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Abstract Unstable environment of industrial systems is a
source of various uncertainties in production features such as
processing times. Moreover, selecting appropriate dispatching
rules is a complex and significant issue in practical problems
under uncertainty. Most previous studies have pointed out that
using a single dispatching rule does not necessarily result in an
optimal schedule. This study proposes a novel hybrid algo-
rithm based on computer simulation and adaptive neuro-fuzzy
inference system (ANFIS) to select optimal dispatching rule
for each machine in job shop scheduling problems (JSSPs)
under uncertain conditions so that makespan is minimized. It
captures uncertainty using fuzzy set theory and assumes that
processing times are in the form of fuzzy numbers. This algo-
rithm contributes to the previous works in two important
ways. First, the inherent uncertainty of JSSPs is reflected in
fuzzy processing times. Second, this is the first study that
develops an approach based on computer simulation and
ANFIS for selecting the optimal dispatching rules and mini-
mizing the makespan in JSSPs under uncertainty. The compu-
tational results demonstrate the superiority of this algorithm
over the previous studies in the literature.

Keywords Job shop scheduling problem . Fuzzy processing
times . Computer simulation .Adaptive neuro-fuzzy inference
system .Makespanminimization . Uncertainty

1 Introduction

Job shop scheduling problem (JSSP), as a well-known branch
of scheduling problems, is a combinatorial optimization prob-
lem (COP) that deals with allocation of resources to different
tasks over time. As a decision-making process, JSSP aims at
optimizing one or more objectives. JSSP can be defined as a
problem in which n jobs have to be processed by m machines
in a prearranged order, and the effort is to find the processing
sequences and starting times of each operation on each ma-
chine with the aim of optimizing given criteria [3]. The under-
lying assumptions in JSSPs include the following: (1) Simul-
taneous processing of different operations in each job is not
allowed, (2) each job can visit each machine at most once, and
(3) eachmachine can process at most one job at the same time.

According to Garey et al. [11], JSSPs are NP-complete and
among the most difficult COPs. As a result, finding the opti-
mal solutions through mathematical sense is very hard and not
always viable in practice. Therefore, heuristic algorithms are
commonly used to attain near optimal solutions of JSSPs.
Makespan minimization (i.e., minimizing the maximum com-
pletion time for processing all the jobs) as the objective of
JSSPs has a wide application in academic and industrial prac-
tices on account of its simplicity from amathematical perspec-
tive and straightforward formulation [3]. On the other hand,
based on the degree of uncertainty associated with input pa-
rameters, scheduling problems can be classified into determin-
istic and nondeterministic categories. The deterministic sched-
uling models do not take into account uncertainties, while the
real-world problems constantly face unstable events such as
machine failures, variations in due dates and demands, and
fluctuating processing times, which can lead to disruption
for working processes [18]. The concepts of fuzzy set theory
enable us to model imprecise and uncertain characteristics of
real-world situations. Because the uncertainty associated with
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processing times is quite common in JSSPs, it is more realistic
to take them as fuzzy numbers.

This study is a further extension of the work by Azadeh
et al. [3]. They optimized the dispatching rule selection
through computer simulation and artificial neural networks
(ANNs) so as to minimize the makespan in a stochastic envi-
ronment. Considering processing times as fuzzy numbers to
deal with uncertainty, this paper develops a new hybrid algo-
rithm based on computer simulation and adaptive neuro-fuzzy
inference system (ANFIS). To the best of our knowledge, this
is the first study that presents an approach based on computer
simulation and ANFIS for selecting the optimal dispatching
rules in an attempt to minimize the makespan in JSSPs.

The remainder of the paper is organized as follows.
Section 2 summarizes the relevant literature. Section 3 pro-
vides details of the proposed hybrid algorithm. Sections 4
presents the development process of the simulation network
for the JSSPs. Computational results are provided in Sect. 5.
Last, Sect. 6 is dedicated to the conclusions and directions for
future research.

2 Literature review

The literature contains a number of popular papers dealing
with JSSPs. For instance, a branch-and-bound algorithm and
some heuristic algorithms for JSSPs were proposed by Jurisch
[14]. A heuristic algorithm for the design and implementation
of a scheduling system with special no-wait or overlapping
constraints in a glass factory was developed by Alvarez-
Valdes et al. [1]. They attempted to find a schedule with a
criterion based on earliness and tardiness penalties. Pan and
Huang [22] developed a hybrid genetic algorithm (HGA) to
solve a no-wait job shop (NWJS) problem with the aim of
minimizing total completion time. Hasan et al. [12] studied
JSSPs, aimed to minimize makespan while satisfying several
constraints, and developed amemetic algorithm (MA) to solve
their problem. Sha and Lin [25] presented a particle swarm
optimization (PSO) algorithm for a complex multiobjective
JSSP. In order to do this, and on account of the discrete solu-
tion spaces of scheduling optimization problems, they had to
modify the original PSO (which was used to solve continuous
optimization problems). A novel heuristic algorithm based on
a filter-and-fan (F&F) procedure was proposed by Rego and
Duarte [24] for the JSSP that successfully integrated the clas-
sical shifting bottleneck procedure (SBP) with a dynamic and
adaptive neighborhood search procedure. Zhou et al. [36] pro-
posed a hybrid structure combining a heuristic and a genetic
algorithm (GA) for JSSPs to minimize weighted tardiness. In
their paper, they also presented a generalized hybrid frame-
work that was capable of adjusting to a variety of JSSPs with
or without sequence-dependent setups and with different

objectives (e.g., minimizing makespan, tardiness, flow time,
and so forth).

Flexible job shop scheduling problem (FJSP) is an exten-
sion of the traditional JSSP. Zhang et al. [35] integrated PSO
and tabu search (TS) algorithms to solve the multiobjective
FJSP with a number of contradictory and incommensurable
objectives. An artificial immune algorithm (AIA) based on
integrated approach was developed by Bagheri et al. [4] which
uses several policies to produce the initial population and also
to select the individuals for reproduction. Xing et al. [32]
presented a knowledge-based ant colony optimization
(KBACO) algorithm to solve FJSSP. Wang et al. [31] pro-
posed an effective artificial bee colony (ABC) algorithm to
deal with FJSP with the objective of minimizing makespan.
An FJSP with machine availability constraints was studied by
Wang and Yu [30] in which all the machines were prone to
preventive maintenance (PM) during the planning period.
They presented a filtered beam search (FBS)-based heuristic
algorithm to solve this problem.

In the literature, fuzzy sets theory, introduced by Zadeh [33],
has been extensively used by many works in the fields of op-
eration research, management science, simulation, and many
other fields [2]. For example, Lei [16] investigated the fuzzy
JSSP with availability constraints and aimed to find a schedule
that maximized the minimum agreement index subject to peri-
odic maintenance, nonresumable jobs, and fuzzy due date. In
another paper, Lei [17] presented an FJSP with fuzzy process-
ing times and developed a decomposition-integration genetic
algorithm (DIGA) to deal with the problem with the aim of
minimizing the maximum fuzzy completion time. Based on
simulation experiments, Muhuri and Shukla [20] considered
fuzzy processing times and fuzzy due dates with different mem-
bership functions to model uncertainty of the real-time tasks.
The authors emphasized that based on fuzzy times, there are
various satisfaction crossover points of modified task deadlines
for distinct membership functions of task deadlines resulting in
different satisfactions of scheduling ways of task set. Chen [8]
fuzzified the tailored nonlinear fluctuation smoothing rule for
mean cycle time (TNFSMCT) for job dispatching in a wafer
fabrication factory. Employing fuzzy concepts, numerous new
training approaches have been developed, such as ANFIS [13].
ANFIS architecture is composed of both ANN and fuzzy logic
involving linguistic expression of membership functions (MFs)
and if–then rules. It has been successfully used bymany studies
(see for example, [5–7]).

Also, simulation has been used in a lot of works on JSSPs.
For instance, integrating the simulation and response surface
methodology (RSM), Zhang et al. [34] presented a method for
assessment and optimization of dispatching rules. Lin et al.
[19] developed discrete event simulationmodels to implement
the heuristic dispatching rules in an automated material han-
dling system (AMHS) with a zone control scheme to prevent
vehicle collision. In the field of JSSPs, Azadeh et al. [2], for
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the first time, introduced a flexible intelligent approach for
dealing with vagueness and nonlinearity of scheduling prob-
lems. They presented a flexible ANN–fuzzy simulation
(FANN–FS) algorithm to solve this multiattribute combinato-
rial dispatching (MACD) decision problem.

Several recent studies have employed the combination of
neural networks and fuzzy rules as in ANFIS for JSSPs. Ac-
cording to Dong and Liu [9], this is due to some practical
characteristics of ANFIS such as self-learning, nonlinear map-
ping, and the form of if–then fuzzy rules. Dong et al. [10]
utilized ANFIS to combine the heuristic rules and obtained
some fuzzy rules in JSSPs with parallel machines. Using sim-
ulation, they showed that the ANFIS-based adaptive algo-
rithm combines the rules properly and outperforms heuristics
rules. Dong and Liu [9] employed ANFIS to combine the
heuristic rules nonlinearly and took it as an adaptive schedul-
ing rule to sort jobs. In the work by Shafaei et al. [26], six
heuristic algorithms along with ANFIS were used for estimat-
ing the makespan to solve a no-wait two-stage flexible flow
shop. Table 1 summarizes the related literature.

In this paper, the inherent uncertain nature of input
parameters is represented as fuzzy processing times. The
proposed algorithm uses the combination of neural net-
works and fuzzy rules in ANFIS approach together with
discrete event simulation and attempts to minimize
makespan by selecting optimum dispatching rules in
JSSPs. For this purpose, simulation is first developed
to evaluate different permutations of dispatching rules.

Subsequently, based on the results obtained, a feed for-
ward ANFIS is employed to search the solution space
and achieve the global optimal solution.

3 The proposed hybrid algorithm

In this section, a new hybrid algorithm based on discrete event
simulation and ANFIS is presented to find the optimal solu-
tion to JSSPs in an uncertain environment. The priority rules
are considered nonidentical, and the variability in the process-
ing times is taken into account in the form of fuzzy numbers.
This algorithm aims to select the best set of dispatching rules
among a set of assigned rules to each machine in an attempt to
minimize the makespan. The following steps describe the gen-
eral framework of the proposed algorithm:

Step 1 Build the discrete event simulation network of the
JSSP using the problem’s data including parameters
of fuzzy processing times on each machine, numbers
of the machines and jobs, and machining sequence of
the jobs.

Step 2 Define the following ten priority rules to allocate to
each machine [27]. Since this is an actual system, the
experts of the system have identified ten dispatching
rules as follows. In these rules, “TNOW” denotes the
current time of simulation. “Number of machines”
shows the number of all machines involved in the

Table 1 Overview of the related literature

Study Objective Methodology Data complexity
and nonlinearity

Fuzzy
processing
times

Global
optimization

Intelligent
modeling and
forecasting

Zhang et al. [34] Evaluation and optimization of
dispatching rules

Simulation and
response surface
methodology (RSM)

✓ ✓

Azadeh et al. [3] Minimizing makespan Simulation and
ANNs

✓ ✓ ✓

Orides et al. [21] AGVs’ assignment Genetic algorithm
(GA)

✓

Sha and Lin [25] Multi-objective optimization Particle swarm
optimization
(PSO)

Shafaei et al. [26] Minimizing makespan Six heuristic
algorithms-
ANFIS

✓ ✓ ✓

Wang et al. [31] Minimizing the maximum
makespan

Artificial bee colony
(ABC)

Lei [16] Minimizing the maximum fuzzy
completion time

GA ✓ ✓

Hasan et al. [12] Minimizing makespan Memetic algorithm
(MA)

This study Optimizing dispatching rules
with the aim of minimizing
makespan

Computer Simulation- ANFIS ✓ ✓ ✓ ✓
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processing for each job. “Jobstep” represents the cur-
rent step of processing for each job. Thus, the expres-
sion “number of machines-jobstep” indicates the re-
maining steps for each job. The term “proctime” rep-
resents the mean of the processing times of the jobs.
These rules are applied where one machine is avail-
able and more than one job can be processed on it to
achieve a better solution.

(1) FIFO (first in first out);
(2) LIFO (last in first out);
(3) LVF (low value first) on (proctime);
(4) HVF (high value first) on (proctime);
(5) HVF on number of machines� jobstep

proctime

� �

(6) LVF on number of machines�jobstep
proctime

� �
;

(7) HVF on numberof machines� jobstepð Þ;
(8) LVF on numberof machines� jobstepð Þ;
(9) HVF on number of machines�jobstep

TNOWþproctime

� �
;

(10) LVF on number of machines�jobstep
TNOWþproctime

� �
.

Step 3 Run the simulation model to obtain the makespan
value for an adequate number of different sets of
permutation of priority rules (here, 300 sets of per-
mutations are considered). For this purpose, allocate
values between 1 and 10 to each machine, arbitrarily.
For example, a problem with five machines and the
assigned set [2 5 3 1 4] implies that a solution with
priority rules 2, 5, 3, 1, and 4 has been allocated to
machines 1 to 5, respectively.

Step 4 Assign 85 % of the output data set yielded by the
simulation model (i.e., makespan) together with the
relevant input data as the training data to train differ-
ent architectures of ANFIS.

Step 5 Apply the remaining 15 % of the data as the test data
to test the trained ANFIS models, and calculate their
corresponding mean absolute percentage error
(MAPE) values as the relative error. Thereafter, select
the ANFIS model with the minimum MAPE value
and call it optimal ANFIS.

Step 6 In order to examine the efficiency of the optimal
ANFIS, design several multilayer perceptron
(MLP) ANNs and perform the same procedure on
them, and compare their MAPE results with that of
the optimal ANFIS.

Step 7 Having trained and tested the ANFIS, run the optimal
ANFIS to estimate the makespan values related to all
possible permutations of priority rules and specify the
minimum one.

Generally speaking, it is impossible to use simulation
approach solely to evaluate all solutions of a JSSP even
with a very few number of machines. Because, by consid-
ering nonidentical machine priority rules for a problem
with n machines, there are 10n solutions, resulting in,

for example, 10,000 times running the simulation model
for a problem with four machines. ANFIS, as a fuzzy
inference network, removes the need of simulating all
permutations of priority rules. The structure of the pro-
posed algorithm is depicted in Fig. 1.

Model the non-deterministic JSSP by

discrete-event simulation

Define priority rules of machines and

assign a certain code to each one

Generate 300 sets of machine priority

rules

Run the simulation model for 300

alternatives and obtain makespan values

Train different ANFIS architectures using the

priority codes and the obtained makespans

Is the optimal

ANFIS verified

and valid?

Employ the optimal ANFIS to find optimal set

of rules with the aim of makespan minimization

Start

End

Test the trained ANFIS architectures and select the one

with the minimum MAPE value as the optimal ANFIS

No

Yes

To evaluate the efficiency of the optimal ANFIS,

compare its MAPE value with those of different ANNs

Fig. 1 Diagram of the proposed hybrid algorithm
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4 Simulation network modeling

Simulation is a powerful tool for understanding the behavior
of systems and analyzing scenarios [23]. It has extensively
been applied by previous studies for solving scheduling prob-
lems (see for example, [15,28,29]). Figure 2 depicts a
network-based modeling for a fuzzy JSSP with five jobs and
five machines by Visual Slam simulation software. In this
model, jobs and machines are taken as entities and servers,
respectively. Each entity with a specific attribute representing
its type is emanated in the network by a CREATE node. Lo-
cated after the CREATE node is the ASSIGN node which
determines the type of jobs. A full description of all the nodes
in Fig. 2 is provided in Pritsker and O’Reilly [23]. After free-
ing a machine based on the predefined priority rule, a job is

selected and allocated to it and the other jobs wait in the file
number of machines. AWAIT node, located in the correspond-
ing subnetwork, performs this process. In this study, there are
five subnetworks, each modeling a machine. This approach
allows assigning a priority rule to each machine [3]. The sub-
network related to machine 1 is illustrated in Fig. 3. As men-
tioned earlier, processing times are taken as fuzzy numbers.
The lower and higher bounds for processing times of each
machine are defined in accordance with each job to represent
variability. A proctime variable sorts the mean of each pro-
cessing time on each machine.

Using the FREE node, the operation is declared to be com-
pleted, and the machine is available to process the next oper-
ation. This procedure is replicated until all operations are proc-
essed by machines. The time of system for all jobs is

Fig. 2 Simulation network designed by Visual SLAM® for a JSSP with five jobs and five machines

Fig. 3 Visual SLAM®
subnetwork model for machine 1
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Table 2 Visual SLAM® original network module definitions

Label Node Definition

Job_1_Entrance CREATE Job-type 1 arrives

Job_2_Entrance CREATE Job-type 2 arrives

Job_3_Entrance CREATE Job-type 3 arrives

Job_4_Entrance CREATE Job-type 4 arrives

Job_5_Entrance CREATE Job-type 5 arrives

Assign_jobtype1 ASSIGN The label of “type 1” is assigned to the job

Assign_jobtype2 ASSIGN The label of “type 2” is assigned to the job

Assign_jobtype3 ASSIGN The label of “type 3” is assigned to the job

Assign_jobtype4 ASSIGN The label of “type 4” is assigned to the job

Assign_jobtype5 ASSIGN The label of “type 5” is assigned to the job

NEXTSTEP ASSIGN Job types are assigned to the machines

Subnet1 CALLVSN Calls VSN 1 and sends entities (jobs) to it

Subnet2 CALLVSN Calls VSN 2 and sends entities (jobs) to it

Subnet3 CALLVSN Calls VSN 3 and sends entities (jobs) to it

Subnet4 CALLVSN Calls VSN 4 and sends entities (jobs) to it

Subnet5 CALLVSN Calls VSN 5 and sends entities (jobs) to it

No label VSN Defines VSN 1 name and its parameters

No label VSN Defines VSN 2 name and its parameters

No label VSN Defines VSN 3 name and its parameters

No label VSN Defines VSN 4 name and its parameters

No label VSN Defines VSN 5 name and its parameters

No label RESOURCE The resource “machine 1” and its capacity

No label RESOURCE The resource “machine 2” and its capacity

No label RESOURCE The resource “machine 3” and its capacity

No label RESOURCE The resource “machine 4” and its capacity

No label RESOURCE The resource “machine 5” and its capacity

Enter VSN ENTERVSN Enters elected jobs to machine 1 sub-network

Enter VSN ENTERVSN Enters elected jobs to machine 2 sub-network

Enter VSN ENTERVSN Enters elected jobs to machine 3 sub-network

Enter VSN ENTERVSN Enters elected jobs to machine 4 sub-network

Enter VSN ENTERVSN Enters elected jobs to
machine 5 sub-network

getmach AWAIT Asks for machine 1 to be processed

getmach AWAIT Asks for machine 2 to be processed

getmach AWAIT Asks for machine 3 to be processed

getmach AWAIT Asks for machine 4 to be processed

getmach AWAIT Asks for machine 5 to be processed

freemach FREE Frees machine 1

freemach FREE Frees machine 2

freemach FREE Frees machine 3

freemach FREE Frees machine 4

freemach FREE Frees machine 5

RTRNVSN RETURNVSN Determines return and exit rules for VSN 1

RTRNVSN RETURNVSN Determines return and exit rules for VSN 2

RTRNVSN RETURNVSN Determines return and exit rules for VSN 3

RTRNVSN RETURNVSN Determines return and exit rules for VSN 4

RTRNVSN RETURNVSN Determines return and exit rules for VSN 5

Collect1 COLCT Collects time in system for all job types

Terminate TERMINATE Destroys entity and completes simulation
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accumulated via a COLCT node, and its report is printed to an
output file. As all jobs enter the TERMINATE node, the sim-
ulation will be completed. Table 2 gives the label and role of
all nodes in the Visual SLAM. For more information regard-
ing modeling and simulation by Visual SLAM, the interested
readers are referred to Pritsker and O’Reilly [23].

5 Experimental results

This section provides the results of applying the proposed
approach on a 5×5 testbed problem. As mentioned earlier,
processing times are considered in the form of triangular fuzzy
numbers. The lower and higher bounds for processing times
of each machine are defined with respect to each job. They
specify the variability of the processing times. Table 3 shows
the processing times of machines on the jobs. Also, the ma-
chine sequence for each job is provided in Table 4.

The problem data are used to develop the simulation model
using an appropriate control statement. The control statement
contains information regarding machine sequences and pro-
cessing times. INTLC statement allocates values to string var-
iables such as the resource names. It is favorable that time of
the system (i.e., makespan) be minimized by achieving the
optimal set of priority rules. Because processing times are
fuzzy numbers changing between their lower and higher
bounds, the simulation outputs, e.g., makespan, are not con-
stant values in all the replications of the simulation model.
Hence, to ensure the robustness of the simulation results, the
model is replicated 1000 times for each possible set of
dispatching rules, and the average of outputs of 1000 runs is
considered as the final makespan.

The simulation results (i.e., makespan values) of testbed
problem in visual SLAM obtained for 300 different permuta-
tions of machine priority rules are used for training and testing
different ANFIS architectures. To this end, after implementing
the simulation model, the input data in conjunction with the
corresponding outputs of the simulation model are used to de-
velop the ANFIS model. Note that 187 data sets (i.e., 85 % of
the total) are selected for training the ANFIS architectures, and
the rest (i.e., 33 data sets) are used to test them. Moreover, we
have five jobs and five machines, and each job has a processing
time on each machine. Thus, there are 25 inputs related to
processing times and 5 inputs for dispatching rules for ANFIS
resulting in 30 inputs. Makespan values yielded by running the
simulation are the only outputs of the ANFIS. It should be
mentioned that the processing times of the jobs on machines
are divided into nine values between the relevant ranges. For
example, the divisions of the processing time of job 5 on ma-
chine 1 are 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, and 8. These
values are arbitrarily selected as the inputs for ANFIS models.

Different ANFIS architectures are designed, and the value
of MAPE related to test data is calculated for each of them. It

should be mentioned that, in order to handle possible noise,
each ANFIS architecture is run 50 times and the average
MAPE value is considered as the final MAPE. The ANFIS
model with the minimum MAPE value is selected as the op-
timal ANFIS. In order to validate the optimal ANFIS model,
we perform the same procedure and obtain MAPE values for
different MLP-ANN structures and compare the results with
those of the optimal ANFIS. MATLAB software package is
applied for codification. Tables 5 and 6 present the respective
results for different ANFIS structures and ANNs. Note that the
very 187 data sets are used for training and validating ANNs
and the remaining 33 data sets are meant for testing. As is clear

Table 3 Processing times of machines for jobs 1–5

Job Machine Lower bound Mean Higher bound

1 1 5 7 9

2 1 2 3

3 8 10 12

4 3 4 5

5 2 3 4

2 1 4 5 6

2 0.5 1 1.5

3 6 8 10

4 4 6 8

5 8 10 12

3 1 1 2 3

2 6 8 10

3 5 6 7

4 2 3 4

5 2 3 4

4 1 3 4 5

2 6 8 10

3 6 7 8

4 1 2 3

5 8 9 10

5 1 6 7 8

2 9 10 11

3 4 5 6

4 4 5 6

5 6 8 10

Table 4 Machine
sequences Jobs Machine sequence

1 3–2–4–1–5

2 3–5–1–4–2

3 5–2–1-3–4

4 1–3–4–5–2

5 2–5–4–3–1
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from these tables, the optimal ANFIS possesses a smaller
MAPE value (i.e., 0.128) compared to all ANN structures
provided in Table 6, and thus is verified. Moreover, Fig. 4
depicts the graphical representation of comparison be-
tween the actual makespan values obtained by simulation
and those predicted by optimal ANFIS. The visual fitness
between the actual and predicted values as well as the
MAPE values indicate that the simulation model was ca-
pable of providing a suitable training set to develop reli-
able ANFIS, resulting in efficient estimation of the
makespan values for all possible situations (i.e., all permu-
tations of priority rules).

In this step, optimal ANFIS is prepared to be applied to
determine the estimated makespan values for all permuta-
tions of machine priority rules. Table 7 gives some of the
resultant makespan values. Using the proposed hybrid al-
gorithm, the local optimal makespan value is equal to
48 min for the 5×5 problem, while the near optimal
makespan values obtained by computer simulation method
[27] and simulation-ANN [3] were 50.438 and 48.803 min,
respectively.

Practically speaking, using computer simulation solely, nu-
merous outputs (for example 100,000 solutions for a problem
with five machines) are required to find in order to achieve the
optimal solution. This is a very time-consuming process. The

Table 5 Architecture of different ANFIS architectures and their associated relative error (MAPE)

Input MF Output MF Initial FIS N of Cls N of MFs R Opt. And Or Imp. Agg. MAPE

G L SC 0.7 H Min Max Min Max 0.161

G L SC 0.6 BP Min Max Prod Sum 0.153

G L SC 0.3 BP Min Probor Min Sum 0.211

G L SC 0.4 H Prod Max Min Sum 0.206

G L SC 0.5 BP Prod Max Prod Sum 0.172

G L SC 0.2 H Prod Probor Min Max 0.164

Tri C GP 2 H Prod Max Min Sum 0.267

G L GP 3 BP Min Max Prod Max 0.148

G C GP 2 H Prod Max Prod Sum 0.161

Tri L GP 3 BP Min Probor prod Max 0.224

Tri C GP 2 H Min Probor Prod Sum 0.182

G L GP 3 BP Prod Probor Min Max 0.177

G L FC 7 BP Min Max Min Max 0.152

G L FC 5 H Prod Max Min Sum 0.155

G L FC 6 BP Min Probor Min Max 0.128

G L FC 8 BP Min Max Prod Max 0.166

G L FC 4 H Prod Probor Prod Sum 0.148

G L FC 9 H Prod Probor Min Sum 0.139

SC subtractive clustering,GP grid partition, FC fuzzy c-means (FCM) clustering,H hybrid, BP backpropagation, R radius, FIS fuzzy inference system,
MF membership function, Cl cluster, Opt optimization method, Imp. implication method, Agg. aggregation method, G gaussmf, Tri trimf, L linear, C
constant, N number

The bold entry shows the best ANFIS architecture

Table 6 Architectures of different MLP-ANN models and their
associated relative error (MAPE)

MLP
ANN
No.

Training
function

Transfer
function of
the hidden
layer

Number of
neurons in the
hidden layer

Transfer
function of
the output
layer

MAPE

1 LM logsig 8 purelin 0.151

2 GDA tansig 5 purelin 0.171

3 BFGS tansig 7 purelin 0.155

4 OSS logsig 15 purelin 0.173

5 GD tansig 12 purelin 0.199

6 LM logsig 4 purelin 0.165

7 GDX tansig 9 purelin 0.180

8 GDA tansig 12 purelin 0.181

9 BFGS logsig 6 purelin 0.159

10 OSS logsig 14 purelin 0.190

11 LM tansig 11 purelin 0.172

12 GDX logsig 9 purelin 0.187

LM Levenberg–Marquardt backpropagation, GD gradient descent
backpropagation, OSS one-step secant backpropagation, GDA gradient
descent with adaptive learning rule backpropagation, BFGS quasi-New-
ton backpropagation, GDX gradient descent with momentum and adap-
tive learning rule back propagation
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proposed hybrid algorithm significantly reduces the time re-
quired to select the optimal set of dispatching rules and im-
proves attaining optimal solutions for small-sized JSSPs under
uncertainty. The CPU time required for training the network
and searching the solution space was 1280.44 s for the 5×5
fuzzy JSSP. Thus, the proposed hybrid algorithm improves the
process of selecting optimal dispatching rules in terms of com-
putational time and achieving optimal solutions for small-
sized JSSPs under uncertainty.

6 Conclusions and directions for future research

This paper dealt with minimizing makespan for JSSPs in an
uncertain environment. Unstable conditions in JSSPs such as
machine failure, operator unavailability, and various due dates
lead to accompanied uncertainty with input parameters. These
characteristics add to variability, complexity, and nonlinearity
of the problem. A new hybrid algorithm based on computer
simulation and ANFIS was proposed in this study to consider

Fig. 4 Optimal ANFIS output versus the simulation output (actual value)

Table 7 All solutions of the 5×5
fuzzy JSSP estimated by the
optimal ANFIS

Permutation no. Dispatching rule Makespan

machine 1 machine 2 machine 3 machine 4 machine 5

1 1 8 3 5 6 63

2 2 3 6 1 3 51

3 9 2 4 7 9 61

4 8 7 5 6 1 62

5 9 9 8 3 3 48

6 9 2 4 7 9 53.5

7 4 2 1 9 2 66.5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
99993 6 2 10 1 8 48.25

99994 10 10 10 9 5 48

99995 2 7 7 7 7 55.5

99996 4 10 9 7 3 55.5

99997 5 2 1 7 4 63.625

99998 4 10 9 7 3 48

99999 4 2 4 8 9 46.5

100000 4 2 6 2 1 68
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several dispatching rules in JSSPs, simultaneously, and to min-
imize makespan under uncertain processing times. Processing
times were assumed to be fuzzy numbers. A JSSP with five
machines and five jobs was considered as our test problem.
Discrete event simulation was employed due to its capability
to handle complex and nonlinear problems. Three hundred sets
of priority rules in conjunction with their corresponding
makespan values obtained by the simulation model were taken
as the input data for training and testing different architectures
of ANFIS. The ANFIS structure with the minimum relative
error (MAPE) was considered as the optimal ANFIS. Thereaf-
ter, in order to test the efficiency of the optimal ANFIS, it was
compared to different structures ofmultilayer perceptron ANNs
in terms of MAPE value. The optimal ANFIS was then
employed to search the solution space and estimate the
makespan values of all possible sets of dispatching rules to
achieve the local optimal solution of the JSSP.

Based on the results obtained, the proposed algorithm
proved to be an efficient structure for minimizing the
makespan in JSSPs under uncertainty. It attempts to reduce
the computational time considerably and find the optimal so-
lution for small-sized JSSPs under uncertainty. The hybrid
computer simulation-ANFIS algorithm provides higher preci-
sion via preprocessing (training) and postprocessing (testing)
the given data. It is also capable of capturing the uncertainty,
complexity, and nonlinearity of the environment. This algo-
rithm helps managers to assess the performance of the job
shop systems by assigning various priority rules to machines.
Although it practically finds the optimal solution within a
reasonable period of time for small-sized problems, it cannot
be properly applied to large-scale problems with numerous
machines and great solution spaces. It should be mentioned
that, because of the ability of ANFIS to handle multiple out-
puts, the method can consider several objective functions.
Therefore, the study of bicriteria and multicriteria JSSPs under
uncertainty could be considered as further research.
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