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Abstract It is important to predict the groove sidewall pene-
tration for narrow gap MAG welding quality control. In this
paper, we present a hybrid model to describe the groove
sidewall penetration dynamics. First, sensing system was set
up to obtain and fuse the signal from arc sensor, visual sensor,
and sidewall penetration sensor. Next, the center position of
the rotating arc was varied to generate the experimental data.
Due to the fact that sidewall penetration on the left side varies
greater than that on the right side, a support vector machine
(SVM)-based dynamic model was built to predict the pene-
tration on the left side and a cubic polynomial regression
model for the right side. The model developed in this paper
can be applied to the further penetration control.
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1 Introduction

As a highly efficient welding method, rotating arc narrow gap
MAG welding (RA-NGMW) [1–3] requires enough penetra-
tion on both sides of the groove wall. Building a dynamic

prediction model for sidewall penetration is significant for its
quality control [4].

There are many research for penetration control whether in
GTAWor GMAW in the field of sensing, modeling, and control
method [5–10]. For RA-NGMW, its sidewall penetration is hard
to be observed or modeled; therefore, some research focus on
the forming of weld seam under different constant parameters,
which is useful for a static model rather than a dynamic model.

Theoretically, the sidewall penetration is mainly decided by
the endothermic and radiating. Here, the radiating is supposed
to be same, and the endothermic is mainly affected by the
thermal arc and the absorption rate. It is well known that the
thermal arc is decided by welding current when the arc length
is relatively long. For absorption rate, it was mainly decided
by the shortest distance of “sidewall arc center” and the angle
of droplet transfer, which will affect the heat transition to the
sidewall whether by liquidmetal convection or plasma stream.
Usually, the angle of droplet transfer is constant in welding
[11]. Therefore, welding current and distance of sidewall arc
center were selected as the input and penetration as the output.

Considering the complexity of welding process, a support
vector machine (SVM) [12, 13] modeling method was used to
build the dynamic model.

Another challenge for building dynamic model is that the
penetration information is obtained off-line while other infor-
mation is obtained on-line. It is necessary to fuse the penetra-
tion information with the rest using equipment and method as
designed in this paper.

In this paper, we built a dynamic model for sidewall pen-
etration of RA-NGMW. The remainder of the paper is orga-
nized as follows. In Sect. 2, the RA-NGMW welding and
sensing systems were introduced. In Sect. 3, experiments were
designed, and data were obtained. In Sects. 4 and 5, an SVM
model for left sidewall penetration and a regression model for
right sidewall penetration were built, respectively. Sect. 6
concludes this paper.
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2 RA-NGMW welding and sensing systems

The RA-NGMWand its sensing system are shown in Fig. 1. For
the rotating arc torch, the tip had a bias hole, whichmade the end
of wire deviate the tip axis and the arc rotate during welding.
The detail principle of welding torch can be found in Wang’s
work [1]. The welding parameters are shown in Table 1.

As to the sensing part, Hall current sensor was used to
obtain welding current. Second, a photoelectric switch and a
hole on a disk (fixing on the rotating part of torch) were
combined to detect the arc position when it was in the front
of welding pool. Third, a CCD camera was placed in front of
welding pool to obtain the welding image [14], and the
shortest distance of sidewall arc center was obtained by image
processing. The detail of sensing information acquisition and
deal were introduced as following.

2.1 Arc sensing information

Here, welding current was obtained by current hall sensor.
Then, the sensing signal was input to the NI PCI-6251 DAQ
card and processed by PC. Although the welding current was
set as constant value in the power source, the welding current
varied according to the variation of arc length. It was obvious
that we should select the current whose position was near the
groove sidewall. Here, the left and right 1/4 rotating circle
parts were selected as the signal extraction area as shown in

Arc 

Rotating 
position 

Electrical 
signals Sensor

Power 
source

Motor
Welding wire 

Carbon 
brush 

tip 

Side wall

Welding 
pool 

Photoelectric 
detector 

Fig. 1 Structure of welding torch
and sensing information for
modeling

Table 1 Welding parameters of narrow gap MAG welding

Parameter Value

Torch height H, mm 20

Wire diameter, mm 1.2

Workpiece Q235

Power source external characteristic Constant-voltage

Welding current I, A 300 (setting value)

Welding voltage U, V 31

Welding speed v, mm/min 230

Shield gas flow meter q, L/min 30

Rotating frequency f, Hz 50

Fig. 2 Obtained current signal
and front position signal
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Fig. 3. In addition, the arc’s front position signal was used to
identify this area. The obtained current signal and front posi-
tion signal are shown in Fig. 2. The mean value was used to
represent the welding current near the sidewall (Fig. 3).

2.2 Vision sensing information

To get the shortest distance of sidewall arc center, we need to
get and process the welding image. Here, passive vision was
adopted, and the infrared image was taken to weaken the arc

light and improve the metal radiation relatively. Figure 4
shows two welding images with different filter. For Fig. 4a,
the welding wire and weld pool were clearer, but the arc area
was too large to determine the arc position. For Fig. 4b, the
end position of wire is visible in the image, but it is sensitive to
the welding conditions; on the other hand, the arc light area is
small and robust to detect. Therefore, we use the arc light area
to determine the arc position. In detail, the camera model was
MV1-D1312I-C031-160-CL whose exposure time was 5 ms
and aperture was 7. The optical filter’s center wavelength was
1100 nm, and its width was 20 nm, and ND filter’s pass rate
was 10 %.

Typical gray histogram of welding image is shown in
Fig. 5, where the first peak on the left (part B) represents the
groove and the dark area above the arc in Fig. 4b; the second
peak on the left (part C) represents the brighter areas in the
groove in Fig. 4b; and the peak on the right (part D) represents
arc bright area in the groove in Fig. 4b. Therefore, the arc and
the groove area can be segmented by threshold. More specif-
ically, the gray value of the valley between the first and second
peak was set as the first threshold to detect sidewall and the
gray value of the right peak as the second threshold to detect
the arc center position.

Since the narrow groove is approximately vertical, only the
detection of horizontal edge is necessary in the edge detection
of groove sidewall. According to features of the image in
Fig. 4, the sidewall edge detection area could be divided into

(a) Work piece shape (b) Viewed from top

Fig. 3 Current signals extracting
in an arc rotation period. a
Workpiece shape. b Viewed
from top

（a）880-nm Filter (b) 1100-nm filter
Fig. 4 Infrared region welding image of rotating arc MAG welding. a
880-nm filter. b 1100-nm filter

Fig. 5 The gray histogram of
welding image
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three areas: (1) the upper area of the sidewall, where the edge
was hard to distinguish because the arc light there was rela-
tively weak; (2) the middle area of sidewall, where its hori-
zontal position near that of the arc and the edge was easy to
distinguish since the arc light was enough; (3) the lower area
of the sidewall, where the bright part in groove became narrow
and could not accurately represent the groove sidewall edge.
Therefore, the arc center was determined as first, and then, the
sidewall edge was detected near the arc’s vertical position.
Using a simple first-order difference, the sidewall edge can be
easily calculated (Fig. 6).

In order to improve the efficiency of the algorithm, the
edge detection could be implemented only on several lines in
the image as shown in Fig. 7, whose vertical position was near
that of arc center.

After extractions of the groove sidewall’s left and right
edge and the arc’s horizontal position, the groove center was
extracted by computing the mean values of groove sidewall’s
left and right position. The arc’s rotating center was extracted
by calculating the mean value of arcs’ horizontal positions in

two consequent images. The difference between the arcs’
rotating center and the groove center was the weld deviation.
Figure 6 shows the flow chart of vision-based deviation ex-
traction. Figure 7 shows two captured images in an arc rota-
tion period with its image processing result.

Finally, to fuse the signal from different sensors, it was
necessary to simultaneously acquire and analyze arc sensing
and vision sensing information in each rotation period. Be-
cause the data acquisitions of arc sensing and vision sensing
were triggered by the arc position signal, the synchronization
was easy to realize.

2.3 Sidewall penetration information

In the conventional practice, it is necessary to cut the work-
piece with the plane perpendicular to the direction of welding
so as to obtain the fusion line and detect the welding penetra-
tion, as shown in Fig. 8. This is infeasible when the penetra-
tion varies significantly. Therefore, we made the cutting plane
parallel to the bottom of the workpiece, and we need to know
the proper plane position. Figure 8 shows that the max side-
wall penetration’s vertical position was near the bottom of
weld seam, and the according section image is shown in
Fig. 9.

Another problem was that we need to make the penetration
information synchronous with the DAQ information. So, we
need to get the position on workpiece when the DAQ started

Fig. 6 Deviation detection algorithm of vision sensing

(a) Image when arc on one side of pool (b) Image when arc on the another side of pool

Fig. 7 Two continuous captured
images in a rotation period. a
Image when arc on one side of
pool. b Image when arc on the
another side of pool

Fig. 8 Section image by the plane perpendicular to the direction of
welding. a Overall view. b Partial enlarged view
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and ended. Thus, special equipment was designed as shown in
Fig. 10.

The equipment was made up of scriber fixed on the
rod of mini cylinder. The scriber was pushed down to
the dashboard by air pressure when the data acquisition
started until the data acquisition end; so, there was a nick on
the dashboard.

The arc rotation center and the scriber ends have the same
projection on the welding direction; so, the start and end
position of data acquisition can be marked on the workpiece.

A complete curve of the bond line was needed to
obtain the penetration position. Due to low contrast in
the heat-affected zone, results from automatic edge de-
tection algorithm were not satisfactory. Therefore, we
used an interactive method to obtain input points by
mouse hit. The manually obtained points were then
interpolated by cubic spline curve fitting to get the penetration
in any time. Figure 11 shows the bond line’s fitting result by
spline curve.

3 Experiments

For narrow gap welding, welding current was set at constant
value so as to ensure good welding formation, but it may vary
when the arc length changes in arc rotation, as shown in Fig. 2.

To build a dynamic model of side wall penetration, the
position of arc rotating axis was waved as shown in Fig. 12
and Table 2.

The welding current, arc sidewall shortest distance, and
sidewall penetration were obtained by the methods shown in
Sect. 2. Figure 9 shows one image of bond line. From the
result in Fig. 9b, the left sidewall penetration varied more than
that of right sidewall. The cause might be that the welding
pool was declining, and the clockwise rotating arc’s power
was easy to remove the molten iron in left side but hard to
remove that in right side. Therefore, the arc power was easy to
affect the left side and hard to affect the right side, and we
needed to build two separated model for left and right sidewall
penetration, respectively.

(a) Overall view

(b) Par�al enlarged view

Fig. 9 Section image by the
plane parallel to bottom of
workpiece

Fig. 10 Equipment to mark the start and end of data acquisition
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4 Left sidewall penetration model

Since the left sidewall penetration varied more, it was neces-
sary to build a dynamic model. Considering the high com-
plexity of welding process, an SVMmethod was used to build
the model.

4.1 SVM-based modeling method

Figure 13 shows the procedure of SVM modeling method.
The SVM-based modeling method began with acquiring

(a) Before fi�ng (b) Fi�ng result
Fig. 11 Spline curve fitting for bond line

2mm 2mm 2mm 2mm

Fig. 12 Position of rotating arc
center. a Experiment 1. b
Experiment 2. c Experiment 3. d
Experiment 4

Table 2 Weaving parameter planning

Experiment no. Residence time
at side wall/s

Wave
time/s

Swing
amplitude/mm

1 0 1 1

2 0 2 1

3 0.5 1 1

4 0.5 2 1
Fig. 13 Procedure of the SVM modeling method
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experiment data. Second, the obtained data was preprocessed,
where the denoising method was used to improve the data
quality and the normalization was used to decrease the influ-
ence of large value data. Third, the experimental data were
used to build SVM model by deciding kernel function and
optimizing its parameters. When the SVM model met the
criteria of the welding application, it was used to predict the
sampling data on-line.

4.2 Input variable selection

The welding current I, arc left sidewall shortest distance D,
and penetration P were obtained as discussed in Sect. 2. Part

data are shown in Table 3. Since there was delay between
welding current and sidewall penetration, we extended the
model with I form It to It-9 and D from Dt to Dt-9. Table 4
shows the correlation coefficient between input variables and
output variable. It showed that the current I’s correlation in-
creased until It-5 and distanceD’s correlation increased until It-5.

According to the results in Fig. 14, four groups of input
with different delay were experimented, as shown in Table 5.
By comparing the mean squared error (MSE) and mean abso-
lute error (MAE) of each group from SVM prediction, we
select group 3 as the final model due to its best performance,
and the input variables were “It-4, It-3, It-2, Wt-4, Wt-3, Wt-2.”

4.3 SVM parameter optimization

There are four types of frequently used kernel functions for
mapping data into high dimensional space, namely, linear,
polynomial, radial basis function (RBF), and sigmoid kernels.
RBF kernel was used in this paper due to its wide application
[15, 16]. For RBF kernel, width gamma (γ) and penalty
parameters (C) are two of the most important parameters. C,
a regularization parameter, controls the tradeoff between max-
imizing the margin and minimizing the training error. Too
small value of C may not give enough penalties on the
outliers, while too large value of C leads to over fitting.
Usually, C should be set large enough to have a stable training
process. The parameter γ affects the number of support vector,
which has a close relation with the training time. Too many

Table 3 Partial SVM data
Sample no. Input variable I/A Input variable W/mm Output P/mm

It-9 It-8 … It-1 It Dt-9 Dt-8 … Dt-1 Dt

600 301.4 298.7 … 292.7 302.0 3.66 4.00 … 5.13 4.46 1.177

601 298.7 297.5 302.0 301.8 4.00 4.30 4.46 4.07 1.063

602 297.5 300.7 302.8 308.0 4.30 4.98 4.07 3.61 0.937

603 300.7 298.1 308.0 304.2 4.98 5.38 3.61 3.27 0.833

604 298.1 300.6 304.2 304.1 5.38 5.42 3.27 3.16 1.037

605 300.6 296.1 304.1 302.6 5.42 5.32 3.16 3.05 1.277

Table 4 Correlation analysis

Input
variable

Correlation
coefficient

Input
variable

Correlation
coefficient

It-9 0.1188 Wt-9 0.1369

It-8 0.1325 Wt-8 0.1523

It-7 0.1445 Wt-7 0.1549

It-6 0.1548 Wt-6 0.1425

It-5 0.1739 Wt-5 0.1197

It-4 0.1907 Wt-4 0.0888

It-3 0.2092 Wt-3 0.0465

It-2 0.2188 Wt-2 −0.0007
It-1 0.2187 Wt-1 −0.0504
It 0.2111 Wt −0.0986

It-9 It-8 It-7 It-6
It-5 It-4

It-3 It-2 It-1 It

wt-9 wt-8 wt-7
wt-6

wt-5
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Fig. 14 The bar graph of
correlation analysis
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support vectors can produce over fitting and extend training
time. Parameter γ also controls the amplitude of the Gaussian
function and, therefore, affects the generalization ability of
SVM [17]. In this study, the parameters of RBF were deter-
mined by a grid search method based on cross-validation. The
main idea is to test the different parameters and select the one
with the highest cross-validation accuracy. The method was
conducted in two steps. In the first step, a coarser grid was
applied with an exponentially growing sequence of C, γ with
C=2−8, 2−7.2,2−6.4, …,26.4, 27.2, 28 and γ=2−8, 2−7.2,2−6.4,
…,26.4, 27.2, 28. In the second step, after identifying the
optimal region on the grid, the finer grid search was executed.
The results were used to perform the final training process.
Here, three-fold cross-validation method was used to find

optimal parameters. The 3D image of C, γ, and forecast
accuracy is shown in Fig. 15, where the optimal parameters
were C=0.3536, γ=8. Then, the SVM model was built by
using the optimal parameters.

4.4 Model validation

Ten-fold cross-validation was used to validate the proposed
model, with results shown in Table 5, where MSE was mean
square error and MAE was mean abstract error.

Table 5 SVM parameters and
prediction result for different
input variable

Model No Input factor group C γ MSE MAE

1 It,wt 0.1768 22.6274 0.1365 0.3050

2 It−2,It−1,It,wt−2,wt−1,wt 1.4142 4 0.1205 0.2852

3 It−4,It−3,It−2,wt−4,wt−3,wt−2 0.3536 8 0.1154 0.2782

4 It−6,It−5,It−4,wt−6,wt−5,wt−4 0.4142 4 0.1186 0.2796

Fig. 15 Prediction results of
different parameters

Table 6 Experiment sensor data for right side penetration

Experiment no. Current I/A Arc side width/mm Penetration P/mm

1 297.978 6.210 0.53

2 298.524 4.727 0.87

3 300.233 5.622 0.65

4 304.293 3.354 1.19

5 298.558 3.904 1.04

6 322.383 2.492 2.0

2 3 4 5 6 7
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Fig. 16 The result drawing of curve fitting
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5 Right sidewall penetration model

As shown in Fig. 10, the right side penetration varied less than
that of left side. Obviously, it was not necessary to build a
dynamic model, and a static model was built. The right side-
wall penetration was obtained by the similar setting as the left
one, but the weld deviation was set differently. The obtained
data are shown in Table 6. Although we set the welding
current as constant value, it will vary for the variation of arc
length. However, the variation of welding current was less
than that of arc length. So, we used the arc side width to make
a regression prediction for the penetration as Fig. 16. It
showed the cubic polynomial performed better than that of
quadratic. The following was the cubic polynomial regress
model.

w ¼ −0:0617d3 þ 0:9074d2−4:5744d þ 8:7061

The equation was a regression model for the right side
penetration with the welding current equal to 300 A.

6 Conclusion

Some conclusions were drawn as following:

1. Synchronous acquisition system was set up to realize the
synchronization of the arc sensor, image sensor, and side-
wall penetration.

2. An interesting phenomena was found that the left sidewall
penetration varied more than that of the right side.

3. An SVM-based dynamic model was built for the predic-
tion of the left sidewall penetration, and a cubic polyno-
mial regression model was built for the prediction of the
right sidewall penetration.
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