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Abstract This paper develops a framework that tackles
the Pareto optimum of injection process parameters for
multi-objective optimization of the quality of plastic
part. The processing parameters such as injection time,
melt temperature, packing time, packing pressure,
cooling temperature, and cooling time are studied as
model variables. The quality of plastic part is measured
by warp, volumetric shrinkage, and sink marks, which
is to be minimized. The two-stage optimization system
is proposed in this study. In the first stage, an im-
proved efficient global optimization (IEGO) algorithm
is adopted to approximate the nonlinear relationship
between processing parameters and the measures of
the part quality. In the second stage, non-dominated
sorting-based genetic algorithm II (NSGA-II) is used
to find a much better spread of design solutions and
better convergence near the true Pareto optimal front.
A cover of liquid crystal display part is optimized to
show the method. The results show that the Pareto
fronts obtained by NSGA-II are distributed uniformly,
and this algorithm has good convergence and robust-
ness. The pair-wise Pareto frontiers show that there is a
significant trade-off between warpage and volumetric
shrinkage, and there is no significant trade-off between
sink marks and volumetric shrinkage and between sink
marks and warpage.
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1 Introduction

Plastic injection molding is an important manufacturing tech-
nique to plastic products due to the advantages of high pro-
duction efficiency, competitive cost, light weight, and good
flexibility to complex geometry. The cycle of plastic injection
molding consists of six stages: clamping, filling, packing,
cooling, opening, and ejecting. The quality of plastic injection
molding parts depends on the materials, part and mold de-
signs, and the process parameters required to manufacture
them. Defects in the products, such as warp, shrinkage, sink
marks, and residual stress, are caused by many factors during
the production process. Therefore, numerous studies have
been conducted on the optimization design of plastic injection
molding process parameters. For instance, Dang [1] reviewed
the state-of-the-art of the process parameter optimization for
plastic injection molding and proposed two general frame-
works for simulation-based optimization of injection molding
process parameter, including direct optimization and
metamodeling optimization. Wang et al. [2] improved the
compressive property of the valve body by the application of
computer-aided engineering integrating with the Taguchi
method. However, Taguchi method can only find the best
specified process parameter level combination which includes
the discrete setting values of process parameters. Farshi et al.
[3] minimized the warpage and shrinkage defects of plastic
parts by sequential simplex method. Applying artificial neural
networks (ANN) has been proposed to improve conventional
Taguchi parameter design and is capable of effectively treating
continuous parameter values. Wang et al. [4] developed an
ANN model to understand the relationship between plastic
injection molding process parameters and shrinkage, and the
test results on the performance of the ANNmodel showed that
it could predict the shrinkage with reasonable accuracy.

In order to yield a product with high precision, designers
often need to consider the quality of plastic parts which
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involve many product properties that may be incommensurate
and competing. Thus, quality can be viewed as an attempt to
satisfy many objectives. The designers will have to make
tradeoffs amongst the properties so that all of them are satis-
fied simultaneously and the process operates at the best point.
However, for many multi-objective optimization design prob-
lems, the researchers usually make the multi-objective prob-
lems into single-objective optimization problems and apply
ANN and evolutionary algorithms to attain the final optimal
process parameters. Yin et al. [5] established a multi-objective
optimization to optimize the process parameters during plastic
injection molding on the basis of the finite element simulation
software Moldflow, Orthogonal experiment method, BP neu-
ral network, as well as genetic algorithm. A series of combi-
nation of weights of optimization objectives were specified to
the multi-objective optimization model. Mehat and
Kamaruddin [6] developed a new constitutive approach in
solving multi-response problems using a combination of sin-
gle responses through the Taguchi method. For example, the
combination response for the single responses A an B can be
obtained as follows: S/NAB=S/NA+S/NB. The S/N ratio is
quoted in dB units and can be defined as follows: S/N=
−10Log10(MSD), where MSD is the mean square deviation
for the responses being studied. Deng et al. [7] developed a
multi-objective GA optimization strategy, where the objective
functions may be defined by the designers, including
using different criteria and/or weights. Huang and Tang
[8] presented the technique for order preference by
similarity to ideal solution which gives a performance
measure on the qualities to be optimized in order to
resolve multiple qualities problems. The experimental
layout in the Taguchi method provided training samples
of a neural network. The genetic algorithm was aimed

at finding parameter values in a continuous solution
space to optimize a performance measure on denier
and tenacity qualities based on the neural network.
Hsu et al. [9] presented an integrated approach using
neural networks, exponential desirability functions, and
genetic algorithms to optimize parameter design prob-
lems with multiple responses. In optimization procedure,
the trade-off solutions obtained by using the predefined
strategy would be sensitive to the weight factors chosen
in converting the multi-objective to a single-objective
function. In order to solve the complex multi-objective
optimal performance design of large-scale injection
molding machines, Wei et al. [10] studied non-
dominated sorting genetic algorithm II (NSGA-II) to
find a much better spread of design solutions and better
convergence near the true Pareto optimal front. Wei
et al. [11] discussed rough set-based support vector
clustering method to improve the computational efficien-
cy of Strength Pareto Evolutionary Algorithm (SPEA).

Fig. 1 The finite element model of a cover of liquid crystal display part
with cooling channels and runner system

Table 1 Properties of ABS AF303 material

Properties of the material

Commercial product name ABS AF303

Solid density (g/cm3) 1.0541

Melt density (g/cm3) 0.96622

Moldflow viscosity index VI(240)0089

Recommended mold temperature (°C) 60

Recommended meld temperature (°C) 200

Material characteristics Amorphous

Ejection temperature (°C) 85

Modulus of elasticity (MPa) 2240

Poisson ratio 0.392

Shear modulus (MPa) 804.6

Thermal conductivity W/m-C 0.16 at 200 °C

Fig. 2 One variable test function
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The number of external stocks was reduced, and the
optimal Pareto solution was determined by eliminating
the uncertainty in the artificial priority election. The
multi-objective optimization of the HT1600X1N injec-
tion molding machine was taken as an example. Ferreira
et al. [12, 13] developed a framework that tackled the
design of an injection molding system in a global way,
through structural, thermal, rheological, and mechanical
domain integration. A building approach by modules
was adopted for process integration, where all different
analysis codes were connected through an integration
software in order to automate the iterative procedure
of the optimization process.

All the researches cited beforehand accomplished op-
timization of plastic injection molding process parame-
ters and mainly focused on the procedure of optimiza-
tion. However, a clear and reliable prediction model that
could be used as the surrogate model during process
optimization is still required. Plastic part defects are
nonlinear, implicit function of the process parameters.

So far, several models have been used for fitness ap-
proximation. The most popular ones are polynomials,
the Kriging surrogate model, the feedforward neural
networks, and support vector machines. One advantage
of using Kriging models is that a confidence interval of
the estimation can be obtained without much additional
computational cost. In this study, the Kriging surrogate
model is adopted to approximate the nonlinear relation-
ship between processing parameters and the optimiza-
tion objectives, replacing the expensive finite element
analysis of optimization objectives. Warp, volumetric
shrinkage, and sink marks are challenging defects in
injection molding and investigated as the optimization
objectives. Injection time, melt temperature, packing
time, packing pressure, cooling temperature, and cooling
time are considered to be the design variables.
Surrogate-based optimization strategies use both the pre-
diction and the uncertainty estimates offered by surro-
gates to select the next sample point for an expensive
simulation. The efficient global optimization (EGO) al-
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(g) Six updates           
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Fig. 3 a–g The progress of a search of the one variable test function applying EGO
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gorithm selects the next point to be sampled by maxi-
mizing the expected improvement. However, EGO algo-
rithm may present premature convergence and influence
the solution accuracy. In this paper, the improved effi-
cient global optimization algorithm is proposed. The optimi-
zation iterations are based on the improved efficient global

optimization (IEGO) algorithm in the first stage, and in the
second stage, NSGA-II algorithm is used to find a much better
spread of design solutions and better convergence near the
true Pareto optimal front.

2 Front shell of the LCD TV

As shown in Fig. 1 is the finite element model of the front
shell of LCD TV. Finite element analyses of the thin shell part
utilized in this study are performed using commercial software
Moldflow. The length, width, and thickness of the front
shell are 320, 305, and 3.2 mm, respectively. The ge-
ometry of this plastic part is discretized using Fusion
mesh by Moldflow, which is a commercial software
based on hybrid finite element/finite difference method
for solving pressure, flow, and temperature fields. The
analysis model consists of 9886 elements. The front
surface must have a very high appearance quality to
meet the esthetic requirements. Therefore, any surface
defects, such as flow mark, sink mark, warp and vol-
ume shrinkage, etc., should be completely avoided. The
plastic material used for the front shell is ABS AF303,
supplied by LG chemical. Table 1 gives the properties
of the plastic material in detail.

3 Description of optimization methodology

The optimization methodology including the improved effi-
cient global optimization methodology based on the Kriging
surrogate model for developing the proposed approach is
briefly introduced below.

Fig. 4 IEGO algorithm flowchart

Fig. 5 a The volumetric
shrinkage distribution before and
b after optimization process
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3.1 Kriging surrogate model

Kriging model was initially developed by geologists to esti-
mate the properties of sampled minerals over an area of
interest given a set of sampled sites; it was also introduced at
about the same time in the field of spatial statistics as a
probabilistic model to predict values over a finite space. The
Kriging model is described as a way of modeling the function
as a realization of a stochastic process; thus, it is named a
stochastic process model. The mathematical form of a Kriging
model has two parts as shown in Eq. 1. The first part is a
known polynomial function often taken as constant. The
second part z(x) is the correlation function which represents
a stochastic process with mean at 0, variance σ2, and nonzero
covariance as shown in Eq. 2.

y xð Þ ¼
XP
j¼1

β j f j xð Þ þ z xð Þ ¼ f xð ÞTβ þ z xð Þ ð1Þ

E z xð Þ½ � ¼ 0
Var z xð Þ½ � ¼ σ2

cov z xi
� �

z x j
� �� � ¼ σ2R θ; xi; x j

� �
8<: ð2Þ

where R(θ;xi,xj) is the correlation function between any
two of the sample points, in which xi=[x1

i ,x2
i , ⋅ ⋅ ⋅xmi ] is

the ith sample point with m variables, and all correla-
tion function values of the sample points compose the
correlation matrix R. The correlation function controls

the smoothness of the resulting Kriging model, the
influence of other nearby points, and the differentiability
of the surface by quantifying the correlation between
the observations [14]. There are many potential func-
tions that can be used to quantify the correlation be-
tween the observations. The correlation function used in
this work is shown in Eq. 3 and defined with only one
parameter, θ, which controls the range of influence of
nearby points.

R θ; xi; x j
� � ¼ ∏

m

l
exp −θl xil−x

j
l

� �2� �
ð3Þ

We adopt the maximum likelihood approach to estimate
Kriging parameters β, θ as is implemented in the DACE
toolbox by Lophaven et al. [15].

3.2 Efficient global optimization methodology

The EGO algorithm begins by fitting a DACE model to a set
of initial points specified by “space-filling” experimental de-
sign. After evaluating the function on the initial design, the
parameters of a DACE model are fit using maximum likeli-
hood estimation. Once the initial DACE surface is fit, optimi-
zation process is conducted iteratively. First, the expected
improvement is maximized using optimization algorithm. If
the expected improvement is less than 0.1 % of the best
current function value, the iterative process is terminated.
Otherwise, the new sample point is selected where expected

Table 2 The optimum design of volumetric shrinkage before and after optimization process

Parameters ti TMe PP Pt CT Ct Volumetric shrinkage (%)

The optimum design of the initial sample design 0.734 185 81.25 8.62 32.19 19 5.988

The optimum design after applying IEGO 0.507 185.96 151.4 9.998 24.596 16.165 4.782

Related rate (%) 30.93 0.52 86.34 15.99 23.59 14.92 20.14

Fig. 6 a–c Contours for the effect of the processing parameters on the volumetric shrinkage of the part
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improvement is maximized, re-estimate the DACE parameters
with maximum likelihood, and iterate. The expected improve-
ment criterion is computed as follows:

E Ið Þ ¼ Ymin−bY xð Þ
h i

Φ
Ymin−bY xð Þ

σ xð Þ

 !

þ σ xð Þϕ Ymin−bY xð Þ
σ xð Þ

 !
ð4Þ

where Φ(.) and ϕ(.) are the cumulative density function and
probability density function of a normal distribution,
respectively, Ymin is the present best sample, Ŷ(x) is
the Kriging prediction, and σ(x) is the prediction stan-
dard deviation [16].

The details of one variable test function are given as
Eq. 5, and Fig. 2 is its plot. Figure 3 shows the
progress of a maximum E[I(x)]-based optimization of
the one variable test function. We selected three initial
sample points to construct Kriging surrogate model of
the example problem. The situation is shown after six
updates. The solid line of plots shows the Kriging

prediction of the function based on the sample data,
whereas the dotted line shows the expected improve-
ment in the prediction. After six updates, the minimum
fmin=−6.0204 of the function was found. Although the
search of one variable cannot be considered as a cred-
ible optimization problem, the progress of the search is
indicative of that of many higher dimensional problems.

f xð Þ ¼ 6x−2ð Þ2sin 12x−4ð Þ
x∈ 0; 1½ �

f min ¼ −6:0207
ð5Þ

3.3 The improved efficient global optimization methodology

One of the major difficulties in applying optimization in
many engineering problems is that each function evalu-
ation requires a complete simulation which is computa-
tionally expensive, so optimization algorithm efficiency
is very important for designers. The above EGO algo-
rithm is efficient in many cases, but it may present
premature convergence and influence the solution accu-
racy. In this paper, the improved efficient global

Fig. 7 a The warp distribution
before and b after optimization
process

Fig. 8 a–c Contours for the effect of the processing parameters on the warp of the part
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optimization algorithm is proposed. The first improve-
ment is the infill criteria. In each iteration of recon-
struction of Kriging model, the optimal design of the
recently constructed Kriging model is added to sample
points and update Kriging model if it is better than the
previous optimum. Otherwise, the design which maxi-
mizes the expected improvement function is added to
sample points. In other words, the optimal design of
each iteration is preferentially considered in the global
search. The second improvement is that the more strict
convergence conditions are implemented as follows:

xk−xk−1j j≤ε1 ð6Þ

f min xkð Þ− f min xk−1ð Þj j≤ε2 ð7Þ

f min xkð Þ− f min xk−1ð Þj j
f min xkð Þ ≤ε3 ð8Þ

where xk and xk−1 are optimal designs of Kriging models
during the (k-1)th iteration and kth iteration, respectively,
fmin(xk) and fmin(xk−1) are optimal solutions at xk and xk−1.
The convergence condition (Eq. 6) is used in this study which
conquers premature convergence. Figure 4 presents the
flowchart of the IEGO. The IEGO is schematically
described below:

(1) Optimal Latin hypercube sampling technique is used to
generate the initial sample points. Initial sample points of
m=10n have been suggested, where m is the initial
sample size and n is the number of variables.

(2) Construct the Kriging-based model from initial sample
points.

(3) Find optimum design of the Kriging model.
(4) If optimal solution is less than the optimal solution

of not updated Kriging model, add optimal design
to sample points and update Kriging model. Go to
step (3).

(5) Find the design that maximizes the expected improve-
ment function.

(6) If the expected improvement is less than tolerance
(TOL), stop. The suggested value for TOL is
0.1 %.

(7) Sample the function where expected improvement is
maximized and update Kriging. Go to step (3).

4 Reduction of the part defects by optimizing process
parameters applying IEGO

In the first optimization procedure, three objective functions
are considered, namelywarpminimization, volumetric shrink-
age minimization, and sink marks minimization. The mini-
mum design problem can be stated as follows:

find : x ¼ ti; TMe; PP; Pt; CT ; Ct½ �
Minimize : Warp xð Þ; Volumetric shrinkage xð Þ; Sink marks xð Þ

s: t: : 0:5s≤ ti≤2s
180�C≤TMe≤220�C
0≤PP≤200%
2s≤Pt≤10s
20�C≤CT≤40�C
4s≤Ct≤20s

ð9Þ

where x are the variables, representing process parame-
ters. The processing parameters involved in experimen-
tal design are injection time, melt temperature, packing
pressure, packing time, cooling temperature, and
cooling time, which were represented by the ti, TMe,
PP, Pt, CT, and Ct, respectively. The ranges of cooling
temperature and melt temperature are based on the
recommended values in Moldflow Plastics Insight, and
the ranges of in injection time, packing pressure, pack-
ing time, and cooling time are determined by the ex-
perience of the manufacturer. Warp(x), Volumetric
shrinkage(x), and Sink marks(x) are quantified warp

Table 3 The optimum design of warp before and after optimization process

Parameters ti TMe PP Pt CT Ct Warp (mm)

The optimum design of the initial sample design 1.836 191.25 200 7.5 24.06 12.504 0.6445

The optimum design after applying IEGO 1.591 180.69 199 7.834 27.01 16.155 0.5728

Related rate (%) 13.34 5.52 0.5 4.45 12.26 29.20 11.13

Table 4 The optimum design of sink marks before optimization
process

Parameters ti TMe PP Pt CT Ct Sink marks
(%)

The optimum design
of the initial sample
design

1.836 191.25 200 7.5 24.06 12.5 0

Int J Adv Manuf Technol (2015) 78:1813–1826 1819



Table 5 The optimum design of sink marks in the optimization process

Parameters ti TMe PP Pt CT Ct Sink marks (%)

The optimum designs in the optimization process 1.757 183.74 192.2 7.584 28.696 9.899 0
1.526 190.64 197.7 7.008 31.026 8.156

1.473 181.19 199.4 5.685 32.27 9.402

1.258 184.48 198.7 8.752 34.8 7.43

1.36 183.61 195 5.81 30.857 11.15

1.191 186.94 199.5 7.865 25.117 7.594

1.553 184.14 193 6.417 34.313 12.35

1.738 193.35 200 7.228 25.224 13.054

1.732 187.04 197.8 8.183 23.677 8.515

1.394 185.11 194.8 8.59 30.948 7.666

1.171 181.7 200 6.7 28.12 12.569

1.863 189.43 200 7.904 25.87 11.133

1.403 196.35 198.4 7.303 31.082 13.044

1.586 180.5 187.5 6.767 37.002 8.197

1.526 182.7 188.6 6.457 34.403 9.627

1.118 181.61 198.1 8.121 30.821 17.831

1.487 191.53 196.8 7.277 28.342 17.686

1.227 186.46 199.5 7.626 29.943 16.027

1.378 180.67 189.5 9.019 37.074 18.763

1.325 184.85 198.5 7.757 23.476 15.288

1.510 180.88 189.3 6.755 34.09 18.065

1.478 184.03 196.1 7.493 23.734 9.709

1.334 188.65 197.5 6.771 23.606 12.245

1.654 188.88 197.4 6.104 21.982 13.502

1.685 193.76 200 9.795 39.529 19.78

1.464 188.35 199.4 8.586 37.949 12.97

1.866 189.21 199.6 6.501 23.323 10.963

1.953 193.83 198.3 9.367 39.955 19.79

1.513 191.18 196.8 7.602 27.612 13.585

1.468 180.79 199.4 8.941 37.293 11.541

Related rate (%) 74.73 8.78 6.67 72.3 81.76 166.34

Fig. 9 a The sink marks
distribution of the optimum
design and b thickness
distribution of the part
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value, volumetric shrinkage value, and sink marks val-
ue, respectively, which will be replaced by an approx-
imate function based on the Kriging surrogate model in
optimization iterations.

The optimization procedure of injection molding based on
the IEGO algorithm is described as follows:

(1) Generate the initial sample points applying optimal Latin
hypercube sampling approaches. In this work, a set of
sample points with 65 points is obtained and run the
Moldflow program to obtain the objective values for
the initial sample points.

(2) Construct the Kriging surrogate model between each
objective and the process parameters based on the trial
sample points obtained.

(3) Optimized each objective based on the Kriging surrogate
model applying IEGO algorithm until convergence
criteria are satisfied.

Figure 5 shows the volumetric shrinkage distribution of the
part before and after optimization. The location of maximum
volumetric shrinkage of the molded part is the four corners

before optimization process, and after optimization process,
the distribution of volumetric shrinkage is uniform as shown
in Fig. 5b. Table 2 gives injection molding parameters of
maximum volumetric shrinkage before and after optimization.
It is seen that maximum volumetric shrinkage is reduced by
about 20.14 % after optimization. Figure 6 shows that the
effect of the processing parameters on the volumetric shrink-
age of the part under the condition where all other processing
parameters are kept at their optimal value. The response
surfaces based on contour diagrams as shown in Fig. 6 are
both concave surfaces, which implies that the range of all
processing parameters chosen in this experiment are appro-
priate and optimal volumetric shrinkage can be achieved and,
therefore, the optimized set of process parameters can be
determined.

The contour plot, as shown in Fig. 6a, reveals the
volumetric shrinkage variation between the effect of
melt temperature and injection time. According to the
contour plot, it suggests that when the injection time is
less than 1 s, the values of volumetric shrinkage for the
melt temperature generally tend to first decrease slight-
ly and then increase, and tend to increase to the

Fig. 10 a–c Contours for the effect of the processing parameters on the sink marks of the part

Fig. 11 a–c Contours for the effect of the processing parameters on the sink marks of the part
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injection time from 1 to 2 s. In this study, an increase
in melt temperature causes an increase in volumetric
shrinkage because of the greater volume contraction.
Too long of an injection time will lead to a decrease
in the melt temperature and a non-uniform distribution
of the end-of-fill temperature which will cause volu-
metric shrinkage. Figure 6b shows the volumetric
shrinkage variation between the effect of packing time
and packing pressure. As the packing time and packing
pressure increase, the volumetric shrinkage decreases
due to the fact that more material is injected into the
cavity during packing stage. Comparing the three plots
in Fig. 6, the cooling time and the cooling temperature
also affect the volumetric shrinkage, but the effect on
the volumetric shrinkage is much smaller based on the
gradient of the volumetric shrinkage than that of other
process parameters.

It is seen that maximum warp on the thin shell
plastic model, which is 0.6445 mm before the optimi-
zation, is reduced to 0.5728 mm by about 11.13 % after
optimization. The simulated warp is shown in Fig. 7.
Warp is a distortion where the shape of the molded part
deviates from the intended shape of the design. It is
caused by volumetric shrinkage of the part in the
cooling process, the residual flow and thermal stresses
produced in the filling and packing process, and the
non-uniform volume shrinkage of the part generated in
the whole injection molding process. The comparison
results show that the warp distributions before and after
optimization process have the same tendency, as shown
in Fig. 7. The maximum of the warp is located at the
top and bottom gates where the imbalanced in-mold
stresses are large.

Figure 8 shows that the effect of the processing
parameters on the warp of the part. The warp variation
between the effect of melt temperature and injection
time is shown in Fig. 8a. A higher melt temperature
can lead to a lower viscosity, which results in a lower
cavity pressure and shear stress. However, as in litera-
ture reports [17, 18], during cooling stage, the higher
the melt temperature, the higher the warp value. Short
injection time will increase the cavity pressure and shear

stress. On the contrary, long injection time will lead to
a decrease in the melt temperature and a non-uniform
distribution of the end-of-fill temperature. In this study,
a long injection time and low melt temperature will
decrease the warp. According to Fig. 8b, in can be
noted that the warp decreases with the increase of
packing pressure and packing time, and the packing
pressure and the packing time are shown to have a
significant effect on the volumetric shrinkage.
Figure 8c shows that the influences of the cooling
temperature and the cooling time are not so significant.
A suitable cooling temperature and cooling time have a
positive influence on warp reduction (Table 3).

From this study results, it can be concluded that sink
marks is a multi-optimum function. Before optimization,
the optimum design can be obtained from initial sample
as shown in Table 4; however, the accuracy of the
Kriging surrogate model is not satisfied with the con-
vergence condition. Therefore, after 107 updates, the
termination criterion is fulfilled. In the optimization
process, there are 30 optimum designs to minimize sink
marks within the optimal values of process parameters
as shown in Table 5.

Sink marks is a depression or dimple on the part
surface [19, 20]. It is caused by the relatively larger
localized shrinkage of the plastic material. The larger
localized shrinkage is resulted from the local thick-
wall structure, such as ribs, bosses, etc. Generally,
the more dramatic the thickness variation of the plastic
part is, the larger the shrinkage difference is and con-
sequently the more apparent the sink marks is. It can
be clearly seen in Fig. 9b that the part thickness is
uniform, and it is easy to obtain optimum process
parameters of sink marks.

Table 6 Tuning
parameters used in
NSGA-II

Parameters Values

Population size 500

Number of generations 100

Crossover probability 0.9

Crossover distribution index 10

Mutation distribution index 20

Fig. 12 Triple-objective Pareto frontier using the Kriging surrogate
model updated by IEGO
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Figures 10 and 11 show that the effect of the pro-
cessing parameters on the sink marks of the part under
the condition where all other processing parameters are
kept at their optimal value of the optimum design be-
fore the optimization process and of the last optimum
design in the optimization process, respectively. Com-
paring the Figs. 10 and 11, the results reveal that the
trend for contours under different condition is very
similar. Low melt temperature will lead to decrease sink

marks, but if melt temperature is too low, sink marks in
thick section will be severe as a result. From Figs. 10a
and 11a, it can be observed that a combination of
decreased melt temperature with increased injection time
will lead to rapidly reduce in sink marks. Increasing the
packing pressure and packing time can decrease the sink
marks as shown in Figs. 10b and 11b. In Fig. 10c, the
value of the sink marks will decrease first and increase
subsequently while increasing the value of cooling tem-

Fig. 13 a–c Pair-wise Pareto
front using the Kriging surrogate
model updated by IEGO

Fig. 14 a, b The temperature at
flow front of the different design

Int J Adv Manuf Technol (2015) 78:1813–1826 1823



perature and cooling time; the center area of the ellipse
is the best sink marks of the part. Increasing the value
of cooling temperature in combination with increased
cooling time will cause a reduction in sink marks as
shown in Fig. 11c. From Figs.10c and 11c, cooling
temperature and cooling time variation have minor in-
fluence on the sink marks.

5 Proposed multi-objective optimization approach

In order to globally optimize the plastic part quality as
a system, the warp, volumetric shrinkage, and sink
marks should be optimized as objective functions simul-
taneously. To undertake this optimization, a multi-
objective genetic algorithm (MOGA) is adopted. MOGA
optimization is carried out using the NSGA-II in
iSIGHT-FD 5.0. Fast and Elitism NSGA-II is a suitable
method that can satisfy the goals of multi-objective
optimization [20]. NSGA-II uses elitism principle and
crowded comparison operator that ranks the population
based on both Pareto dominance and region density.
This crowded comparison makes the NSGA-II consider-
ably faster and convergent and also provides the ability
to find a diverse set of solutions in comparison with the
other methods [21]. Operational parameters used in
NSGA-II are listed in Table 6.

The triple-objective Pareto frontier is shown in
Fig. 12, and the pair-wise Pareto frontiers after IEGO
algorithm are presented as in Fig. 13. The results show
that the Pareto fronts obtained by NSGA-II are distrib-
uted uniformly, and this algorithm has good conver-
gence and robustness.

The pair-wise Pareto frontiers in Fig. 13a show that
there is a significant trade-off between warpage and
volumetric shrinkage. As volumetric shrinkage is in-
creased to 7 %, warpage can be reduced to below
0.55 mm. Comparing Figs. 6a and 8a, an apparent trend
is observed that injection time is the significant factor
affecting volumetric shrinkage and warp differently. In

Table 2, injection time of optimum design of volumetric
shrinkage before and after applying IEGO are 0.734 and
0.507, respectively, and injection time of optimum de-
sign of warp before and after applying IEGO are 1.836
and 1.591 in Table 3, respectively. The comparison of
the results shows that the shorter injection time, the
more uniform the temperature distribution is as shown
in Fig. 14. When the temperature distribution uniformity
is increased, the volumetric shrinkage is decreased. For
a long injection time, material can be introduced into
the cavity under lower injection pressure, which will
contribute to decrease residual stress and molecular ori-
entation. This can lead to reduce the warp. Therefore,
with the increase of the injection time, the value of the
warp is reduced as shown in Fig. 8a. It can be found
that there is not a design point to make the volumetric
shrinkage and warp functions to be optimal simulta-
neously. Therefore, the designer can select one point
in practice from the Pareto optimal solutions shown in
Fig. 13a according to the different requirements on
product quality.

The pair-wise Pareto frontiers in Fig. 13 show that
there is no significant trade-off between sink marks and
volumetric shrinkage and between sink marks and warp-
age. As described above, sink marks increase with the
thickness increasing, but in this study, the main plane of
the part is thin and the thickness distribution is uniform;
therefore, sink marks of the part can be decreased
easily. From Figs. 8 and 10, the results reveal that the
trend for contours for warp and for sink marks at
different process parameters is very similar. The mini-
mum area of volumetric shrinkage and the minimum
area of sink marks partly intersect as shown in Figs. 6
and 10. Therefore, in Fig. 13, there is one design point
to make the sink marks and warp to be optimal simul-
taneously, and one design point to make the sink marks
and volumetric shrinkage to be optimal simultaneously.
And Tables 7 and 8 show the two Pareto optimal
solutions, which further validate the effectiveness of
the proposed method.

Table 7 The optimum design of Pareto point between volumetric shrinkage and sink marks

Parameters ti TMe PP Pt CT Ct Volumetric shrinkage (%) Sink marks (%)

The optimum design of the Pareto point 0.5193 183.5888 199.769 9.761 21.7994 16.5697 4.418 0.0365

Table 8 The optimum design of Pareto point between warp and sink marks

Parameters ti TMe PP Pt CT Ct Warp (mm) Sink marks (%)

The optimum design of the Pareto point 1.591 180.69 199 7.834 27.01 16.155 0.5728 0
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6 Conclusions

The main objective of this study is to develop a framework
that tackles the multi-objective optimization design of a plastic
injection molding system in a global way. A two-stage ap-
proach is employed based on the IEGO and non-dominated
sorting-based genetic algorithm II (NSGA-II). Firstly, the
IEGO algorithm is proposed. In traditional EGO algorithm,
expected improvement function is introduced to identify
the new sample point by considering the prediction and
mean squared error of Kriging surrogate model during
the optimization procedure. Premature convergence may
exit when the range of the objective function is too
large in EGO algorithm. In this paper, the optimal
solution of the Kriging surrogate model is preferentially
considered, and the convergence conditions are in-
creased to overcome premature convergence in IEGO
algorithm. The modified algorithm is applied to a plastic
injection optimization problem. Initial sampling designs
are obtained using optimal Latin hypercube method, and
the Kriging surrogate model is adopted to approximate
the nonlinear relationship between processing parameters
and the maximum warp, maximum volumetric shrink-
age, and maximum sink marks of the part. Processing
parameters such as injection time, melt temperature,
packing time, packing pressure, cooling temperature,
and cooling time are studied. The IEGO algorithm is
proposed to modify the Kriging surrogate model and
improve the accuracy of the Kriging surrogate model.

In the second stage, the three accurate Kriging sur-
rogate model are used to optimize multi-objective de-
sign. The presence of multiple objectives in a problem,
in principle, gives rise to a set of optimal solutions
(largely known as Pareto optimal solutions), instead of
a single optimal solution. In the absence of any further
information, one of these Pareto optimal solutions can-
not be better than the other. NSGA-II performs well in
multi-objective optimization which is able to find much
better spread of solutions and better convergence near
the true Pareto optimal front. NSGA-II algorithm is
carried out in iSIGHT 5.0. The results show that the
Pareto fronts obtained by NSGA-II are distributed uni-
formly, and this algorithm has good convergence and
robustness. The pair-wise Pareto frontiers show that
there is a significant trade-off between warpage and
volumetric shrinkage, and there is no significant trade-
off between sink marks and volumetric shrinkage and
between sink marks and warpage.
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