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Abstract Manufacturing defects in flat surface products such
as thin films, paper, foils, aluminum plates, steel slabs, fabrics,
and glass sheets result in degradation of the visual quality of
the product image. This leads to less satisfied customers,
waste of material, and bad company reputation. This research
presents a novel application of image visual quality measures
such as the multiscale structural similarity index (MS-SSIM).
A novel algorithm has been implemented for fast detection
and location of defects in many flat surface products. Com-
parison of the proposed algorithm with the state-of-the-art
approaches indicate promising results. A defect detection
accuracy of 99.1 % has been achieved with 98.62 %
precision, 97.7 % recall/sensitivity, and 100 % specificity.
The discriminant power shows how well the MS-SSIM dis-
criminates very effectively between normal and abnormal
surfaces. The MS-SSIM has resulted in much better perfor-
mance than the single-scale SSI approach but at the cost of
relatively lower processing speed. The major advantages of
the presented approach are as follows: scale invariance,
avoiding the problem of parameter selection in the case of
the state-of-the-art Gabor filter banks based approach, the
higher detection accuracy, and the quasi real-time processing
speed.
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1 Introduction

Automated visual surface inspection of industrial products
like polymer films is necessary for ensuring film quality.
Machine vision inspection of defects relies on efficient algo-
rithms for abnormality detection in real time to cope with the
high production speeds. Many algorithms have been recently
developed for inspection of fabrics [1–23], paper [24–28],
foils [29, 30], and steel slab [31–35]. Most of these algorithms
have high computational complexity such as Gabor wavelets,
wavelet transform, and Gabor filters. Automation of the visual
inspection process saves companies a lot of time and raises the
quality of their products by avoiding the subjectivity, slowness
of the traditional human-based inspection process. When a
defective product reaches the consumer, the company’s repu-
tationwill be weakened. AVI helps an implementation of good
quality control and documentation.Most of the state-of-the-art
techniques for defect detection in textiles are computationally
demanding which renders them useless for real-time detection
of defects during the manufacturing process.

In [36], Gamage and Xie presented a vision system for
defect detection in cast films. The system is designed to detect
four different types of defects: streaks, coating voids, gels, and
wrinkles. The correct defect detection ranges from 87 % for
the case of gels to 94 % for the case of streaks. The original
gray-level images having resolution of 800×600 pixels were
first smoothed, low pass filtered, and then thresholded into a
binary image. Binary images are then segmented using mor-
phological operators and particle analysis for defect detection
and analysis in a second phase.

In [37], Johnson presented a machine vision system for
nondestructive visual inspection of polymer electrolyte mem-
branes. Film defects are detected and classified using a neural
network into four categories: holes, bubbles, thinning, and
gels. The system achieved a classification accuracy of
96.1 % with 1.2 % false alarm rate and 7.1 % escape rate.
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Based on the defect classification results, the operator can take
the necessary corrective actions through adjusting the param-
eters of the manufacturing process. For defect detection, the
light regions are highlighted using the top-hat operation, the
gray-level image is thresholded using Otsu algorithm, and the
morphological operations are used to emphasize blob. On the
other hand, dark regions are highlighted using the bottom-hat
operation. Nineteen features (size, histogram, topography,
geometry, and topology features) are extracted from the seg-
mented defects and then entered into a multilayer perceptron
neural network for classification. The major problem in defect
classification was the similarity of the characteristics of both
bubbles and gels and the characteristics of both holes and
thinning defects.

In [38], a system has been presented for defect detection
using region growing based image segmentation for classifica-
tion of defect as conic, bubble, pit, thread, and extraneous
substance based on template matching. All defects have been
correctly detected with few false alarms. Defects are also
classified with an average recall of 95 % and precision of 96 %.

This paper presents a very fast and efficient approach for
defect detection and localization in polymer films. The pro-
posed approach relies on a novel algorithm which helps local
adaptation of the structural similarity measure that measures
the similarity of images of successive windows in a scanned
surface. The structural similarity approach renders itself as a
very suitable approach for defect detection in flat surfaces
since defects are in the first place structural disorders in the
making of industrial flat surfaces like thin films, paper, foils,
and textiles. Therefore, a fast structural similarity index which
is usually used for image quality assessment could be used as
a defect detector.

The major contributions of this work are as follows: a novel
application of the structural similarity index (SSI) for defect
detection in industrial flat surface products and a fast and
efficient context based algorithm for defect detection com-
pared to the state of art approaches [1–23] like log-Gabor
filters, multiscale multidirectional autocorrelation, Gabor
wavelets, and wavelet transform-based techniques. The im-
plemented defect detection technique achieves a comparable
accuracy to that achieved by the state-of-the-art approaches in
defect detection like log-Gabor wavelets but with lower com-
putational complexity resulting in a 60–100 times faster defect
detection system. Figure 1 shows the basic architecture of the
proposed defect detection system.

2 Structure similarity for defect detection

Visual image quality is a feature of a digital image that
indicates its perceived degradation. The most widely
applied objective metrics of image quality are the peak
signal-to-noise ratio (PSNR) and SSI. There are three
categories of objective image quality measures: full
reference, reduced reference, or no reference. The tradi-
tional full-reference metrics are the mean square error
(MSE) and the PSNR. The most recent and powerful
metric is the SSI. The SSI metric is based on the
characteristics of the human visual system (HVS) in
contrary to MSE and PSNR. Figure 1 shows the dia-
gram of the SSI measurement system [39] which is
based on modeling of image luminance, contrast, and
structure.
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The SSI is defined in [40] as

SSI x; yð Þ ¼
2μxμy þ C1

� �
2σxy þ C2

� �

μ2
x þ μ2

y þ C1

� �
σ2
x þ σ2

y þ C2

� � ð1Þ

where μx, μy, σx, and σy are the means and standard deviations
of both the original and reference images, respectively, and C1

and C2 are constants. The three models considered in building
the similarity index between the two images x and y are given
by [41]:

Luminance : l x; yð Þ ¼ 2μxμy þ C1

μ2
x þ μ2

y þ C1
ð2Þ

Contrast : c x; yð Þ ¼ 2σxσy þ C2

σ2
x þ σ2

y þ C2
ð3Þ

Structure : s x; yð Þ ¼ σxy þ C3

σxσy þ C3
ð4Þ

where μx, σx
2, and σxy are the mean of x, the variance of x, and

the covariance of x and y, respectively, while C1, C2, and C3

are constants given by C1=(K1L)
2, C2=(K2L)

2, and C3=C2/2.
L is the dynamic range for the sample data, i.e., L=255 for 8-

bit gray-level image and K1≪1 and K2≪1 are two scalar
constants. Given the above measures, the structural similarity
can be computed in [41, 42] as

SSI x; yð Þ ¼ l x; yð Þ½ �α⋅ c x; yð Þ½ �β⋅ s x; yð Þ½ �γ ð5Þ

where α, β, and γ define the weight given to each model.
Figure 2 shows the architecture of a defect detection system
that is based on the SSI. The image of the thin film will be
divided into small windows. The SSI is calculated between the
reference defect-free window image and the currently scanned
window. A suitable threshold level for the SSI is calculated
based on the inflection point of the SSI distribution. The
scanned window with a SSI above the threshold level is
marked as a defective subimage.

The multiscale structural similarity index (MS-SSIM) qual-
ity metric, on the other hand, is an extension of the SSIM
which computes these measures at various scales and com-
bines them using an equation of the form [41]:

MSSSIM x; yð Þ ¼ lM x; yð Þ½ �αM ⋅ ∏
M

j¼1
c j x; yð Þ� �β j ⋅ s j x; yð Þ� �γ j ð6Þ

where M corresponds to the lowest resolution (i.e., the times
of down samplings performed to reduce the image resolution),
while j=1 corresponds the original resolution of the image.
The architecture of the proposed defect detection system is
shown in Fig. 3. Since the performance of the visual
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inspection of flat surface products relies heavily on the dis-
tance between the vision system and the inspected surface,

resolution of the analyzed image has a significant impact on
defect detection results. The interaction between defect size

Table 1 Defect detection results (A: abnormal block/defect, N: normal block/defect free)
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and image resolution is also an important factor. Therefore,
using the MS-SSIM metric renders itself a good adaptive
measure for defect detection. Figure 3 presents the architec-
ture of a novel system for defect detection based on the MS-
SSIM. The architecture is adapted from the MS-SSIM system
given in [41] to be applicable for defect detection in thin films.
Details about the MS-SSIM could be found in [41, 42]. Each
downsampling stage (DS) is preceded by a low-pass filtering
(LPF) stage. For defect detection, a defect-free reference im-
age window is successively compared with scanned image
windows. A deviation from the defect-free reference window
is indicated by a lowMS-SSIM value. The mean SSI of all the
different scales is calculated and compared to an adaptively
calculated threshold limit θ.

3 MS-SSIM-based defect detection algorithm

First, determine the size [nr×nc pixels] of the whole window
acquired by the imaging system, where nr is the number of
rows and nc is the number of columns, then apply the follow-
ing algorithm:

1. Select a defect reference window x of size [ww×wh]
pixels, where ww is the window width and wh is the
window height.

2. Initialize the size [ww×wh] pixels of the sliding test win-
dow y, where ww is the window width and wh is the
window height.

3. Scan the whole test image of the product starting from the
top-left corner and ending with bottom-right corner.

4. For each scanning step 3, compute the MS‐SSIM(x,y) of
the both the reference window x and the current window y.

5. Sort the MS-SSIMs for all the scanned windows.
6. Identify the threshold θ of the MS-SSIMs.

Table 2 Wiener filtering/wavelet filtering effect on defect detection
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Fig. 5 MS-SSIM variation with filtering approach compared to the
original image (coat voids case)
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7. Bound those windows whose MS-SSIM is greater than
the threshold value θwith a rectangular box, and add them
to the set of defect blocks.

Estimation of the appropriate threshold level for the MS-
SSIM test is very critical to the success of the presented defect
detection system. The averageMS-SSIM for a scanned defect-
free area is used as a threshold limit for separating defective
windows from defect-free windows. The curves shown in
Table 1 shows the variation which represents a sharp decrease
in the value of MS-SSIM values by the first occurrence of a
fabric defect.

4 Defects database

To evaluate the proposed method, a set of images of polymer
film defects [36] has been used in our experiments (Fig. 4).
The polymer film images were acquired in gray level with a
resolution of 240×232 pixels. Each sample is scanned with a
sliding window of size [ww×wh pixels] where wh is the win-
dowwidth andwh is the window height in pixels. The window
scans the image with a horizontal shift of ww pixels and a
vertical shift of wh. The following kinds of defects have been
tested: gels, streaks, coating voids, wrinkles, structural defect
dark areas, light areas, and intensity defects.

5 Experimental results

Experiments were performed on four different classes of
defects as shown in Table 1. The first column shows the defect
class, and the second column shows the original image. Defect
detection and location is shown in column 3 together with the
confusion matrix which summaries the test results. It shows
the true abnormal (TA), false abnormal (FA), true normal
(TN), and false normal (FN) results for each test image. The
fourth column shows the distribution of SSI for all the scanned
blocks. Blocks which belong to a defective area have small
SSI values. The most suitable threshold is found adaptively
for each test sample. The most difficult case was that of the

streaks class since the streaks are not highly separable from
the background.

6 System robustness to noise

A reliable defect detection system should be robust against
any phenomena which might result in false alarms. Noise of
the imaging system is one source of false alarms. To remedy
this situation, film images are de-noised in a preprocessing
phase. Different experiments have been performed to identify
the most suitable image de-noising approach for defect detec-
tion. Two experiments have been performed using two differ-
ent filters for image de-noising: Wiener filter [43] and wavelet
transform filtering [44]. To evaluate the performance of each
filter, the following algorithm has been implemented:

1. Add Gaussian noise to the original images.
2. Apply the presented defect detection approach to the

noisy image.
3. Evaluate the defect defection performance based on the

accuracy, sensitivity, and precision.
4. Apply the de-noising filter.
5. Re-evaluate the defect defection performance based on

the accuracy, sensitivity, and precision.
6. Compare the defect detection performance of steps 3.

To enhance the defect detection capability of the proposed
approach in the presence of noise, a linear Wiener filter [43] is
applied to the textile image for adaptive noise reduction. The
advantage of Wiener filter is that it adapts its smoothing
operation with the local gray-level variance. For small gray-
level variance, it performs more smoothing and vice versa.
The filtering process does not affect neither edges nor high
frequencies in the image. Wiener filter is reported to be
effective in removing Gaussian noise. The above table shows
that the Gaussian noise deteriorates the performance of the
MS-SSIM defect detector (second row of the Table 2). A
necessary preprocessing step is to use the Wiener filter for
de-noising textile images before defect detection. Wavelet de-
noising failed to enhance the defect detection (fourth row of

Table 3 Average system performance indicators for SSI approach

Image Sensitivity Specificity Accuracy Precision YI ρþ ρ−
DP

1 1 1 1 1 1 ∞ 0 ∞
2 0.886 0.988 0.8733 0.939 0.966 71.3 1 3.5

3 0.900 1 0.995 1 0.900 ∞ 0.1 ∞
4 0.945 1 0.9455 1 0.985 ∞ 0.1 ∞
Average 0.9327 0.9970 0.9535 0.9848 0.9627 ∞ 0.3 ∞
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Table 4 Defect detection results (A: abnormal block/defect, N: normal block/defect free)
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Table 2) since the process of setting a threshold will be very
difficult.

Figure 5 shows an example for the variation of MS-SSIM
with noise,Wiener filtering, and wavelet filtering compared to
the case of a noise-free image. It can be concluded thatWiener
filtering results in a distribution of MS-SSIM which is nearly
similar to that of the original noise-free image and does not
need any change of the threshold limit to achieve approxi-
mately the same level of performance. Results of wavelet
filtering need changing the threshold limit, and it will be
unstable.

7 Performance evaluation

Evaluating the performance of the proposed defect detection
approach is a major factor that requires careful consideration.
The percentage of correct detection (PCD) generally has been
used as a measure of performance of most defect detection
approaches. However, there exists a variety of measures for
judging the performance of classifiers. In our work, we have
considered the following four performance measures as
discussed in detail in [45–48]:

Precision ¼ TA

TAþ FAð Þ ð7Þ

Recall sensitivityð Þ ¼ TA

TAþ FNð Þ ð8Þ

Specificity ¼ TN

TNþ FAð Þ ð9Þ

Accuracy ¼ TAþ TNð Þ
TAþ TNþ FAþ FNð Þ ð10Þ

All of the above quantities normally are expressed as
percentages. The various terms appearing in the above equa-
tions are as follows: TA, FA, FN, and TN. These terms can be
obtained easily from the confusion matrix related to a defect
detection or classification task. The meanings associated with
the above measures are given in the following in the context of
defect detection tasks:

1. Precision indicates the percentage of correct abnormal
classifications.

2. Recall (sensitivity) indicates the percentage of samples
that were classified as abnormal and which were labeled
as abnormal (i.e., the true abnormality rate).

3. Specificity indicates the percentage of samples that were
classified as normal and which were labeled as normal
(i.e., the true normality rate).

4. Accuracy indicates the PCD.

Youden’s index (YI) evaluates the classifier performance to
a finer degree with respect to both classes. A higher positive
value of ρ+ means a better performance on the abnormal
texture class. A higher negative value of ρ− means a better
performance on the normal texture class. The DP evaluates
how well a classifier discriminates between normal (N) and
abnormal (A) surfaces. The classifier performance is poor if
DP<1, limited if DP<2, fair if DP<3, and good—in other
cases [31]. An infinite value of the discriminating power
indicates excellent performance in discrimination between
normal and abnormal textures. The average performance of
the proposed system has been tested on four samples with 196
sliding windows. The test results given in Table 3 show
acceptable performance.

The above performance indicators have been calculated
based on the confusion matrix of every sample as shown in
Table 3. The SSI-based defect detection resulted in 0.9327
sensitivity, 0.9970 specificity, 0.977 Youden’s index, 0.9535
accuracy, and 0.9848 precision. Higher positive and lower

Table 5 Average system performance indicators for MS-SSIM approach

Image Sensitivity Specificity Accuracy Precision YI ρþ ρ−
DP

1 1 1 1 1 1 ∞ 0 ∞
2 0.908 1 0.964 0.945 0.9079 ∞ 0.1 ∞
3 1 1 1 1 1 ∞ 0 ∞
4 1 1 1 1 1 ∞ 0 ∞
Average 0.9770 1 0.9910 0.9862 0.9970 ∞ 0.0250 ∞

Table 6 System performance for the morphological operators and
particle analysis approach presented by Gamage and Xie [36]

Image Accuracy of morphological
processing [23]

SSI
accuracy
(%)

MS-SSIM
accuracy (%)

Gels 87% 100 100

Streaks 94% 87.43 96.4

Wrinkles N/A 94.90 100

Coating
voids

N/A 94.55 99.1

Average N/A 95.35 99.1

Source: [36]
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negative likelihood ratios for a certain sample mean better
performance on positive and negative classes, respectively
[47]. The DP indicates that the proposed algorithm differenti-
ates very well between normal and abnormal texture areas.
The higher positive values of ρ+ indicate good performance on
the abnormal texture class. The higher negative value of ρ−
means good performance on the normal texture class. Appli-
cation of the MS-SSIM resulted in enhanced system perfor-
mance indicators as could be seen in Tables 4 and 5.

8 Comparison with the other approaches

There are few published results on defect detection in thin films.
For comparison purposes, the MS-SSIM and SSI approaches
resulted in better performance compared to the performance
reported in [36]. The main emphasis in [36] was about the
design of a real-time system. Results were only reported about
defects of the two classes: gels and streaks (Table 6).

Figure 6 shows the superior detection results of the MS-
SSIM approach compared to LG-Gabor approach [3]. The
average processing time for detection of defects of 15 samples
using the MS-SSIM approach is about 83.27 % of the time
elapsed by the LG approach as shown in Fig. 7.

9 Conclusions

In this paper, a novel automated defect detection approach has
been proposed using the MS-SSIM. Using the MS-SSIM
metric as a homogeneity measure, defects could be detected
and localized. A defect detection accuracy of 99.1 % has been
achieved with 98.62 % precision, 97.7 % recall/sensitivity,
and 100 % specificity. The discriminant power shows how
well the MS-SSIM discriminates very effectively between
normal and abnormal surfaces. The experimental results show
that the proposed approach results in excellent defect detec-
tion performance compared to the state-of-the-art approaches.
The MS-SSIM has resulted in much better performance than
the single-scale SSI approach but at the cost of relatively lower
processing speed. The major advantages of the presented
approach are avoiding the problem of parameter selection in
the case of the state of the art Gabor filter-based approach, the
higher detection accuracy, and the quasi real-time processing
speed. Future work will be concerned with parallel implemen-
tation using the NVIDIA GPU board for real-time defect
detection. Testing on much larger ranges of samples not
previously seen by the operators would be needed to establish
statistically representative performance figures.
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