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Abstract Fused deposition modelling (FDM) is an additive
manufacturing technique deployed to fabricate the functional
components leading to shorter product development times with
less human intervention. Typical characteristics such as surface
roughness, mechanical strength and dimensional accuracy are
found to influence the wear strength of FDM fabricated com-
ponents. It would be useful to determine an explicit numerical
model to describe the correlation between various output pro-
cess parameters and input parameters. In this paper, we have
proposed an improved approach of multi-gene genetic pro-
gramming (Im-MGGP) to formulate the functional relationship
between wear strength and input process variables of the FDM
process. It was found that the improved approach performs
better than MGGP, SVR and ANN models and is able to
generalise wear strength of the FDM prototype satisfactorily.
Further, sensitivity and parametric analysis is conducted to
study the influence of each input variable on the wear strength
of the FDM fabricated components. It was found that the input
parameter, air gap, has the maximum influence on the wear
strength of the FDM fabricated component.

Keywords Wear prediction . Fused depositionmodelling .

Rapid prototyping . Evolutionary computation

1 Introduction

Fused deposition modelling (FDM) is a three-dimensional
(3D) printing process that makes use of rapid prototyping
(RP) technology to build 3D solid complex parts from the
computer-aided design data. The process is entirely automatic
without the use of tooling and involves less human interven-
tion. The FDM process has hence resulted in applications in
functional prototype development in the medical sector, auto-
mobile industries, construction industries, space applications
and tool and die making [1, 2].

Literature reveals that the properties of the FDM fabricated
parts such as wear strength, tensile strength, compressive
strength and surface roughness are function of input process
variables and can be significantly improved with its proper
adjustment [3, 4]. For an appropriate selection of input process
variables as well as with an advent of development of capital
intensive FDM machines, the desire for mathematical model-
ling has been strengthened. One route is to develop new
materials, but this may require one to have expert knowledge
about the characteristics of materials at different operating
conditions [5–7]. Another route is to develop mathematical
models that can be used as an alternative for studying the
FDM process. In this context, several physics-based models
have been formulated [8–11]. The formulation of the physics-
based models requires in-depth understanding of the process
and is not an easy task in presence of partial information about
the process. Therefore, researchers shifted focus on develop-
ing models based on only the given data.

To develop models based on only the given data, several
well-known computational intelligence (CI) methods such as
artificial neural networks (ANNs), fuzzy logic, adaptive-
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network-based fuzzy inference system, genetic programming
(GP) and support vector regression (SVR) have been applied
to formulate the relationship between output and input process
variables of the FDM process [12–16]. Among these methods,
GP possesses the ability to evolve models structure and its
coefficients automatically [12, 17–20]. The most popular var-
iant of GP used recently is multi-gene genetic programming
(MGGP) [21–23]. Despite of good number applications of
MGGP in solving symbolic regression problems [24–27], it
has a limitation for producing models that over-fit on the
testing data. This indicates that the underlying relationships
of the whole data were not learned, and instead, a set of
relationships existing only on training cases were learned,
but these have no correspondence over the whole possible
set of cases. The poor performance of models on the testing
data is undesirable and is likely to give falsify information
about the process. Over-fitting in GP is the popular problem
among researchers and have been paid less attention [28, 29].

Therefore, the present work proposed an improved ap-
proach of MGGP (Im-MGGP) in modelling of wear strength
of FDM fabricated component. An improved approach makes
use of statistical learning principle, structural risk
minimisation, for imparting the generalisation ability to the
model. Idea for introducing this principle came from SVR
method, where this principle plays a key role in invoking the
generalisation. Unlike the standard GP, each model participat-
ing in this approach is formulated from the set of combination
of genes. Experiments were conducted to fabricate the FDM
prototypes. The wear strength of the FDM fabricated proto-
types is measured based on five input variables such as layer
thickness, orientation, raster angle, raster width and air gap.
Based on data obtained from the experiments, the proposed
method is applied and its performance is compared to that of
the other three potential models: standardised MGGP, SVR
and ANN. Further, the sensitivity and parametric analysis is
conducted to validate the robustness of the model by unveiling
the dominant input process variables and hidden non-linear
relationships.

2 FDM process

2.1 Experimental details and data collection

FDM by Stratasys Inc., USA has been widely used in the
manufacturing industry from the 1990s as one of the layered
manufacturing techniques. It has significant advantages in
terms of cost effective, lesser build time, elimination of ex-
pensive tooling, flexibility and the possibility of producing
very complex parts and shapes. Previous research mainly
focused on dimensional accuracy of the built part [15], surface
roughness improvement [8] and mechanical strength charac-
terisation [30, 31]. These works demonstrated that properties

of the built parts depend on input process variables and can be
improved by their suitable selection. Wear strength is an
important characteristic for the durability of part and very little
work is done to understand the wear characteristic of the RP
processed part [32]. To address this gap, the present work
emphasised the sliding wear behaviour of FDMprocessed part
and its relationship with process parameters.

The FDM process to be modelled is referred from an earlier
study conducted on an investigation on sliding wear of FDM
built parts [13]. The process input variables considered are
layer thickness (x1), orientation (x2), raster angle (x3), raster
width (x4) and air gap (x5) and other factors such as part fill
style, contour width and visible surface are fixed. For each of
the input process variables, values at three levels (low, centre
and high) are considered as per guidelines of machine manu-
facturer and industrial application. The output variable con-
sidered is wear strength (y), which is computed by calculating
the ratio of wear volume and sliding distance. Wear volume
(mm3) is determined by multiplying the cross-sectional area
with decrease in height, and sliding distance (m) is obtained
by multiplying time with speed of rotation. For the wear
testing, pin on disk apparatus (Ducom, TR- 20LE-M5) is
used. The contact path diameter is set as 120 mm, and the
disc is made to rotate with constant speed of 1 m/s. The disc is
made of EN 31 hardened steel (hardness RC 62 and roughness
(Ra) 0.32–0.35 μm).

Half factorial 25 unblocked design having 16 experimental
run, 10 (2K, where K=5) axial run and 6 centre run have been
used to create 32 set of data points. Nature of the data set
collected is shown by its descriptive statistics in Table 1.
Selection of training and testing data set affect the prediction
ability of the model. In this work, Kennard and Stone algo-
rithm is used to select the appropriate training and testing data
set. The algorithm selects the training samples in such a way
that the data is distributed uniformly throughout the domain.
Twenty-six samples are chosen as the set of training data with
the remaining as test samples. The training data is used for
formulating the models, whereas the test data samples are used
for testing the generalisation ability of the models.

3 Computational intelligence methods

3.1 Multi-gene genetic programming

In order to understand the concepts of MGGP method, the
basics of GP are first discussed in brief. GP generates models
automatically based on the given data using Darwinian prin-
ciple of “Survival of the fittest” [33]. Working principle of GP
is the same as GA but the only difference between them, is
that, GA evolves solutions represented by strings (binary or
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real number) of fixed length, whereas GP generates solutions
represented by tree structures of varying sizes.

GP algorithm starts by generating the models randomly.
The number of models generated is represented by the popu-
lation size. The models are formed by combining the elements
randomly from the functional and terminal set. A function set
F usually comprises of elements such as basic arithmetic
operations (+, −, ×, /, etc.), Boolean operators (AND, OR,
etc.) or other operators as defined by the user. The terminal set
T comprises elements such as numerical constants and input
decision variables of the process. An example of a model
constructed is shown in Fig. 1. The performance of initial
population is evaluated on the training data based on the
fitness function, namely, root mean square error (RMSE),
given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

N

Gi−Aij j2

N

vuuut
ð1Þ

where Gi is the valued predicted of ith data sample by the
MGGPmodel,Gi is the actual value of the ith data sample and
N is the number of training samples.

Based on the performance on training data, algorithm se-
lects models for genetic operations such as reproduction,
mutation and crossover. The purpose of performing genetic
operations is to form a new population that represent new
generation. A subtree crossover operation is used, in which a
branch of tree is selected from both the parents and is ran-
domly exchanged. A subtree mutation operation is used, in
which, the node (terminal or functional) is selected at random
from the tree, and is replaced by branch/or the whole new
generated random tree. This iterative phenomenon of gener-
ating new populations/generations continues as long as the
termination criterion is not met. Termination criterion is the
maximum number of generations and the threshold error of
the model, whichever is achieved earlier.

Unlike GP, the evolutionary phase of the MGGP algorithm
evolves models, where every model is formed by combining
set of trees/genes. The MGGP algorithm is outlined as
follows:

BEGIN
Step 1: Formulate problem
Step 2: MGGP algorithm
Begin
2.a Set parameters such as terminal and

function set, number of generations, popula-
tion size, genetic operators rate and maxi-
mum number of genes

2.b Generate initial population of genes
2.c Models are formed by combining set of

genes using least squares method
2.d Evaluate performance of models based

on RMSE
2.e Apply genetic operations and form the

new population
2.f Cross-check the models performance

against the termination criterion, and if
not satisfied, GOTO Step 2.e

End;
END;

Table 1 Descriptive statistics of the input and output process variables used in FDM experiment

Parameter Layer thickness (x1) Orientation (x2) Raster angle (x3) Raster width (x4) Air gap (x5) Wear strength (mm3/m) (y)

Mean 0.18 15 30 0.4564 0.004 0.0266

Standard error 0.008 2.020 4.04 0.006 0.0005 0.0016

Median 0.178 15 30 0.4564 0.004 0.0269

Standard deviation 0.048 11.43 22.86 0.038 0.003 0.009

Variance 0.002 130.64 522.58 0.001 9.29E−6 8.86E−5
Kurtosis −1.20 −1.22 −1.22 −1.22 −1.22 −0.50
Skewness 0.35 0 0 −9.5E−15 −2.02E−15 0.10

Minimum 0.127 0 0 0.4064 0 0.011

Maximum 0.254 30 60 0.5064 0.008 0.048

sin

+

8

-

x

+

3 x

Function set 
elements

Terminal set 
elemets

Fig. 1 Example of the GP model 8+ sin(x)−3+x
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3.1.1 Settings of parameter for implementation of MGGP

Parameter settings play a major role in implementing the
MGGP algorithm in an effective manner. A trial and error
method is used to select the parameter settings (Table 2). The
function set consists of broader set of elements so as to evolve
variety of non-linear forms of mathematical models. The
values of population size and number of generations fairly
depend on the complexity of the data. Based on previous
applications of the algorithm by Garg et al. [34–39], the
population size and number of generations should be fairly
large for data of higher complexity, so as to find the models
with minimum error. Maximum number of genes and maxi-
mum depth of the gene influences the size and the number of
models to be searched in the global space. The maximum
number of genes and maximum depth of gene is chosen at
seven and six, respectively.

GPTIPS software [40, 41] is used for the implementation of
MGGP algorithm. This software is a new “genetic program-
ming and symbolic regression” code written based on MGGP
[42] for the use with MATLAB. MGGP method is applied to
the data set as collected in Section 2. The best MGGP model
(see Eq. 2) is selected based on minimum RMSE on training
data from all runs, and its performance is discussed in
Section 4.

3.2 Improved multi-gene genetic programming

Since the MGGP method evolves models that are formed by
combining the set of genes, it tends to produce large size
models that may over-fit on the testing data. This indicates
that the underlying relationships of the whole data were not
learned, and instead a set of relationships existing only on
training cases were learned, but these have no correspondence
over the whole possible set of cases. The poor performance of
models on testing data is undesirable and is likely to give

falsify information about the process. Therefore, an improved
approach of MGGP is proposed. In this approach, a well-
established statistical criterion, SRM, is integrated in the par-
adigm of MGGP. SRM is a modified form of empirical risk
minimisation principle and minimises the upper bound on the
expected risk. The algorithm of the proposed approach is as
follows:

BEGIN
Step 1: Formulate problem
Step 2: MGGP algorithm
Begin
2.a Set initial parameters such as func-

tion set, terminal set, population size,
number of generations, genetic operators
rate and maximum number of genes.

2.b Generate initial population of models
Step 3: Define SRM criterion
3.a Evaluation of models using SRM

criterion
3.b If termination criterion is satisfied

select the best model, else apply genetic
operations

3.c Select the model based on minimum
training error

End;
End;
End;

Each model participating in the evolutionary process is
combination of several trees/genes, and their performance is
evaluated using SRM criterion given by

SRM ¼ SSE

N
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

N
−

b

N
log

b

N

� �� �
þ log b

N

� �
2N

� �� �� �s0
@

1
A

−1

ð3Þ

where b is the number of nodes of GP tree (size of model),
SSE is the sum of square of error of GP model on the training
data and N is the number of training samples. SRM add size
term (b) to the empirical error, and thereby punishes the
models of larger size, and thus prevents over-fitting.

3.2.1 Settings of parameter for implementation of Im-MGGP

For the fair comparison with the MGGP method, the param-
eter settings of the Im-MGGP method are kept the same as
discussed in Section 3.1.1. The Im-MGGP method is applied
on the data set as discussed in Section 2. The best model
(Eq. 4) is selected based on minimum RMSE on training data,
and its performance is discussed in Section 4.

Table 2 Parameter settings for MGGP and Im-MGGP

Parameters Values assigned

Runs 10

Population size 400

Number of generations 100

Tournament size 2

Max depth of tree 6

Max genes 7

Functional set (F) (Multiply, plus, minus, tan,
tanh, sin, cos, plocg, exp)

Terminal set (T) (x1, x2, x3, x4, x5 [−10 10])
Crossover probability rate 0.85

Reproduction probability rate 0.10

Mutation probability rate 0.05
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3.3 Support vector regression

SVR is a well-known and applied CI method in the field of the
data modelling [43–45]. SVR method came from the support
vector machine (SVMs), which has been applied for solving
the classification problems. Unlike statistical regression
methods, SVR is void of statistical assumptions and drives
the data for generating non-linear models.

Since, SVR works on the principle of SRM, it is well
known for invoking generalisation ability to the models. Input

variables in the lower dimensional space are projected into a
higher dimensional space H so as to convert the regression
problem with non-linearity to the linear regression problem.
To assist with such conversion, several hyperspace or transfer
function can be used.

SVR model is model developed based on the training data.
In this study, there are five input process variables and one
output variable. The SVR model formulated is given by

y ¼ z xð Þ ¼
X
i¼1

N

wiρi xð Þ þ b ¼ wHρ xð Þ þ b ð5Þ

where the function ρi(x) is the transformed higher-dimensional
spacew= [w1w2…wN]

H and ρ=[ρ1ρ2…ρN]
H

Equation (5) represents a non-linear function, which pro-
jects the input variable space into a higher dimensional space
H. The model given by ρ(x) is linear in nature and is a
converted form of original non-linear model in higher dimen-
sional space. The kernel function learns from the data
discussed in Section 2 and the regularised risk function (Lr)
is minimised. By minimising this risk function Lr, the param-
eters w (weight) and b (bias) are estimated.

Table 3 Parameter settings for ANN

Parameters Values assigned

Training data set 25

Testing data set 7

Number of hidden layer 1–4

Number of neurons in hidden layer 2–9

Activation function Sigmoid

Number of epochs 1000

Learning rate 0.70

Architecture selection Trial and error

Target goal mean square error 10−5

Minimum performance gradient 10−5
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Fig. 2 Impact of number of
neurons on performance of ANN
along a number of hidden layer 1,
b number of hidden layer 2, c
number of hidden layer 3 and d
number of hidden layer 4
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Lr wð Þ ¼ 1

2
wTwþ λ

X
i¼1

N

yi−z xð Þj je ð6Þ

where yi−z xð Þj je ¼
0; if yi−z xð Þj j < ε

yi−z xð Þj j−ε; otherwise

�

The weight vector norm and the approximation error trade-
offs is regulated by the regularisation parameter (λ). With an
increase in values of λ or weight vector norm, the approxima-
tion error can be decreased but deregulating the control of
regularisation parameter (λ) may also results in over-fitting of
the SVR model. Values of λ and ε, where ε is the tolerance
level, are fixed by the practitioner. ε-insensitive loss function
(|yi−z(x)|e) given by Eq. 6 is minimised so as to estimate the
parameters. If the values predicted by the SVR model z(x) lies
within the defined tolerance level ε, the values of loss function
is zero, and for the points outside ε, it is the magnitude of the
difference between the values predicted by the SVR model
and tolerance level ε. The points on the margin lines (y=z(x)
±ε) are called support vectors, whereas those outside are
known as error set.

3.3.1 Settings of parameter for implementation of SVR

Parameter settings of SVR such as selection of kernel function
play a major role in learning and minimising the loss function
efficiently. In this study, kernel function, namely radial basis
function (RBF), is chosen based on its popularity among
researchers for faster and efficient training of the SVR model.
To implement SVR, LS-SVM tool box [46] built inMATLAB
is applied on the data as discussed in Section 2. This toolbox

has been used extensively by researchers [47–49] to solve
symbolic regression problems of varying nature. RBF param-
eters, namely, λ and σ, are determined using coupled simulat-
ed annealing (CSA) and a grid search method. Firstly, the
CSA determines the good initial values of λ and σ, and then,
these are passed to the grid search method which uses cross-
validation approach to fine tune the parameters. A SVRmodel
with optimal parameters λ=102.06 and σ=0.0285 is found at
the second iteration. The performance of the SVR model is
discussed in Section 4.

3.4 Artificial neural network

ANN is one among the popular CI method based on the
principle of neural networks found in nervous system of living
organisms [50, 51]. ANN has also been applied successfully
for machining problems in engineering [52, 53]. The architec-
ture of ANN consists of three layers: input layer, hidden layer
and the output layer. Each layer is characterised by the neuron/
s. The number of neurons in the input and output layer is equal
to number of input and output variables considered in the
study. The hidden and output layer makes use of the activation
function. The given layer is connected to pre- and after layer
using links. Each link is characterised by a weight. Each
weighted link is computed from the multiplication of input
values and weights. The neurons in the hidden and output
layer are offset by a threshold value.

Each weighted link outputs a value that is passed to each in
neuron in the hidden layer. The summation of the weighted
inputs is done in hidden layer and is further input to activation
function (A) which produces an output O.

O ¼ A
Xn−1
i¼0

wixi−β

 !
ð7Þ

X3

y

Input layer with five

neurons

Two hidden layers

with six neurons

Output layer

X2

X4

X5

X1

Fig. 3 Architecture of ANN
determined based on a trial and
error approach
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Fig. 4 Fit of the computational
intelligence formulated models on
training and testing data a, b
MGGP; c, d Im-MGGP; e, f SVR;
and g, h ANN
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where wi the weight on the links, xi is the ith input variables
and β is the threshold or offset of the neuron. In the present
study, the sigmoid-logistic function used as activation func-
tion is given by

A xð Þ ¼ 1

1þ e−x
ð8Þ

The error function used to estimate the deviation of the
predicted value of the network from the experimental sample i
is given by

Esample ¼ 1

2

X
n¼1

N

Ai−Mið Þ2 ð9Þ

where Ai andMi are actual and predicted values for ith sample,
respectively, and M is the number of neurons in the output
layer. The average error for the whole network is given by

Average error ¼ 1

2

X
n¼1

N X
n¼1

N

Ai−Mið Þ2 ð10Þ

where N is the total number of samples. Back propagation
algorithm, namely, Levenberg-Marquardt algorithm [54] that
works on the principle of the second derivative is used to
optimise the average error. The simpler form of Hessian
matrix is used, and the algorithm iterates weights using for-
mulae

xkþ1 ¼ xk− JT jþ μI
� 	−1

JTe ð11Þ

where J is the Jacobian matrix that consists of the first deriv-
atives of the network errors, e is a vector of network errors, μ
is the learning rate and I is the identity matrix. Weights in each
link are estimated and updated until the threshold error is
achieved. Threshold error fixed by the user is the maximum
number of epochs or the minimum error of the model which-
ever is achieved earlier.

3.4.1 Settings of parameter for implementation of ANN

Three layer feed-forward neural networks is implemented in
MATLAB R2010b. The settings chosen for ANN are shown
in Table 3. Number of neurons in the hidden layer and number
of hidden layers influence the generalisation ability of the
ANNmodel, and hence, it is important to select them properly.
In the present work, a trial and error approach is used to select
the optimum number of neurons and number of hidden layers.
As shown by bar graph in Fig. 2, for number of neurons, six,
and hidden layers, two, the RMSE is minimum, and therefore
the ANN model with two hidden layers with six neurons is
selected. Architecture of the selected ANN network is shown

in Fig. 3. The performance of the ANN model on training and
testing data is discussed in Section 4.

4 Computation of models performance

The results obtained from the four models are illustrated in
Fig. 4 on the training and testing data, respectively. Perfor-
mance of the proposed models is evaluated using the five
metrics: the coefficient of determination (R2), the mean abso-
lute percentage error (MAPE), the RMSE, the relative error
(%) and multi-objective error function (MO) given by

R2 ¼

X
i¼1

n

Ai−Ai


 �
Mi−Mi


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

n

Ai−Ai


 �2X
i¼1

n

Mi−Mi


 �2s
0
BBBB@

1
CCCCA

2

ð12Þ

MAPE %ð Þ ¼ 1

n

X
i

Ai−Mi

Ai

����
����� 100 ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

N

Mi−Aij j2

N

vuuut
ð14Þ

Relativeerror %ð Þ ¼ Mi−Aij j
Ai

� 100 ð15Þ

Multi‐objectiveerror ¼ MAPEþ RMSE

R2 ð16Þ

where Mi and Ai are the predicted and actual values, respec-
tively,Mi and Ai are the average values of the predicted and
actual, respectively, and n is the number of training samples.
Since, the values of R2 do not change by changing the models
values equally and the functions MAPE and RMSE and the
relative error only shows the error and no correlation. There-
fore, a MO error function that is a combination of these
metrics is also used.

Table 4 Multi-objective error of the four models

Models Training data Testing data

MGGP 4.26 21.43

Im-MGGP 3.67 10.30

SVR 4.76 12.76

ANN 2.84 6.26
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The result of training phase shown in Fig. 4a, c, e and g
indicates that all the four models have impressively learned
the non-linear relationship between the input variables and
wear strength with high correlation values and relatively low
error values. The result of the testing phase shown in Fig. 4b,
d, f and h indicates that the predictions obtained from the
proposed Im-MGGP and ANN models are in good agreement
with the experimental data with values of R2 achieved is as
high as 0.95. Between MGGP and SVR, SVR has shown
better performance.

MO values of the four models are computed on the training
and testing data as shown in Table 4. The descriptive statistics
of the errors are shown in Table 5, which illustrates error
mean, standard deviation (Std dev), standard error of mean
(SE mean), lower confidence interval (LCI) of mean at 95 %,
upper confidence interval (UCI) of mean at 95 %, median,
maximum and minimum. The lower MO error values on the
testing data and the lower values of range (UCI-LCI) of the
confidence intervals of the proposed Im-MGGP and ANN
models indicate that they are able to generalise the wear
strength values satisfactory based on the variations input
experimental conditions.

The goodness of fit of the four models is evaluated based
on the hypothesis tests (Table 6). These are t-tests to determine
the mean and f-tests for variance. For the t-tests and the f-tests,
the p values of all four models is >0.05, so there is not enough
evidence to conclude that the actual values and predicted
values from these models differ. Therefore, all models have
statistically satisfactory goodness of fit from the modelling
point of view.

Thus, from the statistical comparison presented, it can be
concluded that the proposed Im-MGGP model is able to
capture the dynamics of the interactive effect of layer thick-
ness, orientation, raster angle, raster width and air gap on the
wear strength satisfactory. Its performance was found to be on
par with ANN. Between MGGP and SVR, SVR has shown
better performance.

5 Sensitivity and parametric analysis of the proposed
model

Sensitivity and parametric analysis about the mean is conduct-
ed for the validation of the proposed Im-MGGP model. The
sensitivity analysis (SA) percentage of the outputs to each
input parameter is determined using the following formulas:

Li ¼ f max xið Þ− f min xið Þ ð17Þ

SAi ¼ LiX
j¼1

n

L j

� 100 ð18Þ

where fmax(xi) and fmin(xi) are the maximum and minimum of
the predicted output over the ith input domain, respectively,
where the other variables are equal to their mean values.

Table 7 shows the sensitivity results of input variables in
the prediction of wear strength of FDM fabricated component.
From Table 7, it is clear that the input variable, air gap has the
highest impact on wear strength of component followed by
raster width, orientation and layer thickness. The influence of
raster angle on the wear strength of component was found to
be minimum. This reveals that by regulating the air gap, a
greatest variation in wear strength can be achieved. The para-
metric analysis provides a measure of the relative importance
among the inputs of the Im-MGGP model and illustrates how
the wear strength varies in response to the variation in input
variables. On the formulated Im-MGGP model, the first input
is varied between its mean±definite number of standard devi-
ations and the wear strength is computed, while the other
inputs are fixed at its mean value. This analysis is then
repeated for the other inputs. Figure 5 displays the plots
generated for each input variable and the wear strength. These

Table 7 Amount of impact of each input variable to the wear strength

Input variables Relative contribution (%) to wear strength

Layer thickness 9.30

Orientation 18.6

Raster angle 2.32

Raster width 30.23

Air gap 39.53

Table 6 p values to evaluate goodness of fit of the four models

95 % CI MGGP Im-MGGP SVR ANN

Mean paired t-test 0.0614 0.3584 0.2612 0.4167

Variance f-test 0.4926 0.8653 0.5826 0.9316

Table 5 Descriptive statistics of the relative error (%) of the four models

Models Count Mean LCI 95% UCI 95% Std dev SE mean Median Maximum Minimum

MGGP 32 6.85 3.80 9.90 8.45 1.49 4.00 37.25 0.39

Im-MGGP 32 4.76 3.34 6.19 3.95 0.70 3.24 13.34 0.17

SVR 32 5.89 3.91 7.86 5.47 0.96 4.27 25.97 0.33

ANN 32 3.38 2.13 4.62 3.44 0.60 2.29 13.99 0.009
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plots reveal that, for example, the wear strength decreases with
an increase in layer thickness and raster width, and increases
with increase in air gap. Wear strength follows a parabolic
non-linear relation with the orientation. Analysis complies
well with the study conducted by Sood et al. [13], which
validates the robustness of the model.

From Table 7 and Fig. 5, we can then select the
optimal values of the input variables, which optimise
the wear strength. In this way, our proposed model can
be used to reveals insights on the phenomenon of im-
pact of input process parameters on the wear strength of
FDM fabricated component.

Fig. 5 Variation of wear strength with respect to each input variable
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6 Conclusions

The present work establishes the motive behind formulating the
functional relationships for studying the properties of FDM
fabricated component. In addition, the issue of poor generali-
sation ofMGGP approach is addressed. An improved approach
of MGGP for the evaluation of wear strength of the FDM
fabricated component is proposed. The proposed model outper-
forms the standardised MGGP and SVR models, and its per-
formance is found to be at par with ANN model. The paramet-
ric and sensitivity analysis conducted validates the robustness
of model by unveiling dominant input parameters and hidden
non-linear relationships. It was found that the wear strength
decreases with an increase in layer thickness and raster width
and increases with increase in air gap. The high generalisation

ability of the Im-MGGP model is beneficial for RP experts,
who are currently looking for high-fidelity models that predict
the wear strength in uncertain input process conditions. The
model provides an explicit functional relationship between
wear strength and the input process parameters, and thus can
be used offline in shop floor for prediction. This model can also
be further optimised and the optimal input process variables
settings can be estimated to maximise the wear strength. Future
work for authors is to investigate the environmental impacts of
the 3-D printing FDM components using the improved evolu-
tionary computational approach [55].

7 Appendix

Wear strengthMGGP ¼ 0:10772þ 0:10603ð Þ �


tan




x4ð Þ− x1ð Þð Þ− tanh x2ð Þð Þð Þ�
tan tanh x1ð Þð Þð Þ

�
− exp exp x1ð Þð Þð Þ � plog x3ð Þð Þ � x5ð Þð Þð Þ

��
þ −0:0070485ð Þ�


tanh
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Wear strengthIm‐MGGP ¼
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