are the best one to be used for online
monitoring. i•f-SVR which contains the effect factor (fe) and
interpolation function (I) to overcome the drawbacks of
existing SVR models is applied to predict the monitoring
thresholds. The grinding experiments were designed and per-
formed. The influences of technological parameters (e.g.,
grain size of the grinding wheel, grinding depth, speed of
the grinding wheel, speed of the worktable, and materials of
workpiece) and processing condition factors (e.g., acoustic
emission, grinding force, and vibration) on the surface quality
were investigated and analyzed by IM. i•f-SVR was trained
and established by the data which were gained through the
experiments. After that, the other grinding experiments were
performed to apply and verify OSQMM. The results were that
the accuracy of alarm for roughness was 85.19 % and the
accuracy of alarm for surface shape peak–valley value was
75.93 %. The results show that this method can be effectively
applied to monitor the precision optics grinding process
online.

Keywords Optics grinding . Surface quality . Processing
condition factors . Interpolation·factor-support vector
regression . Onlinemonitoring

1 Introduction

With the wide application of optics and electronic information
technologies inmany high-tech sectors (e.g., aerospace, astron-
omy, national defense, andmilitary), optical elements are being
developedwith high-precision and free-form surfaces. This has
increased the level of accuracy requirement for machining and
measurement [1]. Precision grinding is the main machining
method for optical elements which can realize high surface
quality at high material removal rates [2, 3].

In precision optics grinding, complicated processing tech-
nology and manufacturing procedures mean that there are var-
ious factors that affect the surface quality in different ways. In
addition, the application of the online monitoring technology
is very difficult because of the splash of grinding fluid. Now,
many studies have focused on processing condition factors
such as the acoustic emission signal (AE), grinding force sig-
nal (GF), and vibration signal which are given out during the
interaction between the grinding wheel and the surface of
optical elements [4–7]. Since AE is generated at the moment
when the material is dropping from a surface [8], it has been
widely applied to the control of the grinding process. Webster
et al. [9] determined the relationship between AE, GF, and the
material removal rate by extracting and analyzing the AE
characteristics to realize surface quality control during the
grinding process. Stephenson et al. [10] realized the control-
ling of the ultra-precision grinding process and recognition of
the grinding wheel condition by using AE. Aguiar et al. [11]
and Wang et al. [12] used AE to detect grinding wheel wear.
Hassui et al. [13] concluded that vibration can be applied to
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monitor the grinding wheel condition by analyzing the rela-
tionship between vibration and the surface quality. Govekar
et al. [14] proposed a method that can detect vibration auto-
matically in grinding process in order to avoid the damage of
the workpiece. Oliveira et al. [15] studied the effects of envi-
ronment vibration on the grinding dynamics of the grinding
wheel. Kwak et al. [16] used GF to measure the grinding time.
Lezanski [17] considered AE, GF, and vibration at the same
time to recognize the grinding wheel state in the grinding
process.

In the process of monitoring optics grinding with con-
dition factors under the specific technological parameters,
machine learning techniques are the main method for
solving problems because of the many parameters. Ma-
chine learning is an important research field for modern
artificial intelligence technology. It realizes data analysis
and unknown data prediction through a corresponding
mathematical model that is built by studying the training
data. Now, neural network and support vector machines
(SVMs) are widely applied. Hosokawa et al. [18] used the
dynamic spectrum signal of grinding sounds based on a
neural network to recognize grinding wheel surface fea-
tures with better than 80 % accuracy. Chiu et al. [19]
established a mathematical model to map the relationship
between AE and roughness (Ra) using SVM theory that
was able to predict Ra under unknown machining condi-
tions with up to 85 % accuracy. Cho et al. [20] established
a damage detection system using SVM theory and were
able to identify abnormal conditions during the machining
process. Curilem et al. [21] established models for online
estimation of the filling level of a semiautogenous mill
using both a neural network and a least square-support
vector machine and got a good result of energy

consumption optimization. Gao et al. [22] put forward a
discrete system model and an in-process sensing tech-
nique to address the partial removal and precision control
for surface grinding with a good experimental result. Liao
et al. [23] used hidden Markov model-based clustering
method to monitor the condition of grinding wheel and
got a useful conclusion.

At present, many advances have been made with regards to
monitoring the grinding process to meet the requirements for a
precision optics grinding to some extent. However, there are
still some shortcomings. Present studies have focused on how
Ra is affected by processing conditions, but the surface shape
peak–valley (P-V) value, which is another important parame-
ter for the surface quality, is rarely studied. In addition, the
method of monitoring grinding process with condition factors
has poor real-time performance and cannot realize online
monitoring, because it must take some time to make the con-
clusion for the process after obtaining the condition factors.
The model for monitoring surface quality of optical elements
online (OSQMM) is proposed to make up the shortcomings.

2 Basic principle of OSQMM

OSQMM is proposed based on SVM theory. At present, sev-
eral support vector regression (SVR) models have been pro-
posed, such as ε-SVR, ν-SVR, and least-squares SVR since
SVMs were proposed by Vapnik in the 1990s [24, 25]. How-
ever, these models select the support vectors and calculate the
decision function based mainly on the values of the attribute
dimension of the input vectors. They cannot balance the de-
grees of influence of the attribute dimensions on the surface
quality of optical elements automatically. In addition, the
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Fig. 1 The structure of i•f-SVR

Table 1 Technological
parameters (control factors) and
levels

Factors Meaning Level 1 Level 2 Level 3

A Grain size of grinding wheel (GSGW) Fine-grained Medium-grained –

B Grinding depth (GD) (μm) 5 10 20

C Speed of grinding wheel (SGW) (rpm) 900 1200 1500

D Speed of worktable (SW) (m/min) 3 5 7

E Materials of workpiece (MW) JCS1 JCS3 BK7
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output vector should be an interval which is obtained by
predicting the threshold of condition factors according to the
requirement range of surface quality for online monitoring,
while the output vector of SVR models that have been pro-
posed has a single attribute dimension in most cases. Thus,
existing SVR models cannot be directly applied to online
monitoring the surface quality of optical elements in precision
grinding process.

Based on the reasons mentioned above, OSQMM is pro-
posed. In this paper, online monitoring the surface quality is
equivalent to online monitoring Ra and P-V value which are
used to describe the surface quality. The significance of
OSQMM is that the interval of processing condition factors
which is used as alarm limits for online monitoring is reverse
calculated according to the requirement range of Ra and P-V
value. OSQMM is comprised of identificationmodel (IM) and
interpolation·factor-support vector regression (i•f-SVR). IM is
applied to identify the correlation between each condition fac-
tor and the surface quality in order to determine which condi-
tion factor is the best one for online monitoring Ra and P-V
value. After that, the relationships of each feature parameter of
the condition factor which is determined above and surface
quality are quantitatively analyzed to determine which feature
parameter is the best one. Then, the thresholds of the feature
parameter are calculated by i•f-SVR.

Three processing condition factors are mainly studied: AE,
GF, and vibration. Their feature parameters are studied from
the time and frequency domains. IM [26] is used for calculat-
ing effect factor (fe) to identify the influences of condition

Table 2 Experimental design

Serial number of experiment Factor levels

A B C D E

1 1 1 1 1 1

2 1 2 2 2 2

3 1 3 3 3 3

4 1 1 1 2 3

5 1 2 2 3 1

6 1 3 3 1 2

7 1 1 3 3 2

8 1 2 1 1 3

9 1 3 2 2 1

10 1 1 2 2 1

11 1 2 3 3 2

12 1 3 1 1 3

13 1 1 1 1 2

14 1 2 2 2 3

15 1 3 3 3 1

16 1 1 2 3 3

17 1 2 3 1 1

18 1 3 1 2 2

19 2 1 3 1 1

20 2 2 1 2 2

21 2 3 2 3 3

22 2 1 3 2 3

23 2 2 1 3 1

24 2 3 2 1 2

25 2 1 1 3 1

26 2 2 2 1 2

27 2 3 3 2 3

28 2 1 2 1 3

29 2 2 3 2 1

30 2 3 1 3 2

31 2 1 3 2 2

32 2 2 1 3 3

33 2 3 2 1 1

34 2 1 2 3 2

35 2 2 3 1 3

36 2 3 1 2 1

Fig. 2 Optical glass samples

Fig. 3 2MK1760 high-precision grinding machine
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factors and feature parameters on the surface quality in preci-
sion optics grinding.

Figure 1 shows the structure of i•f-SVR. Technological
parameters and the requirement range of surface quality are
the input vectors. The thresholds of the feature parameters
in the time or frequency domain of processing condition
factors for online monitoring are the output vectors. Inter-
polation function is proposed to solve the problem that the
thresholds cannot be predicted directly because the rela-
tionship between the thresholds and the value of surface
quality is not linear. The values are calculated with the
decision function of i•f-SVR and each interpolation value
of the requirement range of surface quality. After that, the
maximum value and the minimum value are selected as the
thresholds.

The hyperplane is established as a decision surface
for the decision function of i•f-SVR solution. Different
types of data are separated by the hyperplane, and the
distances between types of data are maximized by the
largest interval method. i•f-SVR can be expressed as the
following optimization problem:

min
ω;b;ξ *ð Þ

1

2
wk k2 þ C

Xl

i¼1

ξi þ ξ*i
� �

;

s:t: w⋅Φ xi• f eið Þð Þ þ bð Þ−yi≤εþ ξi; i ¼ 1; 2;⋯; l
yi− w⋅Φ xi• f eið Þð Þ þ bð Þ≤εþ ξ*i ; i ¼ 1; 2;⋯; l

ξ *ð Þ
i ≥0; i ¼ 1; 2;⋯; l

x
0
i0 ¼ I x0min; x0maxð Þ; i0 ¼ 0; 1;⋯; l0

y
0
i0 ¼ w⋅Φ x

0
i0

� �
þ b i0 ¼ 0; 1;⋯; l0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ

where x is the input vector, fe is the effect factor, w is
the adjustable weight vector, b is the bias, C is the
penalty parameter, ξi

(∗) is the slack variable used to mea-
sure the deviation degree of a data point from model
regression under ideal conditions, ε is the translational
value of the hyperplane moving up and down along the
y-axis, l is the total number of data points, i is the
count value, and Ф(x) is the nonlinear transformation
to map x to a higher dimensional feature space. In this
paper, a vector with a mark symbol “(*)” in the top
right corner stands for two conditions: one is that this
vector has “*” in the top right corner and the other is
that this vector does not have “*” in the top right cor-
ner. x0min is the minimum value of the requirement
range of the surface quality, and x0max is the maximum
value of the requirement range of the surface quality. I
is the interpolation function, xi ′

′ is the result which is
calculated by I, i′ is the count value of interpolation
times, and l′ is the total number of interpolation times.

The Lagrange equation of the optimization problem de-
scribed in Eq. (1) is

L w; b; ξ *ð Þ;α *ð Þ; η *ð Þ
� �

¼ 1

2
wk k2 þ C

Xl

i¼1

ξi þ ξ*i
� �

−
Xl

i¼1

ηiξi þ η*i ξ
*
i

� �

−
Xl

i¼1

αi εþ ξi þ yi− w⋅Φ xi• f eið Þð Þ−bð Þ

−
Xl

i¼1

α*
i εþ ξi−yi þ w⋅Φ xi• f eið Þð Þ þ bð Þ

ð2Þ

Fig. 4 Installation methods of all sensors and experimental panorama

Table 4 The details of sensors

The kind
of sensor

Value of the
sampling
frequency (kHz)

Manufacturer Model

AE 156 Beijing Shenghua Co. Ltd SAEU2

GF 2 Kistler Co. Ltd 9272

Vibration 1.5 Jiangsu Lianneng Co. Ltd CA-YD-1107

Fig. 5 Onsite measurement of optical glass samples

Table 3 The details of the grinding machine

Parameters Value

The range of x-axis (mm) 1000

The range of y-axis (mm) 500

The range of z-axis (mm) 600

The maximum positioning error (μm) ±3

The kind of the grinding wheel Arc-diamond wheel
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where α(*)=(α1,α1
*
…,αl,αl

*)T and η(*)=(η1,η1
*·,ηl,ηl

*)T are
the Lagrange multipliers. The optimization equation should
satisfy the following equations:

∂L
∂w

¼ 0 ⇒ w ¼
Xl

i¼1

αi−α*
i

� �
xi• f eið Þ

∂L
∂b

¼ 0 ⇒
Xl

i¼1

αi−α*
i

� � ¼ 0

∂L
∂ξi

¼ 0 ⇒ C − αi− ηi ¼ 0

∂L
∂ξ*i

¼ 0 ⇒ C − α*
i − η*i ¼ 0

ð3Þ

The dual form of Eq. (4) is obtained after substituting
Eq. (3) into Eq. (2):

min
α *ð Þ∈R2l

1

2

Xl

i; j¼1

α*
i −αi

� �
α*

j−α j

� �
Φ xi• f eið Þ⋅Φ x j• f e j

� �� �

þε
Xl

i¼1

α*
i þ αi

� �
−
Xl

i¼1

yi α
*
i −αi

� �
;

s:t:
Xl

i¼1

α*
i −αi

� � ¼ 0 ;

0≤αi
*ð Þ≤C; i ¼ 1; 2;⋯; l

ð4Þ

Equation (5) can be obtained according to the Karush–
Kuhn–Tucker (KKT) conditions:

αi � α*
i ¼ 0 ð5Þ

If αi, which is the component of αi
(∗) belonging to (0, C), is

chosen, b is solved as follows:

b ¼ y j− ω⋅x j• f e j
� �þ ε ¼ y j−

Xl

i¼1

α*
i −αi

� �
xi• f eið Þ• x j• f e j

� �� �þ ε

ð6Þ

If αi
∗, which is the component ofαi

(∗) belonging to (0,C), is
chosen, b is solved as follows:

b ¼ yk− ω⋅xk• f ekð Þ−ε ¼ yk−
Xl

i¼1

α*
i −αi

� �
xi• f eið Þ• xk• f ekð Þð Þ−ε

ð7Þ

The value of w is given in Eq. (3). Thus, the decision
function of i•f-SVR is as follows:

y ¼ g x• f eð Þ ¼
Xl

i¼1

α*
i −αi

� �
K x• f eð Þ; xi• f eið Þð Þ þ b ð8Þ

where K((x• fe), (xi• fei))=(Φ(xi• fei) ⋅Φ(x • fe)) is the kernel
function that meets the Mercer theorem. The RBF was used
in this study, as shown in Eq. (9), because of its many advan-
tages, such as a simple expression, few kernel parameters,
good smoothness, and fast computing speed.

K x• f eð Þ; xi• f eið Þð Þ ¼ exp
1

σ2
x• f eð Þ− xi• f eið Þk k2

� �
ð9Þ

The interpolation function I is shown in Eq. (10) that

I x0min; x0maxð Þ ¼ x0min þ λ• x0max−x0minð Þ½ �•i0; i0 ¼ 0; 1;⋯l0

λ • l 0 ¼ 1

�

ð10Þ

Where x0min, x0max, xi ′
′ , i′, and l′ are defined as above, and λ

whose interval is (0,1) is interpolation factor in order to deter-
mine the interpolation value.

Fig. 6 The measuring results

Table 5 Features extracted from each processing condition factor

Kinds of signals Kinds of features

Time domain Frequency domain

Acoustic emission Root mean square (RMS) Skewness index Peak factor Centroid frequency Frequency variance Mean square frequency (MSF)

Vibration RMS Skewness index Peak factor Centroid frequency Frequency variance MSF

Grinding force Average value in X
direction (A-X)

A-Y A-Z – – –
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3 Experiments and discussion

3.1 Solve the decision function of i•f-SVR and calculate fe

The experiments were performed to obtain training data in
order to solve the decision function of i•f-SVR and calculate
fe. The Taguchi method was adopted to design the experi-
ments to consider both the influence of a single factor and
the cross-effects of several factors on the surface quality.
The Taguchi method is a powerful tool that uses an orthogonal
table to arrange experiments in order to realize equilibrium
dispersion. Thus, the whole parameter space can be studied
with the minimum number of experiments. This method is a
simple and scientific design method that greatly reduces the
experimental time to build models for response functions
compared with traditional experimental methods [27, 28].

3.1.1 Experimental design

Five technological parameters (control factors) were exam-
ined in the experiments: the grinding depth, speed of the
grindingwheel, speed of the worktable, grain size of the grind-
ing wheel, and materials of the workpiece. Two levels of grain
size and three levels of each of the other four control factors
were selected according to the characteristics of the optics
grinding. Table 1 lists the specific values.

A L36 (2
11×312) orthogonal array was chosen according to

the number of control factors and levels of each factor, as
shown in Table 2. This array has 36 rows corresponding to
the experiment times. It can accommodate 23 control factors
at most; 11 control factors have two levels, whereas the

remaining 12 control factors have three levels. This array re-
quires 35 degrees of freedom (DOFs). In the experiments, the
grain size of the grinding wheel (factor A) had 1 DOF, and the
rest of the four factors had eight (4×(3−1)) DOFs. The inter-
action between the grain size (factor A) and grinding depth
(factor B) and the interactions among the grinding depth (fac-
tor B), speed of the grinding wheel (factor C), speed of the
worktable (factor D), and materials of the workpiece (factor E)
were needed to study according to the characteristics of the
precision optics grinding. The DOFs were 26((2−1)×(3−1)+
6×(3−1)×(3−1)). Thus, a total of 35 DOFs was required in
the experiments. Because the total number of DOFs of the
orthogonal array must be more than or equal to that of the
experiments required by the Taguchi method, the L36 (2

11×
312) orthogonal array was chosen.

3.1.2 Experimental conditions and measurement

Each experiment was performed on three optical glass sam-
ples (the three samples were called an optical glass sample
group), as shown in Fig. 2, so three sets of data were obtained
for each experiment. This method effectively avoids the inter-
ference of random error and ensures the authenticity of the
data. Three optical glass sample groups for three experiments
were pasted on one piece of aluminum sheet by superglue.
Each aluminum sheet was 120×120 mm in size, and each
optical glass sample was 20×20×3 mm. The spacing in the
transverse direction was 10 mm, whereas the spacing in the
longitudinal direction was 20 mm. The transverse edge dis-
tance was 20 mm, and the longitudinal edge distance was
10 mm.

The experiments were performed using a 2MK1760 high-
precision grinding machine shown in Fig. 3, of which the
parameters were listed in Table 3. The P-V value of 430×
430 mm aspheric optics ground on this machine was 3–
5 μm, and Ra was within 0.1 μm.

In the experiments, AE, GF, and vibration were measured
with sensors, of which the installation method was shown in
Fig. 4 and the details were listed in Table 4.

After three experiments, every optical glass sample was
measured onsite, as shown in Fig. 5, which eliminated the
repetitive positioning error of the workpiece. The measuring
tool was a noncontact laser displacement sensor (Keyence).
Figure 6 showed the measuring results.

Fig. 8 Calculation results of fe

Table 6 Features extracted from AE

Feature parameters of AE

Time domain features RMS Skewness index Peak factor Peakedness coefficient Margin index Ring-down count rate

Frequency domain features MSF Signal energy Centroid frequency Frequency variance – –
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3.1.3 Feature extraction of processing condition factors

The variation law of optics grinding is difficult to determine
directly from the original signals collected by each sensor
because these signals contain redundant information and have
strong randomness. In addition, the signals are often described
in the time and frequency domains. In this study, fast Fourier
transform (FFT) was used to change the original signals from
the time domain to the frequency domain.

Many features describe a signal in the time and frequency
domains. Table 5 lists the features used in this study consid-
ering both the precision optics grinding characteristics and the
signal features [29]. Figure 7 shows the values in the (a) time
domain and (b) frequency domain.

3.1.4 Calculate fe of the processing condition factors

fe of the technological parameters and the processing condi-
tion factors was calculated by IM with the data obtained from
the experiments above, as shown in Fig. 8 [26].

The conclusion that AE should be used for online monitor-
ing Ra and vibration should be used for onlinemonitoring P-V

value is obtained from fe. However, the grinding process will
be affected in the case of two or more than two kinds of
sensors installed on the grinding machine in actual grinding
process, especially for large-aperture optics. In addition,
though the correlation between vibration and P-V value is
more significant than that between AE and P-V value, the
difference is small. AE is selected for online monitoring sur-
face quality.

(a) the ppredicted resuults of Ra

(b) the preddicted results oof P-V value

Fig. 9 The predicted results

Fig. 10 Calculation results of fe for each feature parameter
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3.1.5 Calculate fe of the AE feature parameters

It will lose its meaning that many feature parameters need be
calculated in the case of online monitoring, because it slows
the calculation speed a lot. IM is applied to find which kind of
feature parameter of AE has the most significant correlation
with surface quality. Several kinds of feature parameters were
added on the basis of the experiments above in order to have
more practicability, as shown in Table 6.

The measurement data gained from the experiments above
were taken as the AE-fe training data, and the AE-fe test data
comprised 12 groups of data that were selected isometrically
from the AE-fe training data. Figure 9 shows the predicted
results for (a) Ra and (b) the P-V value. In the figure, each
curve marked with a factor’s name shows the results predicted
by the decision function of i•f-SVR that was trained and
established by this factor. fe of each feature parameter which

was listed in Table 6 was then calculated, as shown in Fig. 10.
MSF has the strongest correlate degree with Ra, and ring-
down count rate with threshold 0.5 (0.5-RCR) has the stron-
gest correlate degree with P-V value. So, MSF is selected for
online monitoring Ra, and 0.5-RCR is selected for online
monitoring P-V value.

3.1.6 Train and establish i•f-SVR

The measurement data gained from the experiments were tak-
en as the training data. The five technological parameters and
the requirement range of Ra and P-V value were the input
vectors. The thresholds of MSF and 0.5-RCR of AE were
the output vectors. i•f-SVR was trained and established to be
used for online monitoring.

Table 7 Parameters of experiment 2

Class GSGW SGW (rpm) SW (m/min) GD (μm) MW Group number The count of group number

1 Fine-grained 1500 5 2 BK7 3 1–3

2 Medium-grained 1500 5 20 JCS3 4 4–7

3 Medium-grained 1500 5 20 K9 2 8–9

4 Medium-grained 1500 5 30 JCS1 2 10–11

5 Medium-grained 1500 5 30 JCS3 2 12–13

6 Medium-grained 1500 5 30 K9 2 14–15

7 Fine-grained 1500 5 5 JCS1 2 16–17

8 Fine-grained 1500 5 5 JCS3 3 18–20

9 Fine-grained 1500 5 20 BK7 2 21–22

10 Fine-grained 1500 5 5 BK7 3 23–25

11 Fine-grained 1500 7 5 BK7 4 26–29

12 Fine-grained 1500 7 20 BK7 4 30–32

13 Fine-grained 1500 5 3 BK7 16 33–48

14 Fine-grained 900 5 5 BK7 3 49–51

15 Medium-grained 1500 7 20 BK7 4 52–54

Fig. 11 The measuring results of Ra and P-V value Fig. 12 The measuring results of MSF and 0.5-RCR
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(a) The relationship curve between MSF and Ra

(b) The relationship curve between 0.5-RCR and P-V value

Fig. 13 The relationship between the feature parameter and surface quality
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3.2 Application and verification of OSQMM

3.2.1 Experimental design

The experiments were performed to apply and verify the ef-
fectiveness of OSQMM. The value of five technological pa-
rameters and the requirement range of the surface quality were
selected according to the actual grinding process, as shown in
Table 7. Several pieces of optical glass samples were ground
on condition of each group of technological parameters. The
data obtained by grinding a piece of glass sample is called a
group of data, and the data obtained by grinding several pieces
of glass samples in the same technological parameters is called
a class of data in this study. There were 15 classes of data, that

is to say 54 groups of data were obtained from the experi-
ments. The experimental conditions and the measuring meth-
od were the same as that in 3.1.2 section. Figure 11 shows the
measuring results of Ra and P-V value, and Fig. 12 shows the
measuring results of MSF and 0.5-RCR.

3.2.2 Data analysis

Figure 13 is drawn with part of the original data. The relation-
ship between MSF and Ra representation is shown by (a), and
the relationship between 0.5-RCR and P-V value representa-
tion is shown by (b). MSF of AE has significant correlation
with Ra. There is a positive or negative correlation between
MSF and Ra along with the different technological

Table 8 The thresholds

Class The requirement range of surface quality after grinding The thresholds for online monitoring

Ra (μm) P-V value (μm) MSF 0.5-RCR

1 [0.5, 1.0] [0, 5] [1854165256, 1922612663] [0.0054, 0.0114]

2 [2.0, 2.5] [10, 15]
[15, 20]

[2010643343, 2019319508] [0.4311, 0.4411]
[0.4401, 0.4473][2.5, 3.0] [2018207308, 2030807811]

[3.0, 3.5] [2031705601, 2041202676]

3 [3.0, 3.5] [10, 15] [1962667681, 2044355584] [0.4506, 0.4621]

[25, 30] [0.4405, 0.4466]

4 [2.0, 2.5] [0, 5] [1883577727, 1912446300] [0.4937, 0.5086]

[2.5, 3.0] [5, 10] [1845944783, 1872467727] [0.5086, 0.5305]

5 [1.5, 2.0] [0, 5] [2085897876, 2117701505] [0.4907, 0.5102]

[2.0, 2.5] [5, 10] [2043747429, 2075792886] [0.5033, 0.5225]

6 [2.5, 3.0] [0, 5] [1937343742, 2116434747] [0.5015, 0.5055]

[3.0, 3.5] [25, 30] [1719349429, 1939123742] [0.5516, 0.5653]

7 [1.0, 1.5] [0, 5] [1760770206, 1886851234] [0.5086, 0.5327]

[1.5, 2.0] [5, 10] [1874870435, 2223377558] [0.4865, 0.5086]

8 [1.5, 2.0] [0, 5] [1525510252, 1932965466] [0.5586, 0.5703]

[2.0, 2.5] [5, 10] [1932965466, 2233601145] [0.5284, 0.5586]

9 [0.5, 1.0] [0, 5] [1739629652, 1780108215] [0.7037, 0.7334]
[1.0, 1.5] [1772508616, 1805326562]

10 [0.5, 1.0] [0, 5] [1775535346, 2594866767] [0.5970, 0.6305]

11 [1.5, 2.0] [5, 10] [1650469588, 1700030453] [0.5881, 0.6248]

[2.0, 2.5] [10, 15] [1700030453, 1732800280] [0.5349, 0.5771]

12 [1.5, 2.0] [5, 10] [1798045435, 1905867177] [0.6434, 0.7498]

[2.0, 2.5] [10, 15] [1638637705, 1787000035] [0.5531, 0.6247]

13 [0.5, 1.0] [0, 5]
[5, 10]

[2510063602, 2565469515] [0.3777, 0.4576]
[0.4606, 0.3973][1.0, 1.5] [2414397870, 2518011222]

[1.5, 2.0] [2241811287, 2414397870]

[2.0, 2.5] [2026830025, 2341511787]

14 [0.5, 1.0] [0, 5] [1630791641, 2190000068] [0.1910, 0.8544]
[1.0, 1.5] [2192322984, 2350247616]

15 [2.5, 3.0] [5, 10] [1878537488, 2077139815] [0.4500, 0.4702]

[3.0, 3.5] [10, 15] [2088149905, 2260467524] [0.4233, 0.4449]

[3.5, 4.0] [15, 20] [2259469466, 2388644417] [0.4071, 0.4233]

Int J Adv Manuf Technol (2015) 80:761–774 771



parameters. 0.5-RCR of AE has significant correlation with P-
V value. There is a positive or negative correlation between
0.5-RCR and P-V value along with the different technological
parameters.

The threshold of each class of data was calculated by i•f-
SVR. The interval was divided per 0.5 μm to calculate the
threshold for online monitoring Ra, and the interval was di-
vided per 5 μm to calculate the threshold for online monitor-
ing P-V value. The interpolation was performed between x0min
and x0max according to Eq. (10) on condition that λ equaled
0.2. The feature parameters corresponding each interpolation
value were then solved. After that, the maximum value and the
minimum value are selected as the thresholds. Table 8 lists the
thresholds of each class of data, and Fig. 14 shows the com-
parison results between the thresholds and measured values.

There were 46 groups of data whose the measured values
ofMSF belonged to the thresholds in all the 54 groups of data.
So, the accuracy rate was 85.19 %. There were 42 groups of
data whose measured values of 0.5-RCR belonged to the
thresholds in all the 54 groups of data. So, the accuracy rate
was 77.78 %.

4 Discussion

It is the prerequisite that Ra and P-V value have the
homodromous or reverse variation, in other words, Ra and

P-V value cannot have the random variation, as shown in
Fig. 15a. Under this prerequisite, MSF and Ra, 0.5-RCR,
and P-V value have the significant correlation. Without the
prerequisite, the correlation is poor, as shown in Fig. 15b, c.
Calculating the thresholds by i•f-SVR also required the pre-
requisite. The accuracy rate of online monitoring Ra was
97.37 % on condition that it was the homodromous or reverse
variation between Ra and P-V value, while the accuracy rate
was just 56.25 % on condition that it was the random variation
between Ra and P-V value (the 13th class data of experiment
2). The same conclusion can be drawn for online monitoring
P-V value. The accuracy rate was 94.74 % under the prereq-
uisite, while the accuracy rate was just 31.25 %.

In actual precision optics grinding, the preprocessing for
the surface of optical elements is needed to avoid the harmful
effects caused by local jump of the blank. Because Ra and P-V
value will have the homodromous or reverse variation after
preprocessing, OSQMM can be effectively applied to online
monitor the precision optics grinding process.

5 Conclusion

The proposed mathematic model was used to monitor grind-
ing process online by combining SVM theory with experi-
ments. It has realized giving feedback of the present states of
optical elements real-timely by using the processing condition

(a) Error band for on-line monitoring Ra

(b) Error band for on-line monitoring P-V value 

Fig. 14 Calculation results of
thresholds
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factors. The influences of the processing condition factors on
the surface quality were quantitatively analyzed. The follow-
ing conclusions were obtained:

1. i•f-SVR overcomes the disadvantages of existing SVR
models that have been applied to monitor precision optics
grinding online. fe and I were introduced.

2. On condition that Ra and P-V value had homodromous or
reverse variation, MSF of AE had significant correlation
with Ra, and 0.5-RCR of AE had significant correlation
with P-V value.

3. The experiments which used i•f-SVR for online monitor-
ing were performed. The results show that the accuracy
rate was 85.19 % for Ra, and the accuracy rate was
75.93 %. On condition that Ra and P-V value had

homodromous or reverse variation, the results of online
monitoring were much better. The accuracy rate was
97.37 % for Ra, and the accuracy rate was 94.74 %.
OSQMM can be effectively applied to monitor the preci-
sion optics grinding process online.
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