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Abstract Remanufacturing is effective for energy and mate-
rial savings; however, production planning and control in
remanufacturing are more complex than those in traditional
manufacturing. Developing a reliable forecasting method is
critical for facilitating effective production planning and con-
trol. This study examined the effectiveness of demand fore-
casting in remanufacturing by time series analysis. Most
existing methods of demand forecasting in remanufacturing
assume that the time distributions of new product sales are
known and that the time distributions of the demands of
remanufactured products are determined by adding the prod-
uct lifespan to the time distribution of new product sales. In
addition, most previous studies focused on relatively long-
term demand trends without considering the seasonality of
demands. In this study, we examined the Holt–Winters model
and the autoregressive integrated moving average (ARIMA)
model, both representative time series analysis methods.
These methods do not require information regarding the time
distributions of new product sales and can handle the season-
ality of demands. To examine the effectiveness of these
methods, the time series data of the sales of 160 types of
remanufactured alternators and starters manufactured by an
independent auto parts remanufacturer over a period of
12 years was used. The results of demand forecasting for
2 months yielded average errors of 26.7 % for alternators
and 18.4 % for starters, which represent an average improve-
ment of 6.5 points compared to the method involving

referencing the demands of the same month of previous year.
The implications of the results and future steps are also
discussed.
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1 Introduction

The industrial process of remanufacturing restores end-of-life
products to their original working condition. Because
remanufacturing retains the geometrical shape of the product,
it preserves the materials and the value add embedded in the
original product. In many cases, the ratio of total energy re-
quired for fresh production compared to that required for
remanufacturing is approximately 6:1 [1]. In consideration
of these features, generally, remanufacturing is considered
the most environment friendly end-of-life treatment for
discarded products [2]. Remanufactured products include auto
parts, heavy-duty equipment, aerospace, machinery, informa-
tion technology products, medical devices, photocopiers, etc.
Lund identified 75 separate product types that are routinely
remanufactured [3]. Moreover, remanufacturing now holds an
important position in economic activity. In the USA, as of
2011, sales of remanufactured products were estimated to be
worth $43.0 billion annually, and the remanufacturing indus-
try supported 180,000 full-time jobs [4]. In terms of economic
impact, remanufacturing can be compared to large industries
such as household consumer durable goods, steel mill prod-
ucts, computers and peripherals, and pharmaceuticals [5, 6].

There are many driving forces for employing product
remanufacturing in product recovery, as are barriers against
remanufacturing. Lund, for example, proposed seven criteria
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that should be evaluated for establishing the suitability of
products for remanufacturing [3]. In terms of remanufacturing
requirements, Guide indicated the following seven character-
istics that complicate production planning and control in
remanufacturing [7]. (1) uncertainty in terms of the timing
and quantity of returned products, (2) need to balance returns
with demands, (3) disassembly of returned products, (4) un-
certainty in materials recovered from returned items, (5) re-
quirement for a reverse logistics network, (6) complication of
material matching restrictions, and (7) problems of stochastic
routings for materials for remanufacturing operations and
highly variable processing times. The current study investi-
gates the first and second items listed above. Uncertainty in
the timing and quantity of returned products is considered to
be the major difference between a traditional production–dis-
tribution network and a product recovery network [7–10]. In
addition, to maximize profit, a remanufacturer must be able to
balance the return of cores against customer demand for
remanufactured products. If not, the remanufacturer faces the
risk of building up excessive amounts of inventory when
returns exceed demand or low levels of customer service when
demands exceed supply [7]. To deal with these difficulties,
forecasting product returns and demand is one of the most
crucial issues. Forecasting is effective for used product acqui-
sition management, capacity planning [11], and inventory
management [12], which in turn are required for various op-
erational planning activities in remanufacturing [11].

This paper examines demand forecas t ing for
remanufactured products. Figure 1 illustrates the time distri-
butions of new product sales and demand for remanufactured
products in the case of auto parts. The new product sales
shown in the figure are of products supplied for use in new
automobiles. Over time, all new products reach their end-of-
life. The proportions of products that reach end-of-life gener-
ate demand for spare parts. If the end-of-life of an auto part

occurs earlier than that of the automobile, there will be de-
mand for a spare part to replace it. A proportion of this de-
mand for spare parts is fulfilled by remanufactured products.
Other parts that reach the end-of-life stage are replaced with
new products or reused products or are repaired. In the case of
multiple remanufacturing companies, a proportion of the de-
mand for remanufactured products manifests as the demand
for remanufactured products from company A, which is the
subject company of this study. An enlarged image of the sec-
tion of the plot of demand for company A’s remanufactured
products from t0 to tk is shown at the bottom of Fig. 1. The
objective of this study is to forecast the demand for
remanufactured products made by company A.

Previous studies on demand forecasting in remanufacturing
have several features. First, most studies are based on the
assumption that the time distributions of new product sales
are known and that the time distributions of product end-of-
life and product return are calculated by adding the product
use period to the time distribution of new product sales.
Second, previous studies tend to attempt forecasting a relative-
ly long-term trend of demands. Third, in relation to the second
point, few studies have dealt with the seasonality of demand.
The first feature is largely a consequence of the assumption
that the original equipment manufacturer (OEM) is the exec-
utor of remanufacturing operations. The second and third fea-
tures are attributed to the facts that some studies have focused
on long-term product life cycle planning as their goal and that
the products that they targeted may not have had demand
seasonality. Therefore, an approach different from conven-
tional methods is required. For example, in auto parts
remanufacturing, independent remanufacturers (IRs) usually
do not have accurate information regarding the time distribu-
tion of new product sales. In addition, both short- and long-
term demand forecasting are necessary for production plan-
ning, and there is demand seasonality in some types of auto
part products.

On the basis of the above-described background, demand
forecasting via time series analysis is investigated in this
study. In time series analysis, trends are extracted from past
historical transitions, and forecasts are performed by exten-
sion. Thus, the timing of new product sales or product use
period is not used. Also, time series analysis allows the han-
dling of seasonal fluctuations and is useful in short-term fore-
casting, especially when demand transition is stable. Thus far,
few studies have investigated the precision and features of
time series analysis demand forecasting using actual data of
remanufactured products. To examine the effectiveness of the
proposedmethod, the times series data of the sales of an actual
IR of auto parts for 160 types of remanufactured alternators
and starters over a period of 12 years were employed.

The remainder of this paper is organized as follows. In
Sect. 2, previous studies on forecasting product return and
demand are outlined. Section 3 provides an overview of auto

Fig. 1 Time distributions of new product sales, end-of-life of products,
demand for spare parts, and demand for remanufactured products
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parts remanufacturing, the data used in this study, problem
setting in this study, and formulation of the time series analysis
method employed. Section 4 presents the results, and the con-
clusions are presented in Sect. 5.

2 Literature review

Production planning and control in remanufacturing are more
complex than those in traditional manufacturing [7]. To han-
dle the added complexity, forecasting the timing of product
returns and demands is crucial. Previous methods of forecast-
ing product end-of-life, product returns, and demand can be
categorized into three types described as follows.

The first type comprises physical-based methods, where
the remaining useful life (RUL) of individual products is fore-
cast based on the physical condition of the product. This meth-
od is related to reliability engineering. For example, physical-
based methods are often used in RUL prediction of dies and
molds [13]. The service life of dies and molds is limited by
several factors such as dimensional error due to macro-wear,
overstress due to stress concentration, and fracture due to fa-
tigue [14]. Physical-based methods quantitatively feature the
failure mode behavior using physical models of components
and damage mechanics-based damage propagation models
[13]. In addition to dies and molds, physical-based methods
are applied to industrial machines for product maintenance. In
the preventive maintenance of machines, product failures are
predicted based on the information obtained by monitoring
product condition. Such machines include machine tools
[15], aircraft engines, power turbines, and medical equipment.
Physical-based models tend to outperform other models when
the precise physical model of the product can be developed
and when all data necessary for model quantification are avail-
able [16]. However, it is not always realistically possible to
completely understand the failure mechanisms under the
range of relevant operating conditions. Because the data nec-
essary for model quantification are not available in auto parts
cases, physical-based methods are not applicable in auto parts
remanufacturing.

In the second type of methods, the time distributions of
product end-of-life and product returns are calculated by
adding the product use period to the time distribution of new
product sales. This approach has been used widely in existing
studies on remanufacturing. Pioneering works on forecasting
product return for remanufacturing include those of Kelle and
Silver [17] and Goh and Varaprasad [18]. These researchers
developed forecasting models for the returns of reusable con-
tainers that are used typically to sell or store liquids. Although
in strict terms, the return of reusable containers is different
from product returns in remanufacturing [7], their works are
precursory attempts at product return forecasting. Several re-
searchers have presented case studies to build forecasting

models for remanufacturing specific products. Toktay et al.
[8] used return data of single-use Kodak cameras to develop
a discrete-time distributed-lag model with dynamic informa-
tion updates to estimate product returns. Marx-Gomez et al.
[19] investigated forecastingmodels applicable to photocopier
remanufacturing. They developed a fuzzy reasoning scheme
and a neuro-fuzzy model to predict the quantity and timing of
photocopier returns to the OEM. Umeda et al. [20] presented a
model that describes the balance between product returns and
demands for single-use cameras, photocopiers, and automated
teller machines based on empirical data. As mentioned previ-
ously, conventional forecasting studies in the remanufacturing
domain typically assume that the time distributions of new
product sales are known and have focused on long-term de-
mand trends without addressing the seasonality of product
end-of-life. The assumption that the time distribution of new
product sales is known is reasonable when the OEM is the
remanufacturer. The condition under which the OEM reman-
ufactures is applicable to photocopiers, single-use cameras,
and various other capital goods. However, IRs may not pos-
sess accurate information regarding the time distribution of
new product sales. The present study investigates demand
forecasting by time series analysis, where such information
is not required and seasonality of demand is addressed.

The third category is demand forecasting by time series
analysis, which has been applied in some fields such as main-
tenance repair parts [12, 21], tourism [22, 23], food products
[24, 25], and electricity [26, 27]. One of the targets is mainte-
nance repair parts. The demands for maintenance repair parts,
such as those of aircrafts, are intermittent [12, 21]. Such inter-
mittent demands tend to be random in terms of time and quan-
tity and have a large proportion of time when the demand is
zero. Gohbbar and Friend [12] investigated time series analy-
sis methods that are effective for such intermittent demands.
The forecasting accuracies achieved using time series analysis
often depend on the features of the demand transition data
under investigation. Thus, it is important to clarify the features
of demand transitions. This study investigates the features of
demand transitions of remanufactured auto parts. Moreover,
previous studies reported accuracies of time series analysis
forecasting in the targeted fields. For example, for tourism,
Chu [23] applied autoregressive moving average (ARMA)-
based models to forecast the number of visitors to countries
and showed that the forecast numbers had an average error of
less than 10 % (in terms of mean absolute percentage error
(MAPE)). In food product sales forecasting, Eminente et al.
[25] applied exponential smoothing to forecast a company’s
fish product sales, which are highly seasonal, and achieved an
average forecast ing error of 57 % (MAPE). The
abovementioned results provide benchmarks for demand fore-
casting in the respective fields. Because few studies have ap-
plied time series analysis to demand forecasting in auto parts
remanufacturing, this study is expected to provide a
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benchmark for studies targeting that domain. Some re-
searchers have proposed methods that incorporate regression
analysis into time series analysis [27, 28]. When there are
specific factors that explicitly influence demands, the incor-
poration of those factors through regression analysis can be
effective. Mirasgedis et al. [27], for example, presented a
model that forecasts electricity demand by incorporating the
influence of weather. Although this study does not examine
such incorporation, the possibility is discussed in Sect. 5.

3 Data and method

3.1 Background: auto parts remanufacturing

This study investigated the effectiveness of demand forecast-
ing by time series analysis in remanufacturing. To that end, the
time series data of the sales of an IR of alternators and starters
were employed.

The auto parts remanufacturing industry is reportedly the
world’s largest remanufacturing sector, accounting for an es-
timated two thirds of remanufacturing activity worldwide [4].
While the target of auto parts remanufacturing is wide, alter-
nators and starters are the representative subjects. With 300
entities, alternator and starter remanufacturers constitute the
largest group among Automotive Parts Remanufacturers
Association (APRA)-associated companies in the USA [29].
Remanufactured auto parts cost on average 20–50 % less than
new parts [4]. Remanufacturing is effective for resource and
energy saving; in the case of alternators, the material used for
remanufacturing is about one fifth compared to that used in
manufacturing a new product, while the energy consumption
is about one seventh [29]. Auto parts remanufacturers include
automobile OEMs, auto parts OEMs, and IRs [4]. Seasonality
is an important factor in product demand for products that fail
because of the influence of temperature and humidity.

3.2 Data source

The time series data of an IR’s alternator and starter sales were
used to verify the effectiveness of demand forecasting by time
series analysis. The authors used the data obtained from Shin-
Etsu Denso Co., Ltd., the largest Japan-based alternator and
starter IR [30]. The company has been remanufacturing since
the 1960s, but until the late 1990s, when sales in the domestic
market began expanding, almost all remanufactured products
were exported to the USA and European countries. The com-
pany sold about 160,000 alternators and 170,000 starters in
2013, of which about 63,000 alternators and 82,000 starters
were sold domestically. The company remanufactures over
7000 types of alternators and starters. Data collected over a
12-year period reflecting the company’s sales of 160 types of

remanufactured products, including 80 types of alternators
and starters each, were used in the present study.

The domestic and overseas demands at the subject compa-
ny differ. For overseas products, in most cases, the customer
companies place orders several months in advance, and the
company remanufactures the products in response and de-
livers them. In contrast, domestic customers place orders with
the company in response to replacement demands from end
users. If the required product is out of stock, remanufacturing
is performed upon receipt of the order, and the product is
shipped within 1 day of receiving the order. Such 1-day
remanufacturing activity accounts for approximately 10 % of
total domestic sales. In auto parts remanufacturing, in general,
a remanufacturer supplies a remanufactured product and, in
return, receives a used product from the end user [31]. In the
case of Shin-Etsu Denso Co., Ltd., the used product is taken
back from the customer when the remanufactured product is
supplied. If there is no core stock upon receiving the order, a
request is placed with other companies to supply the
remanufactured product or a new product may be delivered.
As of 2013, the company’s response was “can be delivered”
for over 99% of the received orders. Therefore, the time series
data of the sales of this company were used in this research,
and the sales data can be considered as the time series of
demand.

3.3 Production planning case

In auto parts remanufacturing, the production planning is of-
ten done such that a remanufacturer can maintain inventory to
fulfill the demand for 1.5–2 months. Accordingly, the demand
for periods over 1.5–2 months in the future is considered.
Many companies conduct demand forecasting by observing
the change in the number of orders over previous years. If the
forecast is higher than the actual demand, the cost of inventory
becomes large, and if the forecast is smaller than the actual
demand, the excess requirement must be produced at a quicker
pace than normal, which leads to an increase in the cost of
remanufacturing. If the precision of demand forecasting can
be increased, the production and inventory costs can be
reduced.

IRs, in most cases, do not use the time distribution infor-
mation of new product sales for demand forecasting. For IRs,
at least in Japan, it is difficult to accurately grasp the time
distribution of new product sales for each type of alternator
and starter or the number and period when the new products
are supplied via new automobiles. Information regarding the
number of sales and the type of alternator and starter used in
each type of automobile is available. However, correspon-
dence between the automobile type and alternator/starter type
is many-to-many. In other words, an alternator/starter type
may be used in several types of automobiles, and multiple
types of alternator/starter may be used in a single automobile
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type according to the engine size and model. Therefore, it is
difficult to estimate the time distribution of new product sales
of alternators and starters from the sales number of various
types of automobiles.

3.4 Forecasting methods

The exponential smoothing model and autoregressive inte-
grated moving average (ARIMA) model are used for time
series analysis in this study. The exponential smoothing model
predicts by extracting the level component, growth compo-
nent, and seasonal component from the observed time series
data and then extending these components to the desired fu-
ture period. It was first formulated by Holt [32] and Winters
[33]. In component extractions, as the observations become
older, the model assigns exponentially decreasing weights. If
only the level component is extracted, it is called single expo-
nential smoothing. When the level component and growth
component are extracted, it is called double exponential
smoothing, and if the seasonal component is also extracted,
the extraction is called triple exponential smoothing. These
extraction modes are also known as the Holt–Winters models.
The Holt–Winters model used in this study is the triple expo-
nential smoothing model, with the assumption that seasonality
is additive. The formulation of the Holt–Winters model based
on the description of Hyundman and Khandakar [34] is as
follows:

Level : lt ¼ α yt−st−mð Þ þ 1−αð Þ lt−1 þ bt−1ð Þ ð1Þ

Growth : bt ¼ β lt−lt−1ð Þ þ 1−βð Þbt−1 ð2Þ

Seasonal : st ¼ γ yt−lt−1−bt−1ð Þ þ 1−γð Þ st−m ð3Þ

Forecast : bytþhjt ¼ lt þ bthþ st−mþhþm ð4Þ

where (y1,y2,⋯,yn)) is the observed time series, m is the
length of seasonality (in this article, m=12 (months)), lt rep-
resents the level of the series, bt denotes growth, st is the
seasonal component, ŷt+h|t is the forecast for h periods ahead
of t based on all data up to time t, and hm

+ =[(h−1) mod m]+1.
To forecast using this method, values of the initial states l0,

b0, and sm−1,⋯,s0, as well as those of the smoothing param-
eters α, β, and γ, are required. In this study, a statistical tool R
was used to calculate the forecasts. TheHoltWinters() function
in the forecast package of R calculates and optimizes the

values of the smoothing parameters and the initial state
variables.

The ARIMA model is another most commonly used time
series analysis forecasting method. The model was proposed
by Box and Jenkins [35] and is a generalization of an
autoregressive moving average (ARMA) model. It is general-
ly referred to as the ARIMA (p,d,q) model where p, d and q
are the orders of the autoregressive, integrated, and moving
average parts of the model, respectively. The seasonal
ARIMA (p,d,q) model is given as follows:

Φ Bmð Þϕ Bð Þ 1−Bmð ÞD 1−Bð Þdyt ¼ cþΘ Bmð Þθ Bð Þεt ð5Þ

where m is the length of seasonality (in this article m=12
(months)), d and D are the non-seasonal and seasonal
differencing, respectively, ϕi and Φi are non-seasonal and sea-
sonal parameters of the autoregressive part, respectively, θi
and Θi are non-seasonal and seasonal parameters of the mov-
ing average part, respectively, {εt} is a white noise process
with mean zero and variance σ2, and B is the backshift oper-
ator [23, 34].

When using the ARIMA model, it is difficult to select the
model order appropriately, i.e., the values of p,d,andq. In this
study, R was used to perform ARIMA method calculations.
The auto.arima() function in the forecast package of R selects
an appropriate model order as well as seasonal parameter
values [34].

4 Results

4.1 Data

Time series analysis was applied to the alternator and starter
sales records of Shin-Etsu Denso. The data was collected over
a period of 12 years and 1 month, from December 2001 to
December 2013. The company remanufactures over 7000
types of alternators and starters, and bly considered the alter-
nator and starter types characterized by high sales numbers in
the domestic market. Eighty types of alternators and 80 types
of starters were selected among the products that registered
sales of 100 or more units each year over the four most recent
years of the data collection period (2010–2013). An example
of the sales record data is shown in Fig. 2. It is the record of the
number of sales of a certain alternator (referred to as
Alternator A hereinafter).
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4.2 Demand seasonality characteristics

The demands for remanufactured alternators and starters are
characterized seasonality, which affects forecasting accuracy.
These features were investigated.

The seasonality arises because alternators are more likely
to fail at high temperature, and starters are more likely to fail at
low temperature. Figures 3 and 4 show themean percentage of
each month’s sales within a year for the sample 160 products
in the most recent 4 years. It can be inferred from Fig. 3 that
the demand for alternators peaks in August–October. The de-
mand for starters is high from October to February, as can be
seen Fig. 4.

The periodicity of the seasonality was characterized by the
following features. To measure the periodicity of the time
series data, the autocorrelation coefficient at lag 12 was cal-
culated. The lag-k autocorrelation coefficient (referred to as
ACF(k) hereinafter) is defined as follows [35].

ACF kð Þ ¼
X N−k

i¼1
yi−y

� �
yiþk−y

� �
X N

i¼1
yi−y

� �2 ð6Þ

The seasonal periodicity is high when the value of ACF(k)
is close to 1. Because it is inappropriate to consider the de-
mand record data to be stationary, the demand per month,
expressed as a percentage of the total demand per year, was
set as the time series, and ACF(k) was calculated according to
Eq. (6).

To determine the demand seasonality of each product, for
alternators, the average sales numbers for August, September,
and October as a percentage of the total annual sales over the
last 4 years were calculated. Hereinafter, this value is called
the Sum_ratio. For starters, the average sales numbers for
October, November, and December as percentages of the total
number of annual sales over the last 4 years were calculated.
Hereinafter, this value is called the Fall_ratio.

For the 80 types of alternators, the plots of ACF(12) and
Sum_ratio are shown in Fig. 5. For the 80 types of starters, the
plots of ACF(12) and Fall_ratio are shown in Fig. 6. In Figs. 5

Fig. 2 Trend of monthly sales number of one type of alternator
(Alternator A)

Fig. 3 Seasonal fluctuation in alternator demand (sales per month as a
percentage of sales per year; mean and standard deviation)

Fig. 4 Seasonal fluctuation in starter demand (sales per month as a
percentage of sales per year; mean and standard deviation)

Fig. 5 Seasonality (percentage of demand during summer: Sum_ratio)
and periodicity (lag 12 autocorrelation coefficient: ACF(12)) for 80 types
of alternators
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and 6, ACF(12)=0.6 and Sum_ratio/Fall_ratio=30 % were
considered to be one criterion (shown as red lines in the fig-
ures), and four categories were created. From the figures, it
can be observed that Sum_ratio for alternators is higher than
the Fall_ratio for starters and that ACF(12) values are also
higher for alternators. These findings indicate that the peak
demand in summer for alternators is higher than that in the
fall for starters and that, on average, the periodicity of season-
ality is higher for alternators than that for starters.

Figure 7 shows an example of the transition of sales num-
bers for each category in Figs. 5 and 6. Figure 7a shows an
example of the right-top category (strong periodicity and
strong seasonality) of Fig. 5. The transition diagram shows
the peaking of the sales numbers in summer as well as peri-
odicity. The aforementioned Alternator A (Fig. 2) had
Sum_ratio=37.8 %, ACF(12)=0.76, and fell in the same
right-top category. Figure 7b shows an example from the
right-bottom category (strong seasonality and weak periodic-
ity) of Fig. 5. In this case, although the demand peaks in
summer, the peak months are different for each year; thus,
the seasonality changed, particularly in the last 4 years.
Figure 7c shows an example from the left-top category of
Fig. 5 (strong periodicity but low value of Sum_ratio). The
demand peaks in seasons other than summer (September–
November) and shows periodicity. Figure 7d shows an exam-
ple from the left-bottom category of Fig. 5 (low in both sea-
sonality and periodicity); the fluctuations are irregular. There
were many starters with low periodicity, and many had sea-
sonality with weaker peaks in autumn and winter compared
with the summer peak of alternators. Figure 7e shows an ex-
ample of a starter with strong seasonality and periodicity. This
starter shows a strong peak in winter.

Fig. 6 Seasonality (percentage of demand during autumn: Fall_ratio)
and periodicity (ACF(12)) for 80 types of starters

Fig. 7 Transition of number of sales (five cases)
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From the abovementioned findings, the demand seasonal-
ity of the products was, on average, high in summer for the
alternator and high in autumn and winter for the starter; how-
ever, there was significant variation among specific products.

4.3 Demand forecasting results

The demand forecasts were calculated using the recorded data.
From the sales time series data of 12 years and 1 month (Dec.
2001–Dec. 2013), the data for the first 11 years and 1 month
(Dec. 2001–Dec. 2012) were used to prepare forecasts for the
last 1 year (Jan. 2013–Dec. 2013). The accuracy of the fore-
casts was verified by comparing the forecast value and the
actual value in the forecast term (Jan. 2013–Dec. 2013). In
this study, the focus is on the forecast accuracy for the
2 months that are important for production planning (Jan.
2013–Feb. 2013).

The ARIMA and Holt–Winters models were applied for
forecasting. For the calculation, the auto.arima() and the
Holt-Winters() functions in the forecast package of R were
used. Two variations were set for the forecast calculation
using the Holt–Winters model. One was the case where the
Holt-Winters() function calculated all the parameters, and an-
other was where parameter values of seasonal fluctuation for
the same function were provided manually. The latter case
was set because, on occasion, the forecasting calculation per-
formed using the Holt-Winters() function did not properly
extract the seasonal components (an example is shown be-
low). This occurs when the smoothing parameter value of
the seasonal component (value γ of Eq. (3)) is not calculated
properly. In such cases, it is more appropriate to exogenously
provide the value of γ. Here, we set γ=0.7, which implies that
for forecasting, the seasonal fluctuation of the previous year
(value st of Eq. (3)) was referenced with a weight of 0.7. The
case where all the parameters are calculated using the Holt-
Winters() function is expressed as “Holt–Winters (auto),” and
the case where theHolt-Winters() function is applied when the
value of γ is set to 0.7 is expressed as “Holt–Winters (γ=0.7).”

Defining “timeseries” as the vector that contains the sales
time series data for the first 11 years and 1 month (Dec. 2001–
Dec. 2012), the calculations using the ARIMA, Holt–Winters
(auto), and Holt–Winters (γ=0.7) models were conducted by
the following commands in R.

R> forecast ( auto.arima ( timeseries ), h=12) $mean
R> forecast.HoltWinters ( HoltWinters ( timeseries ), h=
12) $mean
R> forecast.HoltWinters ( HoltWinters ( timeseries, gam-
ma=0.7), h=12) $mean

For comparison with the forecast values of these three
methods, the value of the same month previous year was
considered as the forecast value, which was then compared

with the actual value. Hereinafter, the forecast of same
month previous year is considered as “Previous Year.”
Previous Year was set because it is a common business
practice to use the value of the same month previous year
as a reference. Using the value of same month, previous
year as forecast value is not bad in terms of average accu-
racy, as shown later.

Common measures for evaluating the forecasting accura-
cies include mean error (ME), mean percentage error (MPE),
mean absolute percentage error (MAPE), and root-mean-
square error (RMSE) [23]. Among these measures, MAPE
and its variations were used in this study because the absolute
value of the error is more important than the direction of the
error. When the forecast at point T is set as ŷT and the actual
value as yT, the absolute percentage error (APE) is defined as
follows.

APE ¼ byt−yt
yt

�����
������ 100 ð7Þ

The MAPE is the average of the APEs. The MAPE for k
months (MAPE(k)) is defined as follows.

MAPE kð Þ ¼ 1

k

X Nþk

t¼Nþ1

byt−yt
yt

�����
������ 100 ð8Þ

The APE between the cumulative forecast over k months
from point N and the actual value is set as the cumulative APE
for k months (CAPE(k)) and is defined as follows.

CAPE kð Þ ¼
X Nþk

t¼Nþ1
byt−X Nþk

t¼Nþ1
ytX Nþk

t¼Nþ1
yt

�������

�������� 100 ð9Þ

In this study, focus was placed particularly on the CAPE
value over 2 months (CAPE(2)). This is because, as described
in Sect. 3.3, the demand forecast over 1.5–2 months in future
is important from the view point of production planning for
alternator and starter remanufacture.

Figure 8 shows the result of the forecast calculation for
Alternator A, as shown in Fig. 2. In Fig. 8, the blue curve
represents the transition of the actual value, whereas the four
curves of different colors represent the forecast values of the
ARIMA, Holt–Winters (auto), Holt–Winters (γ=0.7), and
Previous Year. In this example, seasonality could not be ex-
tracted well with Holt–Winters (auto).

Table 1 lists the MPE for each month, MAPE for
12 months (MAPE(12)), and CAPE for each month, for
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each forecast result. From the table, the values of
MAPE(12) were 14.4 % (ARIMA), 30.3 % (Holt–Winters
(auto)), 17.3 % (Holt–Winters (γ=0.7)), and 13.1 %
(Previous Year). In this example, the precision of
Previous Year was the highest, followed by ARIMA,
Holt–Winters (γ=0.7), and Holt–Winters (auto). A compar-
ison of the cumulative values over 1 year (CAPE(12)
values) reveals that ARIMA had an extremely good accu-
racy of 0.4 %, followed by Holt–Winters (γ=0.7) 9.9 %,
Previous Year 12.1 %, and Holt–Winters (auto) 22.7 %.

For CAPE(2), in this example, Previous Year had the
best accuracy of 4.4 %, followed by ARIMA 27.6 %,
Holt–Winters (auto) 33.5 %, and Holt–Winters (γ=0.7)
37.4 %. The CAPE(2) of three other forecasts was poorer
than that of Previous Year. As can be seen from Fig. 8, the
alternator demand exhibits an increasing trend, and the de-
mand in 2013 actually increased. However, there is slight
change in actual demand in January and February com-
pared to the same month previous year, and the three re-
sults that forecast increases are values with high error rates.
In this particular case, it is more appropriate to assign the
error to fluctuation in demand as opposed to issues with the
forecasting methods.

The abovementioned evaluation was conducted for the
80 alternators and 80 starters considered here, and the
results are listed in Tables 2 and 3. The values are aver-
ages of the 80 products. According to the tables, the
MAPE over 12 months (MAPE(12)) was 40–50 % for
both the alternators and starters. The MAPE(12) of
Previous Year was good relative to the MAPE(12) of the
other three forecasting methods.

In determining the CAPE(12), the errors of the three fore-
casting methods were 15–22 %, and the accuracy was rela-
tively good compared to that achieved using Previous Year.
Because CAPE(12) value was good but the individual month-
ly errors (MAPE values) were relatively large, the methods
forecast the growth trend well but did not forecast the monthly
fluctuation well, especially for alternators, for which the sea-
sonal fluctuations are large.

Examining the 2-month forecast, the CAPE(2) values
were good at 26–32 % for alternators and 16–21 % for
starters. The corresponding values for Previous Year
were 31.2 and 27.0 %, respectively. The Holt–Winters
(γ=0.7) provided the best accuracy, which was better
than Previous Year by 4.5 points for alternators and
8.6 points for starters.

As can be inferred from Tables 2 and 3, among the three
forecast methods, the Holt–Winters (γ=0.7) yielded the best
results overall. Figure 9 shows the distribution of the CAPE(2)
values of the Holt–Winters (γ=0.7) and Previous Year
methods for the 160 products considered here. For alternators,
the average CAPE(2) value obtained using Holt–Winters (γ=
0.7) was 26.7 %. In addition, Fig. 9 shows that two products
had particularly high error rates, which affected the average
values.

Figure 10 shows the forecast results obtained using Holt–
Winters (γ=0.7) for the five products shown in Fig. 7. Among
the five products, the forecast results were good for (a), (c),
(d), and (e), but not for (b), and the lowest and highest
CAPE(12) values were 8.7 % (Fig. 10e) and 19.9 %
(Fig. 10c), respectively. The lowest and the highest
CAPE(12) values were 1.0 % (Fig. 10a) and 29.3 %
(Fig. 10e), respectively. In Fig. 10b, although one of the fac-
tors was that the forecast value was negative, the CAPE(2)
value was 280.6%, which is the highest error observed among
the 160 products.

4.4 Analysis of forecasting errors

The reasons for the occurrence of forecast errors were exam-
ined evaluating the items with large forecast errors. By exam-
ining the items with 30 % or higher forecast errors over
2 months (CAPE(2)) as calculated with Holt–Winters (γ=
0.7), shown in Figs. 9 and 10, the factors of forecast errors
were investigated. This set included 21 of the 80 alternators
and 12 of the 80 starters with CAPE(2) values of 30 % or

Fig. 8 Results of the demand forecast of Alternator A (Fig. 2) (lower
figure is the blown up version of the upper figure)
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more. The factors causing forecast miss include the forecast
error in the growth trend and in seasonal fluctuations. While
the distinction between the two is vague, the CAPE(12) was
used as the index for determining the forecast error in the

growth trend, and the percentage difference between the fore-
cast and actual values in the percentage of 2-month value
within the 12 month value (hereinafter, expressed as DR(2))
was used as the index for determining the forecast error in

Table 1 Forecasting results for Alternator A

Month Actual Forecast values and APEs (%) Actual
cumulatives

Cumulative forecast values and CAPE(k ) (%)

ARIMA Holt–Winters
(auto)

Holt–Winters
γ=0.7)

Previous
Year

ARIMA Holt–Winters
(auto)

Holt–Winters
γ=0.7)

Previous
Year

1 102 137.7
(35.0)

145.4 (42.6) 148.1 (45.2) 100 (2.0) 102 137.7
(35.0)

145.4 (42.6) 148.1 (45.2) 100 (2.0)

2 123 149.3
(21.4)

155.0 (26.0) 161.1 (31.0) 115 (6.5) 225 287.0
(27.6)

300.4 (33.5) 309.2 (37.4) 215 (4.4)

3 109 134.1
(23.0)

154.7 (42.0) 156.2 (43.3) 104 (4.6) 334 421.1
(26.1)

455.1 (36.3) 465.4 (39.3) 319 (4.5)

4 148 116.9
(21.0)

154.1 (4.1) 155.8 (5.3) 104 (29.7) 482 538.1
(11.6)

609.2 (26.4) 621.2 (28.9) 423 (12.2)

5 152 134.9
(11.2)

157.8 (3.8) 168.8 (11.0) 111 (27.0) 634 673.0
(6.1)

767.0 (21.0) 790.0 (24.6) 534(15.8)

6 204 181.9
(10.8)

165.5 (18.8) 218.4 (7.1) 175 (14.2) 838 854.9
(2.0)

932.6 (11.3) 1008.4 (20.3) 709 (15.4)

7 268 265.9
(0.8)

165.9 (38.1) 264.8 (1.2) 214 (20.1) 1,106 1120.8
(1.3)

1098.5 (0.7) 1273.3 (15.1) 923 (16.5)

8 336 306.3
(8.8)

171.4 (49.0) 320.7 (4.5) 285 (15.2) 1,442 1427.1
(1.0)

1269.9 (11.9) 1594.0 (10.5) 1208
(16.2)

9 344 311.0
(9.6)

157.7 (54.1) 322.3 (6.3) 295 (14.2) 1,786 1738.1
(2.7)

1427.6 (20.1) 1916.3 (7.3) 1503
(15.8)

10 249 293.6
(17.9)

154.7 (37.9) 301.6 (21.1) 267 (7.2) 2,035 2031.7
(0.2)

1582.3 (22.2) 2217.9 (9.0) 1770
(13.0)

11 218 238.6
(9.4)

141.4 (35.1) 244.7 (12.2) 209 (4.1) 2,253 2270.3
(0.8)

1723.7 (23.5) 2462.6 (9.3) 1979
(12.2)

12 162 155.4
(4.1)

143.0 (11.7) 192.4 (18.8) 143 (11.7) 2,415 2425.7
(0.4)

1866.7 (22.7) 2655.0 (9.9) 2122
(12.1)

MAPE(12) 45.2 49.5 42.7 42.5

Table 2 Forecasting results for 80 alternators

Month Average APE Average CAPE(k)

ARIMA Holt–Winters
(auto)

Holt–Winters
(γ=0.7)

Previous
Year

ARIMA Holt–Winters
(auto)

Holt–Winters
(γ=0.7)

Previous
Year

1 32.8 28.1 30.3 39.9 32.8 28.1 30.3 39.9

2 22.3 20.0 21.9 27.8 20.2 16.6 18.4 27.0

3 42.2 31.7 31.9 35.9 22.8 16.4 16.4 24.4

4 39.9 36.4 37.7 38.9 22.2 17.2 16.3 22.1

5 54.4 47.2 41.8 37.9 23.9 18.0 16.6 21.5

6 49.2 43.4 44.7 38.8 23.2 18.6 17.5 20.4

7 48.7 43.7 45.2 38.9 22.6 19.2 18.2 19.9

8 60.2 54.7 55.2 49.8 22.6 19.7 18.8 21.2

9 43.7 41.8 43.1 44.5 21.2 19.6 19.0 21.9

10 68.8 63.1 65.3 54.1 21.4 19.9 19.3 21.7

11 47.3 45.1 44.8 48.5 20.9 19.4 18.8 22.8

12 60.1 57.1 58.6 58.5 21.7 20.5 19.8 23.4

MAPE(12) 45.2 49.5 42.7 42.5
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seasonal fluctuations. DR(2) is expressed as the following
equation with forecast values (ŷ1,ŷ2,⋯,ŷ12) and actual values
(y1,y2,⋯,y12).

DR 2ð Þ ¼
by1 þ by2=X 12

i¼1
byi

−y1 þ y2=X 12

i¼1
yi

y1 þ y2=X 12

i¼1
yi

����������

����������
� 100

ð10Þ

Table 4 shows the CAPE(2), CAPE(12), and DR(2) values
of 33 products with a CAPE(2) value of 30 % or higher. In
addition, the values of the ACF(12) used as the index of peri-
odicity in Sect. 4.2 are shown as another index of seasonal
features. The items with CAPE(12) and DR(2) of 20 % or
higher are underlined. For the items with a large CAPE(12)
(20 % or more), forecast error in the growth trend was the
main factor causing the error in the 2-month forecast. The
forecast error of seasonal fluctuations was regarded as the
main factor causing the 2-month forecast error for items with
a large DR(2) (20 % or more). In items with both large
CAPE(12) and DR(2), both were considered to be factors of
CAPE(2). According to this criterion, among the 33 products
listed in Table 4, the main factor was the forecast error of the
growth trend in nine cases, forecast error of seasonal fluctua-
tion in 14 cases, and both in 9 cases. Furthermore, in one case,
the forecast error occurred due to the combination of the two
factors despite their small values.

Figure 11 shows the typical cases of each type. Figure 11a
shows an example where the forecast error in the growth trend
was the main factor (*1 of Table 4). The method forecasted
that the demand volume would be approximately the same as
that of the previous year, but the annual demand volume de-
creased than that in the previous year; the actual demand de-
creased for the first 2 months, which was the forecast error. In
contrast, Fig. 11b shows an example where the forecast error
in seasonal fluctuation was the main factor (*2 of Table 4).
Although the cumulative total of the forecast for annual de-
mand volume was only 0.4 % from the actual value, there was
a gap between the fluctuation for each month in the forecast
and actual values, and there was an error of 31.4% for the first
2 months. Alternator A shown in Fig. 8 is an example where
the forecast error of seasonal fluctuation was the main factor

Table 3 Forecasting results for 80 starters

Month APE average CAPE(k) average

ARIMA Holt–Winters
(auto)

Holt–Winters
(γ=0.7)

Previous
Year

ARIMA Holt–Winters
(auto)

Holt–Winters
(γ=0.7)

Previous
Year

1 32.8 28.1 30.3 39.9 32.8 28.1 30.3 39.9

2 22.3 20.0 21.9 27.8 20.2 16.6 18.4 27.0

3 42.2 31.7 31.9 35.9 22.8 16.4 16.4 24.4

4 39.9 36.4 37.7 38.9 22.2 17.2 16.3 22.1

5 54.4 47.2 41.8 37.9 23.9 18.0 16.6 21.5

6 49.2 43.4 44.7 38.8 23.2 18.6 17.5 20.4

7 48.7 43.7 45.2 38.9 22.6 19.2 18.2 19.9

8 60.2 54.7 55.2 49.8 22.6 19.7 18.8 21.2

9 43.7 41.8 43.1 44.5 21.2 19.6 19.0 21.9

10 68.8 63.1 65.3 54.1 21.4 19.9 19.3 21.7

11 47.3 45.1 44.8 48.5 20.9 19.4 18.8 22.8

12 60.1 57.1 58.6 58.5 21.7 20.5 19.8 23.4

MAPE(12) 47.5 42.7 43.4 42.8

Fig. 9 Distribution of forecast error values (CAPE(2)) for Holt–Winters
(γ=0.7) and Previous Year for 160 products
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Fig. 10 Forecast results for five
cases (Fig. 7) using Holt–Winters
(γ=0.7)
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(*3 of Table 4). Figure 10c shows an example where both the
forecast errors of growth trend and seasonal fluctuation are
large (*4 of Table 4). The forecast error occurred because
the demand transition shifted considerably from the normal
trend. Among the 160 products, it had the second-largest
CAPE(2) value (see Fig. 9). Major shifts in the demand trend
do occur, and the forecasting in such cases is difficult.

5 Conclusions

The current study investigated the effectiveness of demand
forecasting by time series analysis in auto parts
remanufacturing. The study used the ARIMA and the Holt–
Winters models. To investigate the effectiveness of these
models, we used the time series data for the sales of 160 types
of remanufactured alternators and starters made by a real in-
dependent remanufacturer (IR) of auto parts. The features of
seasonality were investigated first, and the variation of sea-
sonality and periodicity by products was shown (Figs. 5 and
6). As for the results of the forecasting calculations, the aver-
age errors of the forecasts over 12 months measured in terms
of mean absolute percentage error (MAPE(12)) ranged from
40 to 50 %. The average cumulative absolute percentage er-
rors in the forecasts over 2 months (CAPE(2)), which are often
considered in product ion planning in auto par ts
remanufacturing, were 26.7 and 18.4 % for alternators and
starters, respectively. Compared with the values of same
month previous year (Previous Year), the results were better

by 4.5 points for alternators and by 8.6 points for starters.
Demand forecasting is critical for process optimization in
remanufacturing, and these results are expected to provide a
benchmark for future studies targeting demand forecasting in
auto parts remanufacturing. The factors of the errors for fore-
casts over 2 months were investigated by distinguishing the
errors in estimating the growth trend from the errors in esti-
mating the seasonal fluctuations. Among the 33 cases with
large forecasting errors, the errors in estimating the growth
trend were the main cause of the overall errors in 9 cases,
and errors in estimating the seasonal fluctuations were the
main cause of the overall errors in 14 cases. The errors in
estimating both the growth trend and seasonal fluctuations
caused the overall error in ten cases.

Future steps with respect to the present study are as fol-
lows. First, by designating the forecasting accuracies via time
series analysis that were clarified in this study, as the starting
point, methods for increasing the forecasting accuracy should
be explored. Although time series analysis is an effective
method for forecasting, it does not include cause–effect mech-
anisms in its forecasts. Hence, the incorporation of any factor
that explicitly affects demand into the forecast may increase
the forecasting accuracy. Therefore, it is worth exploring such
factors. Moreover, it is critical to address methods for incor-
porating the said factors into the forecasts. One such factor is
weather conditions because as mentioned previously, temper-
ature and humidity affect the failure rate of alternators and
starters. If the influence of weather on alternator and starter
demands is clarified and reflected in demand forecasting, the
forecasting accuracies, especially forecasting accuracies of

Table 4 Analysis of factors of forecast error

Product CAPE(2) CAPE(12)
(trend)

RD(2)
(seasonal)

ACF (12)
(seasonal)

Product CAPE
(2)

CAPE(12)
(trend)

RD(2)
(seasonal)

ACF (12)
(seasonal)

Alternator 30.2 5.6 26.1 0.71 Alternator 68.3 28.1 55.8 0.78

Alternator 31.9 24.5 9.8 0.65 Alternator 69.9 35.0 25.9 0.45

Alternator 32.4 1.2 33.2 0.61 Alternator *4 240.0 59.5 10.0 0.57

Alternator 35.4 11.0 22.0 0.70 Alternator 280.6 57.4 523.5 0.33

Alternator 36.5 48.1 7.8 0.65

Alternator 37.4 20.5 21.3 0.58 Starter 31.2 10.6 23.1 0.29

Alternator *3 37.4 9.9 25.0 0.76 Starter *2 31.7 0.4 31.4 0.07

Alternator 38.5 99.2 30.5 −0.08 Starter 32.3 147.1 46.4 0.40

Alternator 38.8 8.8 27.5 0.69 Starter 33.1 7.0 24.3 0.06

Alternator 39.3 31.8 11.0 0.63 Starter 35.4 7.1 26.5 0.43

Alternator 41.5 28.9 9.7 0.41 Starter 35.7 17.7 15.3 0.36

Alternator 48.9 11.2 33.9 0.66 Starter 38.5 9.6 26.3 0.38

Alternator 51.5 18.3 85.3 0.60 Starter 38.7 27.1 15.8 0.12

Alternator 54.5 12.7 76.9 0.72 Starter 43.2 39.0 7.0 0.35

Alternator 61.7 31.6 22.9 0.42 Starter *1 87.0 107.8 10.0 0.45

Alternator 64.8 2.0 68.2 0.63 Starter 89.9 29.2 47.0 0.52

Alternator 65.4 24.0 33.4 0.65 Starter 102.9 81.4 11.8 0.51
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seasonal fluctuations, may improve. Another candidate is the
information regarding the number of years passed since the
year when the product was first manufactured, which may be
helpful to project whether the demand would exhibit an in-
creasing trend or a decreasing trend. In other words, it may be
helpful to forecast the growth trend of demand. Although IRs
do not have accurate information regarding the time distribu-
tion of new product sales, they have information about some
types of products for the durations of their manufacture. In
addition to these two factors, various pieces of information
such as product-specific marketing material and product ar-
chitecture may increase the forecasting accuracies. It is critical
to specify the factors that increase the forecasting accuracies.
With respect to the methods for reflecting the said information
in demand forecasting, as described in Sect. 2, the methods
presented in previous studies that integrated regression analy-
sis and time series analysis may serve as useful references.
Second, investigating the ways in which the forecast results

can be reflected effectively in production planning is another
significant next step. Depending on the available forecasting
accuracy, the effective means of reflecting the results may
differ. It is important to develop methods that can accurately
reflect demand forecasting in remanufacturing process optimi-
zation. Production planning in remanufacturing is more com-
plex than that in traditional manufacturing. It is crucial to
develop a demand forecasting method that enables effective
production planning in remanufacturing.
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