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Abstract In this paper, we study the effect of classical addi-
tive measurement error model on the most commonly used
control charts for monitoring simple linear profiles with ran-
dom explanatory variable. We showed that the in-control and
out-of-control performances of thesemethods are significantly
affected when measurement error is present in the explanatory
variable. The average run length criterion is applied to repre-
sent the performance of the methods. For instance, we can
clearly see that even a small amount of measurement error
introduced in the explanatory variable of a profile can increase
the false alarm rate about 55 %. With the same negligible
amount of error, the out-of-control average run length of the
exponentially weighted moving average chart (EWMA)-3
method in detecting a moderate-size shift in the slope param-
eter increases 15 %. Two different strategies on the basis of
control limit modification have been proposed to compensate
for the undesired effect of measurement error. Results indicate
that the proposed strategies substantially offset the poor per-
formances of the control charts resulted from the presence of
measurement error.

Keywords Additivemodel .Measurement error . Statistical
process control . Phase II profile monitoring

1 Introduction

In many practical applications of statistical process control,
monitoring functional or profile data is of great interest.

There are several papers in the context of phase II mon-
itoring of simple linear profiles. To name a few, a
Hotelling T2 control chart is proposed by Kang and
Albin [1] to simultaneously monitor the profile parame-
ters. A combined exponentially weighted moving aver-
age chart (EWMA)\R chart is also used to monitor the
average residuals. The EWMA-3 method suggested by
Kim et al. [2] has proved to be a simple and efficient
method for monitoring the parameters of simple linear
profiles. For the phase I control of simple linear pro-
files, an F-test method using indicator variables is of-
fered by Mahmoud and Woodall [3]. Mahmoud et al.
[4] proposed a change point approach based on likeli-
hood ratio test for phase I monitoring of simple linear
profiles. A change point approach is developed by Yeh
and Zerehsaz [5] for phase I control of linear profiles
with individual observations.

The problem of monitoring profiles with random pre-
dictors is thoroughly studied by Noorossana et al. [6].
The results indicate that EWMA/R control chart and
Hotelling T2 statistic are not affected by the randomness
of the explanatory variables. Performance of the
EWMA-3 control scheme, however, is affected in com-
parison to the fixed-predictor case.

Establishing a reliable measurement system analysis is in-
dispensable in each process dealing with measurements.
Despite any rigorous measurement system and depending on
the nature of the process, some of the measurement proce-
dures suggest a certain amount of error. Although sometimes
this measurement error may seem to be negligible, it may
significantly affect performance; hence, it should not be ig-
nored without further considerations. In the profile monitoring
context with random predictors, it is quite possible that the
explanatory variables are measured with error. Although dif-
ferent issues related to profile monitoring are discussed in the
literature, the effect of measurement error in the independent
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variable has not been studied yet. It should be noticed that if
the commonly used methods in phase II simple linear profile
monitoring are applied when measurement error is present,
then misleading results can be expected. Different models
can be used to represent measurement error [7, 8].

The classical additive measurement error model is
one of the most frequently used models as discussed
by Carroll et al. [7]. In this model, the error component
is assumed to be added to the true variable x. This
model can be defined as

w ¼ Axþ Bþ u ð1Þ

where A and B are constants and u is the measurement
error term with zero mean and usually a constant vari-
ance σu

2 [7].
It is assumed that u is independent of x and follows a nor-

mal distribution. A usual measurement error model given by
Eq. (2) is a special case of Eq. (1) with A=1 and B=0.

w ¼ xþ u ð2Þ

In statistical process control literature, the measurement
error problem is extensively studied by many re-
searchers. The model presented in Eq. (2) is used by
Bennet [9] to study performance of the usual Shewhart

X chart in the presence of measurement error. The per-

formance of X−R control chart in the presence of mea-
surement error is examined by Kanazuka [10], and it is
concluded that power of control chart in detecting mean
shifts is diminished when using the error-prone observa-

tions. The detection performance of X−S control chart
when measurement error is not negligible is investigated
by Mittag [11] and Mittag and Stemman [12]. Linna
and Woodall [13] used the model defined in Eq. (1)
to study the effect of measurement error on control
charts.

The behavior of EWMA chart used for monitoring a
variable with measurement error under the model in
Eq. (1) is studied by Maravelakis et al. [14]. Linna
et al. [15] addressed the effect of measurement error
on the monitoring of multivariate control charts. It can
be concluded that the power of multivariate control
charts in detecting process shifts in the underlying pro-
cess parameters is significantly affected when measure-
ment error is present.

This paper discusses the effect of measurement error on the
most commonly used methods for phase II monitoring of sim-
ple linear profiles with random explanatory variable. The in-
control and out-of-control performances of the methods are
assessed when the explanatory variable is subject to measure-
ment error. The commonly used control schemes are modified
based on two different strategies.

The next section provides an overview on simple
linear regression with error-contaminated predictor vari-
able. A brief review on several methods of simple linear
profile monitoring techniques is given in Sect. 3.
Furthermore, the charting performance of the aforemen-
tioned approaches is evaluated in terms of average run
length (ARL) criterion in the presence of measurement
error in this section. In Sect. 4, we propose an approach
to eliminate the adverse effects of measurement error on
the commonly used control charts. Section 5 suggests
another strategy to improve the performance of the con-
trol charts and to estimate the true unobserved explana-
tory variable. Our concluding remarks are provided in
the final section.

2 Simple linear profile and measurement error

Consider a simple linear profile defined as

yi ¼ β0 þ β1xi þ εi i ¼ 1; 2n ð3Þ

where β0 and β1 are the intercept and slope coefficients, re-
spectively, and εi follows a normal distribution with
mean zero and variance σ2. Suppose that xi’s are inde-
pendently and identically distributed normal random
variables with mean μx and variance σx

2. The ordinary
least square (OLS) method can be used to estimate the
parameters of the regression [16, 17].

In practice, there are certain situations where we are not
able to observe the exact value of the independent variable
due to measurement error. Therefore, an error-prone variable
denoted by w is observed and used instead of the true variable
x. Suppose that the relationship between the true variable x
and the observed variable w can be represented by model in
Eq. (2). In this case, the variability of the observed variable
can be computed as σx

2+σu
2. It is noteworthy that the random

error terms εi’s and the measurement errors ui’s are usually
assumed to be independent. The error-prone variable follows a
normal distribution with the same mean of the true variable x
and variance σx

2+σu
2.

Rewriting Eq. (3) gives us

yi ¼ β0 þ β1 wi−uið Þ þ εi ¼ β0 þ β1wi þ εi−β1ui i ¼ 1; 2…n

ð4Þ
In the first glance, Eq. (4) may appear to be an ordinary

linear regression model with as the random error term.
However, wi’s are correlated with the random error term [8].
Since one of the essential assumptions of linear regression
models is violated, the OLS estimators might not have the
same properties as before. The next section provides a brief
discussion on the main issues caused by having measurement
error in the predictors.
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2.1 Ordinary least squares method and measurement error

When the OLS method is used to fit a regression line in the
existence of measurement error, the parameters will be esti-
mated with bias. In other words, we have

E bβ1

h i
¼ σ2

x

σ2
x þ σ2

u

� �
β1E bβ0

h i
¼ β0 þ β1μx 1−

σ2
x

σ2
x þ σ2

u

� �

where is λ ¼ σ2x
σ2xþσ2u

� �
called the reliability ratio [8]. In fact, the

correlation between the independent variable and the error term
in Eq. (4) leads to the bias in the two estimators. Since the pair of
variables follow a bivariate normal distribution, the conditional
distribution of the estimators given wi is normal. The conditional
mean and variance of the estimators are defined as

E bβ1

���wh i
¼ λβ1 var bβ1

���wh i
¼ σ2

y−σwyλβ1Xn

i¼1

wi−wð Þ2
ð5Þ

E bβ0

���wh i
¼ β0 þ β1μx 1−λð Þ and var bβ0

���wh i

¼ σ2 þ λσ2
uβ

2
1

n
þ w2var bβ1

���wh i
ð6Þ

where σy
2=σ2+σx

2β1
2,σwy=σx

2β1 is the covariance between the
observed variable wi and the response variable y and w is the
sample mean of the observed variable. The conditional covari-
ance between the estimators is given by

cov bβ0; bβ1

���wh i
¼ −wvar bβ1

���wh i
ð7Þ

Mean squared error is no longer an unbiased estimator of in
this case. That is, we have

E MSE
���wh i

¼ E MSE½ � ¼ σ2 þ λσ2
uβ

2
1 ð8Þ

3 Effect of measurement error on the performance
of EWMA-3, EWMA/R, and T2 control charts

In this section, the performance of common techniques for
monitoring simple linear profiles is assessed using in-control
and out-of-control ARL criteria. A brief illustration about the
methods is given subsequently.

3.1 Description of the methods

Kang and Albin [1] introduced two control schemes with the
intention to monitoring simple linear profiles in phase II. The

first one is the EWMA/R method. The EWMA control statis-
tic is given by

EWMA jð Þ ¼ θe j þ 1−θð ÞEWMA j−1ð Þ j ¼ 1; 2

where 0<θ≤1 is the smoothing constant, EWMA0=0,
and ēj is the jth average regression residuals. The lower
and upper control limits for EWMA control chart can
by written as

LCL ¼ −Lσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð Þn

s
UCL ¼ −Lσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θð Þn

s
ð9Þ

where L is a positive constant which yields a desired in-control
ARL. The R-chart in this method is proposed to monitor the
process variance. The range statistic is defined as

Rj ¼ max e j
� 	

− min e j
� 	

j ¼ 1; 2 …

This chart will alarm as soon as statistic falls outside the
control limits.

UCLR ¼ σ d2 þ Ld3ð Þ LCLR ¼ σ d2−Ld3ð Þ ð10Þ

where d2 and d3 are constants which depend on the sample
size n and can be obtained from references such as by Mont-
gomery [18]. The other method is a multivariate control
scheme using Hotelling T2 statistic defined as

T2
J ¼ u

0
j−u

� �TX −1
u

0
j−u

� �
j ¼ 1; 2

where u
0
j ¼ bβ0 j; bβ1 j

h i
is the vector of parameter estimators, u

is the vector of regression parameters, and ∑ is the variance-
covariance matrix of estimators given by

∑ ¼
σ2bβ0

σbβ0
bβ1

σbβ0
bβ1

σ2bβ1

2
64

3
75 ð11Þ

The upper control limit for this chart is given by

UCL ¼ χ2
2;α ð12Þ

where χ2,α
2 is the 100 (1−α) percentile of the chi-square

disribution with two degrees of freedom. Among the
common methods in profile monitoring literature, one
of the most efficient control charts has been suggested
by Kim et al. [2].

As discussed earlier, Noorossana et al. [6] investigated the
effect of random predictors on phase II profile monitoring.
Obviously, in both EWMA/R and T2 control charts, the reper-
cussions are negligible; however, for the EWMA-3 method,
the authors have suggested some alterations. In a simple linear
regression if the predictor centralized, the estimators will be
independent. This gives the idea of setting up separate control
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charts for regression parameters [2]. In other words, we can
write

yi ¼ β
0
0 þ β

0
1x

*
i þ εi i ¼ 1; 2…; n ð13Þ

where β1
′ =β1, β

0
0 ¼ β0 þ β1 x, and x*i ¼ xi−x. The charting

statistics are, then, defined as

EWMAI jð Þ ¼ θbβ0

0 j þ 1−θð ÞEWMAI j−1ð Þ j ¼ 1; 2
EWMAS jð Þ ¼ θSTbβ1

jð Þ þ 1−θð ÞEWMAS j−1ð Þ j ¼ 1; 2

EWMAN jð Þ ¼ max θ MSE j−σ2
0

� 	þ 1−θð ÞEWMAN j−1ð Þ; 0
 �
j ¼ 1; 2

ð14Þ

where STbβ1

jð Þ ¼ bβ1 j−β1ffiffiffiffiffi
σ2
Sxx j

q , EWMAI(0)=β0
′ , EWMAS(0)=0,

EWMAN(0)=0, and σ0
2 are the in-control error variances and

θ is the smoothing constant. Also, bβ0

0 j ¼ y and bβ1 j ¼ Sxy
Sxx.

Based on these results, the corresponding control limits are
determined as follows

UCLI ¼ β0 þ β1μx þ LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
σ2 þ σ2

xβ
2
1

n

s

LCLI ¼ β0 þ β1μx−LI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
σ2 þ σ2

xβ
2
1

n

s

UCLS ¼ þLS

ffiffiffiffiffiffiffiffi
θ

2−θ

r

LCLS ¼ −LS

ffiffiffiffiffiffiffiffi
θ

2−θ

r

UCL ¼ LN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

2−θ
var MSE j

� r

ð15Þ

where LI, LS, and LN are positive constants selected to give
specific in-control ARLs and var MSE j

�  ¼ 2σ40
n−2

The EWMA-3 approach is based on the simultaneous use
of EWMAI, EWMAS, and EWMAN control charts..

3.2 Effect of measurement error on in-control ARLs

A simulation study is conducted to evaluate the performance
of the methods under the presence of measurement error. The
response variables are generated using the simple linear pro-
file

yi ¼ 3þ 2xi þ εi i ¼ 1; 2…; 4

where the regressor xi is normally and independently distrib-
uted with mean μx=0 and variance σ2

x ¼ 5
3, and εi’s are as-

sumed to be normal random variables with mean μ=0 and
variance σε

2=σ2=1. The error-prone variable wi is defined
based on Eq. (2). The simulation is repeated 10,000 times,
and the in-control ARLs are computed for a range of measure-
ment error standard deviation σu. The ARL0 in the absence of
measurement error is set equal to 200 for each control scheme.

The smoothing constant θ is set equal to 0.2 in the simulations.
Figures 1, 2, and 3 show the in-control ARL values against
different values of standard deviation σu and different sample
sizes n for EWMA-3, EWMA/R, and T2 control charts, re-
spectively. As we can see, the false-alarm rate increases as
the measurement error standard deviation increases.

In the EWMA-3 control chart, it is obvious that the inter-

cept estimator can be expressed by bβ0

0 ¼ y. As stated before, is
not under the influence of measurement error. Hence, neither
the EWMAI statistic nor the related control limits is affected.
In contrast, the slope estimator may be substantially influ-
enced by the presence of measurement error. In this case, the
expected value and variance of the EWMAS statistic may be
rewritten as

E EWMAS jð Þ½ � ¼ − 1−λð Þβ1ffiffiffiffiffiffiffiffiffiffi
σ2

Sww

r var EWMAS jð Þ½ �

¼
σ2
y−σwyλβ1

� �
σ2

θ
2−θ

j ¼ 1; 2

ð16Þ

where STbβ1

jð Þ ¼ bβ1 j−β1ffiffiffiffiffi
σ2
Sww

p . Clearly, the expected value of

EWMAS statistic drifts from zero to − 1−λð Þβ1ffiffiffiffiffi
σ2
Sww

p . It is obvious that

the measurement error introduces an unrealistic mean shift in
the EWMAS statistic. In addition, the variability of EWMAS

statistic in comparison to the error-free case becomes larger.
Therefore, this chart would provide more false alarms. With
the same analogy, it can be concluded that EWMAN control
chart performs poorly under measurement error. Therefore,
the overall performance of EWMA-3 approach is deteriorated
in the in-control state. This result can be extended to
EWMA/R chart. It can be showed that

E EWMA jð Þ½ � ¼ 0var EWMA jð Þ½ � ¼ θ
2−θ

σ2 þ β2
1σ

2
u

� 	
n

j ¼ 1; 2

ð17Þ
and

E Rj

�  ¼ σ2 þ β2
1σ

2
u

� 	
d2 var Rj

�  ¼ σ2 þ β2
1σ

2
u

� 	
d3 j ¼ 1; 2 ð18Þ

The increased variance of EWMA statistic forces the chart
to alarm more frequently leading to deteriorated in-control
performance of the EWMA/R control charts.

So far, we have assumed that the jth random sample col-
lected over time includes four pairs of observations (xi,yij). In
other words, a sample of size 4 is taken to calculate the jth chart
statistic every time. Since, in practice, one may use different
sample sizes, we have investigated the effect of sample size n
on the performances of control charts. Revisiting Figs. 1, 2,
and 3 reveals that, in general, all the EWMA-3, EWMA/R,
and T2 control charts produce more false alarms when sample
size becomes larger. It can be shown that the mean and
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variance of the EWMAN statistic are 0 and 2 σ2 þ λσ2
uβ1

� 	
2

n−2 θ
2−θð Þ
, respectively. Increasing the sample size obviously re-

duces the variability of the EWMAN statistic, which in turn
leads to a more effective detection power. As discussed earlier,
measurement error imposes unrealistic shift in the parameters.
Due to this fact, the improved detection power reveals itself by
having small ARL0 values. It is not difficult to see that the
mean and variance of the EWMA statistic can be defined as 0

and θ
2−θ

σ2þβ2
1σ

2
uð Þ

n . Similarly, the variability of EWMA de-
creases by increasing the sample size leading to more frequent
false alarms. Owing to the fact that Hotelling T2 control chart
has the least detection power compared to EWMA-3 and
EWMA/R charts, this chart is not very sensitive to the sample
size. That is why we do not observe a significant change in the
performance of this method.

3.3 Effect of measurement error on the out-of-control ARLs

Another metric commonly used to assess the performance of
control charts is the out-of-control ARL or ARL1. An

appropriate control chart should yield small ARL1 values when
process shifts to an out-of-control condition. In this study, all
the control limits are adjusted to yield in-control ARL of ap-
proximately 200. Without loss of generality, the standard devi-
ation of measurement error component is set to 0.2. The key
point to choose such a small value for the measurement error
variance is to demonstrate the adverse results of ignoring even
insignificant measurement error value. Table 1 gives the ARL
values for the intercept shifts in units of σ0. Since the EWMAI

chart is unaffected by measurement error, the detection power
of EWMA-3 chart remains unchanged. The other two methods
alarmmore slowly in comparison to the case when nomeasure-
ment error exists. However, there is not a significant difference
between the ARL values in moderate to large shift sizes.
Table 2 shows the ARL measures for the slope shifts.
Although parameter value is small, there is a remarkable dete-
rioration in the ARL performance of the methods. Table 3
shows that small departures from in-control process standard
deviation are detected at a lower rate compared to the ordinary
situation. In general, if measurement errors are overlooked,
misleading results should be expected.

Fig. 1 Effect of measurement
error on the in-control ARL of
EWMA-3 control chart with
various sample sizes n

Fig. 2 Effect of measurement
error on the in-control ARL of
EWMA/R control chart with
various sample sizes n
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4 Adjusting the control charts to account for measurement
error

Consider the simple linear profile in Eq. (5) which uses the
classical additive independent measurement error under the
simplified assumption of known reliability ratio λ. In this
section, we try to provide remedial measures to lower the
effect of measurement error on the three commonly used con-
trol charts.

4.1 EWMA-3 control chart

As previously stated, the EWMAI chart is unaffected by the
measurement error. Hence, no modification is required for this

chart. However, the other two charts require proper modifica-
tion. The EWMAS statistic is modified as

EWMAS jð Þ ¼ θSTbβ1

jð Þ þ 1−θð ÞEWMAS j−1ð Þ j ¼ 1; 2 ð19Þ

where STbβ1

jð Þ ¼ bβ1 j−λβ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2y−σwyλβ1ð Þ

Sww

q and EWMAS(0)=0. It also fol-
lows that

UCLS ¼ þLS

ffiffiffiffiffiffiffiffi
θ

2−θ

r
LCLS ¼ −LS

ffiffiffiffiffiffiffiffi
θ

2−θ

r

The EWMAN statistic can be modified to

EWMAN jð Þ ¼ max θ MSE j− σ2 þ λσ2
uβ1

� 	� 	þ 1−θð ÞEWMAN j−1ð Þ; 0
 �
j ¼ 1; 2 ð20Þ

The chart will alarm an out-of-control condition if the
EWMAN statistic exceeds the upper control limit defined by

UCLN ¼ LN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 σ2 þ λσ2

uβ1

� 	2
n−2

θ
2−θð Þ

s
ð21Þ

where

EWMAN 0ð Þ ¼ 0

Fig. 3 Effect of measurement
error on the in-control ARL of T2

control chart with various sample
sizes n

Table 1 Effect of measurement
error on the out-of-control ARLs
when intercept shifts from βO to
βO+τσ

τ

Chart σu 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

EWMA-3 0 197.6 155.2 91.8 50.6 29.6 19.2 13.7 10.3 8.3 6.8 5.9

0.2 199.8 154.1 90.1 51.3 28.6 19.2 13.5 10.1 8.1 6.9 5.2

EWMA/R 0 198.9 65.6 17.7 8.4 5.8 4.5 3.8 2.4 2.2 1.9 1.7

0.2 199.1 72.7 19.9 9.2 5.8 4.3 3.4 2.9 2.5 2.2 2

T2 0 197.3 138.5 64.3 28.7 13.1 6.3 4.6 2.5 1.9 1.5 1.1

0.2 197.1 138.2 69.7 33.3 16 8.5 5 3.1 2.2 1.7 1.4
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4.2 EWMA/R approach

The EWMA control limits may be modified as

UCL ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ σ2 þ σ2

uβ
2
1

� 	
2−θð Þn

s
LCL ¼ −L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ σ2 þ σ2

uβ
2
1

� 	
2−θð Þn

s
ð22Þ

An out-of-control signal will be given as soon as R statistic
falls outside the following control limits

UCL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ σ2

uβ
2
1

� 	q
d2 þ Ld3ð Þ

UCL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ σ2

uβ
2
1

� 	q
d2−Ld3ð Þ

ð23Þ

4.3 T2 control scheme

Similar to the EWMA-3 control chart, in this approach, the T2

statistic must be modified. As a result, we have

T2
J ¼ u

0
j−u

� �TX −1
u

0
j−u

� �
j ¼ 1; 2

where u ¼ β0 þ β1μx 1−λð Þ½ ;λβ1�T , and

∑ ¼
σ2 þ λσ2

uβ1

� 	
n

þ w2
σ2
y−σwyλβ1

� �
Sww

−w
σ2
y−σwyλβ1

� �
Sww

−w
σ2
y−σwyλβ1

� �
Sww

σ2
y−σwyλβ1

� �
Sww

2
66664

3
77775
ð24Þ

The upper control limit for this chart is given by

UCL ¼ χ2
2;α

5 Setting up the control mechanisms based on an optimal
estimator of the true variable x

After applying the above-mentioned modifications, the in-
control ARL will be adjusted to a desired quantity identical
to the ordinary case where no measurement error exists.
Although the performance of EWMA-3, EWMA/R, and T2

control charts has been improved to a certain extent, the con-
trol chart modification method does not provide an unbiased
estimator for the true predictor variable x. To obtain the true
estimator for x variable, we can minimize the mean squared
error criteria. As Carroll et al. [7] mentioned, the best linear
prediction can be given by

wblpi ¼ 1−λð Þμx þ λwi i ¼ 1; 2 … n ð25Þ

Table 2 Effect of measurement error on the out-of-control ARLs when slope parameter shifts from β1 to β1+βσ

β

Chart σu 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

EWMA-3 0 197.0 168.3 117.9 78.7 51.9 35.2 24.8 18.4 14.5 11.6 9.5

0.2 201.4 187.9 139.9 89.4 59.7 40.9 28.6 21.4 16.6 13.2 10.9

EWMA/R 0 198.1 118.1 42.6 19.6 11.3 7.7 5.8 4.8 3.9 3.5 3

0.2 202.4 127.4 49.6 22.2 12.9 8.6 6.5 5.1 4.3 3.7 3.3

T2 0 198.7 166 105.8 61.8 32.4 19.8 13.1 7.9 5.1 3.9 3

0.2 196.2 172.2 119.5 74.6 43.9 26.9 16.6 10.7 7.2 5.1 3.8

Table 3 Effect of measurement
error on the out-of-control ARLs
when process standard deviation
shifts from σ to ξσ

ξ

Chart σu 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

EWMA-3 0 198.2 34.7 12.3 6.6 4.5 3.4 2.8 2.3 2.1 1.9 1.7

0.2 199.3 46 17 9.3 6.2 4.7 3.8 3.2 2.9 2.6 2.3

EWMA/R 0 196.9 33.5 11.8 5.9 3.8 2.8 2.2 1.8 1.6 1.5 1.4

0.2 197.2 40.9 14.7 7.3 4.5 3.2 2.5 2.1 1.8 1.6 1.5

T2 0 200.2 39.1 15.5 7.6 5 4 2.9 2.3 2.1 2.1 1.6

0.2 198.3 46.4 18.1 9.6 6.1 4.4 3.4 2.8 2.4 2.1 1.9
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According to Eq. (2), we have μx=μw. The MSE for this
variable is given as

MSEwblp ¼ λσ2
u ð26Þ

Obviously, the mean squared error for the observed vari-
able w can be defined as

MSEw ¼ σ2
u ð27Þ

It is reasonable, thus, to use wblp to determine the unob-
served x variable. Another scenario to improve control chart
performance is to use wblp variable as a substitute for the
observed variable w since the OLS method yields unbiased
estimators. The main reasons for constructing the control
charts based on wblp variable can be summarized as

1. This variable gives us an unbiased estimated of the true,
unobserved variable. This may be valuable in some
practical situations where practitioners are interested
in garnering information about the explanatory
variable.

2. As we will discuss in more depth, some of the statistics
built upon wblp have less variability. Decreasing the var-
iability gives higher detection power since the potential
shifts in the parameters seem larger when the variance of
the statistic is smaller.

Since the OLS estimators of the regression of y on
wblp are unbiased estimators, the STbβ1

statistic can be

expressed as

STbβ1

jð Þ ¼
bβ1 j−β1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
y−σwyλβ1

� �
λ2Sww

vuut
j ¼ 1; 2 ð28Þ

Superficially, one may conclude that since the variability of

slope estimator increases from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2y−σwyλβ1ð Þ

Sww

q
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2y−σwyλβ1ð Þ
λ2Sww

r
,

the performance of EWMA-3 control scheme is deteriorated
considerably. Suppose that, in Eq. (18), the slope parameter

shifts from β1 to β1+βσ. Given that variable is used, the mean
of EWMAS statistic is calculated as

E EWMAS

���wblph i
¼ βσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
y−σwyλβ1

� �
λ2Sww

vuut
¼ λβσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
y−σwyλβ1

� �
Sww

s ð29Þ

The expected value of EWMAS statistic when using w
variable is given by

E EWMAS

���wh i
¼ λβσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
y−σwyλβ1

� �
Sww

s ð30Þ

When slope shifts, the mean of EWMAS statistic shifts

from zero to λβσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2y−σwyλβ1ð Þ

Sww

q . This implies that the detection power

of this chart is equivalent to the situation where we establish
the EWMAS chart based on the observed variable w. Since
none of the components of EWMA-3 control chart changes
when employing wblp, it is reasonable to expect that the
charting performance of the EWMA-3 control chart would
not be affected when we construct this approach using wblp.
Hence, we did not use this variable to establish the EWMA-3
method.

The EWMA/R control strategy can be also constructed
using wblp variable. It is not hard to show that the control
limits for the EWMA chart are changed to

UCL ¼ Lσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ σ2 þ β2

1σ
2
X 1−λð Þ� 	

2−θð Þn

s

LCL ¼ −Lσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ σ2 þ β2

1σ
2
X 1−λð Þ� 	

2−θð Þn

s
ð31Þ

In this case, the upper and lower control limits associated
with R statistic are represented by

UCL ¼ σ2 þ β2
1σ

2
X 1−λð Þ� 	

d2 þ lld3ð ÞLCL
¼ σ2 þ β2

1σ
2
X 1−λð Þ� 	

d2−lld3ð Þ ð32Þ

Table 4 ARL comparisons when intercept shifts from β0 to β0+τσ

τ

Control scheme Estimating strategy 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

EWMA-3 Observed variable 198.6 154.9 89.9 50.5 30 19 13.7 10.4 8.3 6.9 5.8

EWMA/R Observed variable 199.8 145.4 76.4 38.1 21.7 14 10.1 7.6 6.2 5.3 4.6

wblp 198.4 132.6 59 26.7 15.2 10.1 7.4 5.8 4.8 4.1 3.6

T2 Observed variable 202.2 182.2 136.5 94.8 63.3 41 27.5 18.7 13 9.1 6.7

wblp 201.3 181.1 135.7 94.3 62.8 40.8 26.9 18.6 12.5 8.9 6.2
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Since the variances of EWMA and R statistics are smaller
compared to those when applying error-prone variable w, the
detection power of this chart must be improved. Hence, for the
EWMA/R chart, we have been able to improve the perfor-
mance using wblp variable.

Finally, the T2 statistic is given as

T2
J ¼ u

0
j−u

� �TX −1
u

0
j−u

� �
j ¼ 1; 2

where u ¼ β0;β1½ �T u ¼ β0;β1½ �T and

∑ ¼
σ2 þ λσ2

uβ1

� 	
n

þ wblp
2

σ2y−σwyλβ1

� �
λ2Sww

−wblp
σ2y−σwyλβ1

� �
λ2Sww

−wblp
σ2y−σwyλβ1

� �
λ2Sww

σ2y−σwyλβ1

� �
λ2Sww

2
66664

3
77775

ð33Þ

where wblp is the sample mean of wblp variable.

5.1 ARL performance comparison of the reconstructed charts
using wblp variable

To ascertain whether establishing the control charts using
wblp is effective or not, we have conducted a set of simula-
tions. In this set, we tried to compare the performance of two
types of charts. The first type is the charts suggested in Sect. 4
where all the charts were modified to include measurement
error using the observed variable w. The second type is the
charts set up using wblp variable. Here, we assume that the

standard deviation of the measurement error is 1, i.e., σu
2=1.

Table 4 presents the ARL values with respect to the intercept
shifts. The EWMA/R chart acts better than the other methods
since the best linear predictor of true variable x is applied. The
deteriorated behavior of EWMA-3 charts to detect the inter-
cept shifts is due to the variance inflation related to the inter-
cept estimator in the random-x case. There are two main fea-
tures that should be considered in Table 5. First, the wblp-
based EWMA/R chart outperforms the competitive methods
in discovering the slope parameter shifts. Second, the superi-
ority of EWMA-3 approach is observable when error-
contaminated data is used. Table 6 gives the ARLs when stan-
dard deviation shifts away from the in-control condition.
Clearly, the EWMA-3 and wblp-based EWMA/R charts per-
form equally.

6 Conclusions

It is very clear that when measurement error is ignored, unde-
sired or even serious results should be expected in terms of
nonconforming products or services. Our study here shows
that measurement error affects both the in-control and out-
of-control performance of the commonly used phase II profile
monitoring methods. To improve performances of the
methods discussed in this study, we modified the control
limits. Taking such an action, we have been able to equip
the control charts against the measurement error. This implies
that the practical ARL0 will be exactly the same as the

Table 6 ARL comparisons when standard deviation shifts from σ to ξσ

ξ

Control scheme Estimating strategy 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

EWMA-3 Observed variable 198.9 102.3 54.5 32.6 20.3 13.7 9.8 7.5 6 5 4.2

EWMA/R Observed variable 199.2 122.7 78.4 50.7 33.2 22.4 16.3 12.1 9.2 7.1 5.8

wblp 198.7 102.7 56.7 33.8 20.5 13.8 9.9 7.1 5.5 4.5 3.7

T2 Observed variable 197.1 116.3 71.5 44.1 29.4 20.1 14.7 11 8.6 7 5.7

wblp 198.9 115.1 71.8 44 29.1 19.9 13.9 11.4 8.1 6.8 5.2

Table 5 ARL comparisons when slope shifts from β1 to β1+βσ

β

Control scheme Estimating strategy 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

EWMA-3 Observed variable 197.6 154.4 119.1 78.1 51.9 36.5 26.7 19.8 15.9 12.8 10.7

EWMA/R Observed variable 196.7 178.1 125.9 83.5 53.6 34.8 26.7 19.9 15.7 12.9 10.2

wblp 196.2 153.2 94.2 56.5 33.5 22.3 15.6 11.9 9.4 7.8 6.5

T2 Observed variable 202.6 175.7 141 108.4 81.7 60.4 44.8 33.4 25.4 19.4 14.9

wblp 200.5 176.1 140.8 107.9 81.2 60.6 44.1 33.1 25.2 19.2 14.1
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nominal, desired one. Since the suggested charts do not offer a
suitable estimate for the true x variable, an unbiased estimator
referred to as wblpwas used. This variable helps the detection
power of the EWMA/R method to improve. As quick detec-
tion is an important property of control charts, we aim at
acquiring better detection power by applying wblp variable
in establishing the control charts. It is straightforward to show
that the EWMA-3 and T2 control mechanisms do not improve
using wblp. However, the EWMA/R chart seems to signifi-
cantly improve when it is built upon wblp. A small-size shift
in the intercept of a profile can be detected 22% quicker when
we take advantage of wblp variable instead of observed vari-
able w.
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