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Abstract This paper discusses the multistage manufacturing
scenario in context of progressive machining and demon-
strates an adaptive control scheme for turning operation of a
partially hardened bar. A nonlinear mechanistic force model-
based control framework attempts to control the cutting force
at a designated set point, with material properties changing
over the cut. The force coefficients for the material are calcu-
lated offline using experimental data and Bayesian inference
methods. Since the hardened part of the bar will shift the force
coefficient values, an online estimation strategy (Bayesian
recursive least square estimator) is used to learn the new
coefficients as well as satisfying the control objective. With
the newly learned coefficients passed downstream, the subse-
quent operation experiences no compromise of control objec-
tive as well as reduces the maximum values of force encoun-
tered. Numerical analyses presented show the adaptation and
control scheme performance. Finally, the experimental analy-
sis show the open-loop and closed-loop model adaptation and
effective force set point regulation using experimental appa-
ratus and partially hardened MS (AISI1045) bar.

Keywords Multistagemachining .Mechanistic forcemodel .

Cutting force adaptive control . Bayesian estimation . Online
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1 Machining and manufacturing process
control—profitability to machining performance

Today’s manufacturing industry encompasses of factory floor
that is highly data integrated and involves a variety of ma-
chines connected via complex product flow path. The product
customization requires production flexibility as well as de-
mands control adaptability. In machining process control,
traditional work has been focused on a single machine-
single machining pass control on process variables (force/tool
wear) [1–3] and on geometric features of the product [4, 5]. In
prior art, the material models were calculated offline and used
for model-based control, but in reality, workpiece material
property can vary. So, control algorithm has to be adaptive
to account for these changes. At the same time, the variation in
workpiece material property is also indicative of the material
quality—this knowledge can be useful in tracking product
quality. This paper attempts to answer some of these issues
by extending the process control from one machine to multi-
ple machines and how knowledge generated by the process
can be passed on to the next process when the input material
quality is variable.

Modeling and simulation and process control are identified
as the technological driving factors toward future of the
manufacturing technology [6]. This requires concurrent ef-
forts in machining process modeling, process control, ma-
chine tool programming protocol, and supporting information
and communication technologies. The goal of process control
is improved profitability, which must in turn be related to
machining performance, i.e., the optimization and control of
machining parameters and states that maximize profitability.
The profitability can be further broken down at various stages
in manufacturing process:
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1. Single operation level
2. Part machining level
3. Machining process level
4. Enterprise level

At various levels, the control objectives differ but ultimate-
ly affecting the overall profitability. One such breakdown in
terms of dynamic time constants is illustrated in Fig. 1. The
single operation level control encompasses machining chatter
control, force and power control, surface roughness control,
and tool-wear compensation as examples. The process level
control examples include quality feedback within processes
and enterprise level control where the maintenance of the
machining tools and cost involved directly affects the profit-
ability of the organization.

Single operation level control has been explored in great
detail from a modeling and control point of view. Starting
from the earliest work by Koren [3, 2], Ulsoy [1, 7], and
Mesory [8] to the recent work from Landers [9], Park and
Kim [10], and Harder [11], the central theme of machining
process control has mostly been on machining force control,
involving either a linear or nonlinear force mechanistic model
[12] and an integrator-based controller with or without adap-
tive algorithm to learn the model parameters. It is important to
note that all these approaches have been applied to a single
machine-single operation configuration.

Consider a typical manufacturing process setting which
involves multiple operations on multiple machines as
shown in Fig. 2. Three machines (A, B, and C) sequen-
tially process parts 1, 2, and 3. Machines A and B per-
form two rough machining (stock removal) passes and
machine C performs a finishing operation. The process
level controller in the first operation aimed to learn and

update the process model and pass on that information to
the second machine.

Such control architecture not only promises the production
and part quality control but also has potential to perform long
term monitoring of the part and process variables involved.
Execution of such architecture requires highly integrated ma-
chine shop floor, open architecture control (OAC), and intel-
ligent control schemes. As a demonstration of what such
control architecture could achieve, we present a demonstrative
case by controlling cutting force during bar turning when bar
material properties are not constant throughout the cut length.

2 Demonstrative machining application: bar turning
with varying material properties

Consider a simple bar turning operation done on a computer
numerical controlled (CNC) lathe (Fig. 3). In the manufactur-
ing process setting discussed earlier, this represents machine
A. Because of the prior model development, the force control

Fig. 1 Time scales in
optimization and control of
profitability components

Fig. 2 System information routes in a typical manufacturing process
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algorithm attempts to control the cutting force at 100 N. Suppose
the input material quality variation results in a hard spot, encoun-
tered in the 6th second of the cut. The change in material coeffi-
cients is not registered by the control algorithm, which results in
incorrect set point tracking as shown in inset plot of Fig. 3.

Suppose this information on material property change was
available at the start of the cut in a model-based control
process, the force control algorithm would have successfully
satisfied the control objective despite of the change in material
hardness. Referring to Fig. 4, the same control set point and
material parameters have been simulated, this time with prior
knowledge of the material property change. The cutting force
is controlled at 100 N, with the exception of some transience
at the point the change in hardness.

To accomplish the process control as discussed in the
previous section for the bar turning operation, the require-
ments are as follows:

& Accurate process model form and parameter values,
& In-process parameter value update algorithm while con-

tinuing to satisfy the control objective, and
& Parameter learning and transfer of this knowledge to next

operation/machine.

To that end, the remainder of this paper discusses the
Bayesian inference technique for mechanistic force model,
estimation scheme for the force coefficient parameters, and
numerical analysis of the effect of a priori knowledge of the
force coefficients.

2.1 Nonlinear mechanistic machining force model
identification with Bayesian inference

The effectiveness of a model-based control algorithm depends
upon the validity of the model. The linear mechanistic force
model is ineffective for large ranges of feeds and speeds.
Therefore, an alternate force model is investigated, which is
given as follows [7, 12]:

F ¼ K1bh
K2 ð1Þ

\where K1 and K2 are empirical constants that relate to ma-
terial property and tool workpiece interaction mechanisms, b

Fig. 3 Bar turning with hard spot
in input material

Fig. 4 Bar turning with hard spot with a priori known coefficients
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is the depth of cut, and h is feed per revolution of the work-
piece (in the case of turning). The force estimated thus is the
average force over the revolution of the workpiece. The iden-
tification of the coefficients was performed using Bayesian
inference techniques. Expressing the uncertainty in terms of
probability distributions, and using the Bayes theorem [13,
14], the posterior beliefs in the value of force coefficient can
be expressed as the following:

p K1;K2

���F� �
∝p F

���K1;K2

� �
p K1;K2ð Þ ð2Þ

Here, p(F|K1,K2) represents the data likelihood and p(K1,
K2) is the prior distribution of the force coefficients. Figure 5
shows the prior p(K1,K2) and posterior p(K1,K2|F) the after
seven updates.

It is evident from Fig. 5 that though the initial belief in the
force coefficient value is far from the true coefficients, few
updates are sufficient to identify the correct values. Every time
the update is made, the variance of the force coefficient
distribution reduces. The detailed Bayesian inference proce-
dure applied to machining model identification has been re-
ported in [15] by the authors. To identify the coefficients
offline, the experimental data is required, with which the
model shown in Eq. (1) can be fitted. Such an experimental
data set is shown in Table 1. This data was obtained cutting Ti-
Al-64V (grade 5 titanium) alloy with uncoated carbide tools
(with depth of cut of 1.5 mm). The cutting and feed forces
were measured using a strain gauge-based force sensor. The
values shown in the table refer to the average cutting force
over the length of the cut. For every data obtained, a new
cutting edge was deployed; all the cuts are taken in dry (no
coolant) conditions.

The Bayesian inference scheme used here updates the
belief in the force coefficients with the prior provided as

[1100, 0.5]. The estimation scheme sequentially updates the
belief in the coefficient values as new experimental data is
obtained. Figure 6 shows updated beliefs in the coefficient
values; after seven updates, the estimated coefficient values
converge to the true values of coefficients.

With converged coefficient values, the measured values of
forces are compared with the predicted force values as shown
in Fig. 7. The purpose of doing Bayesian inference on the
experimental data is to demonstrate the use of inference tech-
nique applied to a nonlinear mechanistic force model. The
same technique may be extended to perform online identifi-
cation of parameters, which is discussed in next section.

2.2 Machining force model online (in-process) recursive
identification

A typical machining force control block diagram is shown in
Fig. 8, where the force is controlled by controlling the feedrate
override control. For most of the force control applications,
feedrate control is chosen over depth of cut controls as seen in
[3, 7, 10, 12, 16]. For successful control of the cutting force,

Fig. 5 Joint probability distribution contours for coefficient values: prior
and posterior

Table 1 Experimental data used to perform Bayesian inference of force
coefficients

Test ID Feed
(mm/rev)

Cutting speed
(m/min)

Cutting
force (N)

Feed
force (N)

test88 0.05 75 206 199

test89 0.05 120 206 191

test91 0.15 75 480 302

test92 0.15 120 470 310

test94 0.25 75 702 360

test95 0.25 120 674 418

test96 0.05 165 224 234

test97 0.15 165 470 360

Fig. 6 Sequential estimation of nonlinear mechanistic force model
coefficients
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the force model should be known with reasonable accuracy.
With this model, the force set point is converted to feed set
point; the feedrate is controlled with a PI controller in a closed
loop. The controlled feedrate is then applied to machining
process, with cutting force measured with help of a strain
gauge-based force sensor. From measured force, the coeffi-
cients can be estimated. In the context presented, it is imper-
ative to identify the correct coefficients to be able to transfer
them to the next machine on machining line. Closed loop
identification of the parameter estimate requires inclusion of
the control law in the identification procedure [17].

To estimate the force coefficients, a recursive least square
(RLS) estimation technique is traditionally applied [17]. RLS
estimation is a special case of Bayesian parameter estimation
(fixed but unknown parameters) method with linear model
and uncertainty of Gaussian nature [18]. This requires log
linearization of the nonlinear mechanistic force model. The
log-linearized force model can be expressed as

y kð Þ ¼ ln
F

b

� �
¼ Φ kð ÞθT kð Þ ð3Þ

where Φ kð Þ ¼ 1 lnh½ � and θ kð Þ ¼ lnK1 K2½ �; this way
the nonlinear mechanistic force model coefficients can be

identified with the recursive least square estimator. The esti-
mation scheme can be expressed using the following set of
equations:

θ k þ 1ð Þ ¼ θ kð Þ þ L kð Þ y k þ 1ð Þ−Φ k þ 1ð Þθ kð Þ½ �
L kð Þ ¼ P kð ÞΦ k þ 1ð Þ

λþ ΦT k þ 1ð ÞP kð ÞΦ k þ 1ð Þ
P k þ 1ð Þ ¼ P kð Þ−L kð ÞΦT k þ 1ð ÞP kð Þ

λ

ð4Þ

The set of equations presented in Eq. (4) shows the recur-
sive least square estimation of parameter vector θ(k), L(k) is
called optimal gain matrix, and P(k) is called the estimation-
error covariance [19]. Optimal gain matrix determines the
amount by which the parameter estimate adjusts as new ob-
servation is obtained, and estimation error covariance refers to
uncertainty in the value of parameter estimate. The forgetting
factor was chosen to be λ=0.995 for the simulation presented
in this work. This algorithm works well in case the parameters
being estimated do not vary with time. Particular case at hand
requires dynamic estimation of parameters. To accomplish
this, the parameter estimation vector is now presented as a
random walk system [17].

θ k þ 1ð Þ ¼ θ kð Þ þ w kð Þ
y kð Þ ¼ Φ kð ÞθT kð Þ þ r kð Þ ð5Þ

In Eq. (5), w(k) is Gaussian distribution-sampled noise
parameter with covariance matrix P1(k) and r(k) is Gaussian
distribution-sampled noise parameter (indicating measure-
ment error) with covariance matrix P2(k). With these new
definitions, the Bayesian recursive parameter estimation
scheme can be described using the following equations:

Fig. 7 Bayesian inference of the nonlinear force model

Fig. 8 Block diagram of control loop and adaptation scheme
Fig. 9 Identification of force coefficients in response to change in
material hardness
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θ k þ 1ð Þ ¼ θ kð Þ þ L kð Þ y k þ 1ð Þ−Φ k þ 1ð Þθ kð Þ½ �
L kð Þ ¼ P kð ÞΦ k þ 1ð Þ

P1 kð Þ þ ΦT k þ 1ð ÞP kð ÞΦ k þ 1ð Þ
P k þ 1ð Þ ¼ P kð Þ−L kð ÞΦT k þ 1ð ÞP kð Þ þ P2 kð Þ

ð6Þ

In Eq. (6), the covariance matrices defined earlier help the
gain matrix L(k) not get impoverished when the estimation
error vanishes and helps track the coefficient values
efficiently.

3 Numerical simulations

As discussed in the introduction, the basic idea is to learn the
model parameters and track them as they change with respect
to time. In the context of turning a bar, the case study is

presented in which the force coefficients change because of
change in hardness of the material. For numerical simulation,
the block diagram shown in Fig. 8 was implemented inMatlab
Simulink along with online Bayesian RLS identification
scheme. The objective is to control force at 100 N, with depth
of cut to be 2 mm. At time t=4 s, the machining force
coefficients change as the material hardness changes. At the
start of the cut, the coefficient values are [1200;0.6], and at t=
4, the values change to [1250;0.58]. The goal of estimation
scheme is to identify these changes in the force coefficient as
quickly as possible to drive the cutting force to the required set
point. The result of these simulations is shown in following
figures.

In Fig. 9, the RLS scheme quickly converges to the true
coefficient values. Figure 10 shows the force trajectory with
respect to time. As the cut starts, because of false initial guess
([1100;0.7]), the force value does not converge to set point
value of 100 N. The identification algorithm starts at t=2 s.
The RLS scheme quickly adapts to the parameters values of
[1200;0.6]. At t=4, the parameter values again change to
[1250;0.58]. Note that because of open loop estimation, the
new parameter values are still not fed to the controller in order
to achieve the set point necessary; that is the reason why in
Fig. 10, after the hardness change in material, the set point is
shifted at about 120 N.

4 Experimental analysis

For the experimental validation of this process control
scheme, refer to the current experimental setup as shown in
Fig. 11. An Okuma-LB4000EX CNC lathe is instrumented
with a custom 2 directional strain gauge-based force sensor
that measures cutting force and feed force. The strain gauges

Fig. 10 Cutting force trajectory (set point 100 N)

Fig. 11 Experimental set up for
feed-override control
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are powered by two charge amplifiers with in-built analog
filters. The data acquisition is performed using National In-
struments CompactRIO hardware and National Instruments
LabVIEW software. For controlling the feedrate of this CNC,
a PMDC servomotor-powered pulley drives the feed-override
knob on the CNC machine panel.

The PI controller, coefficient estimation, and monitoring
algorithm will be implemented in the LabVIEW software.
Based on the initial tests, the feedrate override control has
proven to be working for the constant force control
applications.

For the experimental verification of the scheme, first it is
important to observe how cutting force gets affected by
change in material hardness. In the experimental analysis, an
AISI1045 1.5-in.-diameter steel bar was induction hardened to
45 HRC in partial length shown in Fig. 12. The pattern
includes 2-in. regions of hardened part symmetrically placed
from the centerline of the length of the bar. Since in reality, the
transition from non-hardened region to hardened region will
be smooth, and it was also reflected in numerical simulations.

4.1 Open loop estimation

Using the experimental setup described in previous section,
the constant depth of cut (2 mm), constant feed (0.1 mm/

rev), and constant speed (200 RPM), the data was taken for
the 5-in. length of the pattern 1 bar, and this is shown in
Fig. 13.

As it can be observed, the cutting force trajectory di-
verges once it encounters the hardened part of the bar. It
also seems to enter a chatter region which is characterized
by large amplitude vibrations of the force. The force and
feed data was processed to identify the process parameters
using exponentially weighted recursive least squares (E-
RLS) and Bayesian recursive least square (BRLS) shown
in Fig. 14.

The identified parameters, when fedback to the input data
to predict the force output (offline—post process), are shown
in Fig. 15.

Fig. 12 Experimental verification of the hardened bar cutting force
control: AISI1045 steel bars hardened to 45 HRC in partial length

Fig. 13 Cutting force trajectory for the hardened bar—cutting force rises
when tool encounters the hardened part of the bar; the trajectory of the
force then is representative of the material hardness encountered

Fig. 14 Identified parameters for hardened bar machining data

Fig. 15 Force prediction using identified parameters—comparison
between recursive least square and Bayesian recursive least square
approaches (200 RPM, 0.1 mm/rev feed, 2-mm depth of cut)
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As it can be seen from Fig. 15, the cutting force model
parameters are predicted accurately using the Bayesian
recursive least square method (Kalman filter), which in
turn, produces the cutting force values. Note that this dis-
cusses the open loop estimation of the force model coeffi-
cients, which results in cutting force not regulated at a
constant value. The force value increasing despite of the
same feed and depth of cut suggests the material property
change. If the force value regulation is desired, the estima-
tion of the force coefficients need to happen online (in
closed loop), which is discussed in the following section
along with experimental data.

4.2 Closed loop estimation

The estimation of the machining force coefficient can be
performed in closed loop following the adaptive control struc-
ture presented in this work. The experimental implementation
was done in the structure shown in Fig. 16. The feedrate servo
controller sampling rate is 1 ms (1000 Hz), while parameter
estimator scheme is implemented at minimum to 200 to
500 ms.

Experiments for the closed loop control with estimation
were performed for AISI 1045 material; the results are
shown in Fig. 17 along with model coefficient estimated
values. The coefficient values assume nonzero values after
about 100 s into the cut; this is because the estimator was
turned on after cutting tool was cutting the metal. This was
done to prevent the estimator to produce unstable values
(NaN—not a number values). As it can be observed from
the plot, the closed loop estimation of the model parameters
ensures force set point regulation in spite of hitting the hard
spot in the workpiece.

5 Conclusion

Machining process control has been investigated in theory and
application for decades but has seldom been implemented on
industrial systems for various reasons. Primarily the closed
architecture legacy controllers prohibit access to the servo
motor control signals for implementing intelligent controllers.
Also, the integration of the external sensors (for force, power,
and surface roughness measurements) directly to the machine
controller has been difficult. Recently, advances in open ar-
chitecture control (OAC) have opened these opportunities and
CNC machines on the shop floor are connected through TCP/
IP communication protocols which are also explored for
condition-based monitoring (CBM) of machine tools [20].
All these concurrent development in machine tool software

Fig. 16 Implementation of
adaptive control scheme on
experimental setup

Fig. 17 On-line estimation of force coefficients along with set point
regulation (200 RPM, 0.05 mm/rev nominal feedrate and force control
set point of 200 N)
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and hardware are leading toward more and more use of
intelligent controllers toward efficient machining.

This work discussed a perspective in-process level control
in which the input material variation is registered in terms of
force coefficients and information is passed on to the next
machine in the line. This was accomplished with linearization
of the nonlinear mechanistic model and using the recursive
least square estimator. This is a concept demonstration that
can be expanded further in terms of quality prediction over
multiple parts, tool wear monitoring, and general health mon-
itoring of multistage machining process.
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