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Abstract According to the working way of the numerically
controlled (NC) tube bender and taking the additional tensile
force into account, the formulas are derived to calculate the
average principal stress in different directions of the bending
tube surface, the equivalent stress, the variation of wall thick-
ness, and the ratio of the minor axis to the original radius of
outer contour and validated by the experiments. The corre-
sponding experiments and simulation analysis are performed
to compare with the calculated results, and it is revealed that
the equivalent stress of the bending tube surface is non-
uniform and the maximum equivalent stress is localized in
smaller deformation field around the bending terminating end.
The consideration of the additional tensile force makes the
equivalent stress in the outer convex portion of tube remark-
ably greater than that in the inner concave portion of tube,
accelerating the thinning of the tube’s wall and the ovalization
of tube’s outer contour. The approximate calculation formulae
of additional tensile force is also derived and based on the
deformation analysis; the proper adjustment of the additional
tensile force could improve the quality of the NC bending
tube.

Keywords NCbending .Additional tensile force .Equivalent
stress .Wall thinning . Cross-sectional ovalization

1 Induction

The numerically controlled (NC) bending is an important
method to develop an accurate bending technology, but tech-
nical problems still exist due to the limitations of the bending
theory. Studies from different perspective have been widely
carried out to study the tube bending [1–7].

Oliveira [8] analyzed the thickness and strain distributions
within the aluminum alloy s-rail by experiments and finite
element simulations, revealing that the bending degree had the
most significant effect on the variation of wall thickness
variation and the strain distribution. Meanwhile the “boost”
in bending aggravated the variation of wall thickness and the
work hardening capacity in the bend regions of the s-rail.
Strano [9] developed a comprehensive computer approach
for the automatic process design of rotary draw bending of
tubes, named Tube ProDes. The advanced process simulated
the compensation and severity of bending before the tool
experiments, then with parameters obtained previously, the
bending process was precisely conducted. Li et al. [10] ex-
plored the wrinkling, wall thinning, and cross-section defor-
mation during the thin-walled tube NC bending by using a
series of 3D-FE models under ABAQUS platform. The re-
search revealed that the tangent stress increased and became
more non-uniform with the Rd/D decreasing, while with
larger D/t, both the wall thinning and thickening degrees
increased. Zhan et al. [11] obtained the compatible range of
the mandrel diameter and axial feed during the NC bending of
a TA18 tube with the consideration of the influence of the
equivalent mandrel supporting radius and equivalent mandrel
supporting angle. Zhang et al. [12] studied about the bending
behaviors of large-diameter thin-walled (LDTW) CP-Ti tube
in rotary draw bending by experiments and simulation analy-
sis, with a series of three-dimensional finite element models of
the testing tube. It was revealed in the study that with the
increase of the difference between the maximum wall
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thickening degree and the maximum wall thinning degree of
the bent tube, the wrinkling tendency became more obvious
and the wrinkling was significantly influenced by the mandrel
shank diameter. But, the thinning of tube wall was mainly
affected by the clearance between wiper die and tube, mandrel
shank diameter.

The investigations above undoubtedly promote the devel-
opment of tube-bending theory and the NC tube-bending
technology. However, problems concerning bending mecha-
nism still exist and affect the actual production in certain
extent. For examples, severe thinning of the tube wall and
crack in actual production, which is closely related to the
frictional forces in bending forming, may induce the explosion
in the conveying process of high-pressure fluid now and then.
While the frictional forces are always overcome by controlling
the additional tensile force of bending die in NC tube bending.
In the serial tests of tube bending, our preliminary work is
mainly based on the plastic-bending theory. The theoretical
analyses on springback and time-dependent springback of
bending tube have been carried out with amount of experi-
mental and numerical investigations [13–15]. This article is
based on the working way of the NC tube bender, without
regard to the difference between bend-stretch and stretch-
bend. The study focuses on the analysis of the influence of
the additional tensile force on the stress-train state during
bending and the formability of tube. It is believed that the
bending deformation is attributed to the combined action of
the bending moment and the constant additional tensile force.
It would provide reference for the investigation of bending
mechanism and the development of NC tube-bending
technology.

2 Material and methods

2.1 Bending experiments

Laser tester and numerical control (NC) VB-300HP bender
were utilized in the tests. The basic schematic diagram of NC
tube bending is shown in Fig. 1. During tube bending, the tube
rotates the fixed axle under the combined clamping of the
bending die and the clamping die. The unbent part of the tube
is under restraint of the pressure die and the wiper die in the
vertical direction of the feeding direction. Then, the unbent
tube would enter the bending area along the feeding direction
with bending deformation. Due to the sliding friction between
the surface of tubewall and the grooves of the pressure die and
the wiper die, a tensile force T along tangential direction of
bending die should be added near the bending point to balance
the frictional forces along the feeding direction. Therefore, the
NC tube bending shows the properties of stretch bending in
certain extent [16]. The additional tensile force T is assumed

to be unchanged during bending when analyzing the stress
state.

In a series of bending tests of thin-walled tubes with small
diameter, the materials of tubes involve 1Cr8Ni9Ti, 5A03
(aerial corrosion-resisting aluminum), and T2 (pure copper),
and their wall-thickness/diameter ratios t0/d0 ranged from 0.1
to 0.25. The mechanical properties of the materials from
tensile tests are present in Table 1, where E is the elastic
modulus, D is the linear hardening coefficient, and σs0 is the
original yield stress.

2.2 Finite element methods

To understand the distribution of the all principal stress
along the bending line, the 3D elastic–plastic FE model
for NC tube bending has been established in the eta/
DYNAFORM software environment. As the complex
forming process of the ratary draw bending involving large
deformation, large displacement, material nonlinearity, ge-
ometry nonlinearity, and boundary condition nonlinearity.
The key problems during the bending simulation, like ma-
terial properties, contact conditions, and integration algo-
rithm need to be selected precisely.

It was assumed that the tube material in the simulation
was isotropic, homogeneous, and elastic–plastic. The Barlet
anisotropic material model was selected as the material
model. Material properties were obtained from the uniaxial
tensile tests (Table 1). The thin-shell structure was selected
as the meshing element and a faster calculating method
BELYTSCHKO-TSAY was applied. The static and dynam-
ic friction coefficients between the dies and the tube were,
respectively, μs=0.15 and μd=0.1. The bending die speed
was 10 rad/s.

3 Analysis

3.1 Stress analysis in NC tube bending

To reduce the complexity of analysis, the process of the NC
tube bending is assumed to be in the plane-strain that the hoop
strain of the cross-section εφ=0 and the tangential strain εθ,
the radial strain εR, and the circumferential strain εφ are all
principal strain. Based on the assumption that the volume is
uncompressible during bending, the equation εθ=−εR is set
up. The circumferential principal stress σφ, the tangential
principal stress σθ, and the radial principal stress σR show
the relationship as following:

σφ ¼ σθ þ σR

2
ð1Þ
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The equivalent stress and the equivalent strain can be
expressed as

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
σθ−σRð Þ2 þ σR−σφ

� �2 þ σφ−σθ
� �2h ir

¼
ffiffiffi
3

p

2
σθ−σRj j ð2Þ

ε ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εθ−εRð Þ2 þ εR−εφ

� �2 þ εφ−εθ
� �2q

¼ 2ffiffiffi
3

p εθj j ð3Þ

Based on the state of stress–strain in Fig. 1, it is assumed
that no shear deformation exists between the longitudinal fiber
layers of the tube. According to the projection relationship of
all principal stress in bending-plane and neglecting the
second-order trace in force balance equation, we can easily
obtain

dσR

dR
¼ σθ−σR

R
ð4Þ

In view of the material hardening exponent n that may
destroy the rigor of the power function integral, the material
of tube is simplified as the linear hardening model. The
tangential tensile force σT caused by the additional tensile
force T, the equivalent stress, and the equivalent strain show
a relation as the following:

σ ¼ σs0 þ σT þ D ε−εs0
� �

ð5Þ

where σs0 is the initial yield stress of the tube and εs0 is the
corresponding initial yield strain (εs0=σs0/E, E is elastic mod-
ulus), and D is the linear hardening coefficient.

The engineering strain in tangential direction of the bend-
ing can be expressed as

εθ ¼ rsinφþ rsinα
R0−rsinα

ð6Þ

where α is the displacement angle of the strain neutral layer
(NL) and constant positive value.

Substituting Eqs. 2, 3, and 6 into Eq 5, we can obtain

σθ−σR ¼ ∓
2ffiffiffi
3

p σs0 1−
D

E

� �
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα
R−rsinα

ð7Þ

According to Eq. 7, when in interval [0,π] and [π,π+α],
rsinφ+rsinα>0, the tangential tensile deformation occurs;
when in interval [2π-α,2π], rsinφ+rsinα<0, the deformation
is still tangential tensile deformation and the first item on the
right side of Eq. 7 selects the sign “+”; when in interval [π+
α,2π-α], rsinφ+rsinα<0, the tangential compressive defor-
mation occurs and the first item on the right side of Eq. 7
selects the sign “−”.

Substituting Eq. 7 into Eq. 4, we can obtain

dσR ¼ σθ−σRð ÞdR
R

¼ � 2ffiffiffi
3

p σs0 1−
D

E

� �
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα

R0−rsinα

	 

dR

R

ð8Þ

Integrating the equation above, the following equation can
be derived:

σRi ¼ −
2ffiffiffi
3

p σs0 1−
D

E

� �
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα
R0−rsinα

	 

lnRþ Ci

ð9Þ

σRo ¼ 2ffiffiffi
3

p σs0 1−
D

E

� �
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα
R0−rsinα

	 

lnRþ Co

ð10Þ
where Ci and Co are integration constants of the inner concave
portion and the outer convex portion of the bending tube.

Fig. 1 The state of stress–strain and the geometric relationship of deformation in NC tube bending

Table 1 The mechanical properties of tube materials

Material E (GPa) D (MPa) σs0 (MPa)

1Cr8Ni9Ti 198 1080 205

5A03 73 275 80

T2 110 411 70
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When R=Ri or R=Ro, the radial principal stress is equal to
zero, we could obtain the following:

Ci ¼ 2ffiffiffi
3

p σs0 1−
D

E

� �
−

2ffiffiffi
3

p σT−D
4

3

rsinφþ rsinα

R0−rsinα

	 

lnRi ð11Þ

Co ¼ −
2ffiffiffi
3

p σs0 1−
D

E

� �
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα
R−rsinα

	 

lnRo ð12Þ

Substituting Eqs. 11 and 12 into Eqs. 9 and 10, we can
obtain the radial stress of the inner concave portion and the
outer convex portion of the bending tube

σRi ¼ 2ffiffiffi
3

p σs0 1−
D

E

� �
ln
Ri

R
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα

R0−rsinα

� �
ln

R

Ri
ð13Þ

σRo ¼ 2ffiffiffi
3

p σs0 1−
D

E

� �
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα

R0−rsinα

	 

ln

R

Ro
ð14Þ

Substituting Eqs. 13 and 14 into Eq. 7, we can obtain the
tangential stress in the inner concave portion and the outer
convex portion of the bending tube as the following:

σθi ¼ 2ffiffiffi
3

p σs0 1−
D

E

� �
ln
Ri

R
−1

� �
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα

R0−rsinα

� �
1þ ln

R

Ri

� �

ð15Þ

σθo ¼ 2ffiffiffi
3

p σs0 1−
D

E

� �
þ 2ffiffiffi

3
p σT þ D

4

3

rsinφþ rsinα
R0−rsinα

	 

1þ ln

R

Ro

� �

ð16Þ

According to the relation in Eq. 1, the circumferential
principal stress in the inner concave portion and the outer
convex portion of the bending tube can be given as the
following:

σφi ¼ σs0ffiffiffi
3

p 1−
D

E

� �
2ln

Ri

R
−1

� �
þ σTffiffiffi

3
p þ D

2

3

rsinφþ rsinα
R0−rsinα

� �
1þ 2ln

R

Ri

� �

ð17Þ

σφo ¼ σs0ffiffiffi
3

p 1−
D

E

� �
þ σTffiffiffi

3
p þ D

4

3

rsinφþ rsinα
R0−rsinα

	 

1þ 2ln

R

Ro

� �
ð18Þ

In the surface of the bending tube, the radial stress σR is
equal to zero. According to the relation in Eq. 2, the equivalent

strain in the innermost concave portion and in the outermost
convex portion of the bending tube could be derived as
follows:

σi ¼ σs0 1−
D

E

� �
ln
Ri

R
−1

� �
þ σT þ D

2ffiffiffi
3

p rsinφþ rsinα
R0−rsinα

� �
1þ ln

R

Ri

� �����
���� ð19Þ

σo ¼ σs0 1−
D

E

� �
þ σT þ D

2ffiffiffi
3

p rsinφþ rsinα
R0−rsinα

	 

1þ ln

R

Ro

� �����
���� ð20Þ

If the displacement of the strain neutral layer (NL) in tube
bending is neglected, namely, α=0, and when φ=±π/2,
Eqs. 19 and 20 can be simplified as follows:

σi ¼ σs0 1−
D

E

� �
ln
2R0=d0−1
2R=d0

−1
� �

þ σT−
Dffiffiffi
3

p 1

R=d0

� �
1þ ln

2R=d0
2R0=d0−1

� �����
����

ð19aÞ

σo ¼ σs0 1−
D

E

� �
þ σT þ Dffiffiffi

3
p 1−Δto=r0

R0=d0

	 

1þ ln

2R=d0
2R0=d0 þ 1−Δto=r0

� �����
����

ð20aÞ

Assuming that the tangential tensile force σT caused by the
additional tensile force T is equal to the initial yield stress of
the material, namely, σT=σTs0, Eqs. 19a and 20a would be
adjusted to the following:

σi ¼ 2σs0ln
2R=d0−1
2R=d0

−
D

E
ln
2R=d0−1
2R=d0

−1
� �

−
Dffiffiffi
3

p 1

R=d0
1þ ln

2R=d0
2R=d0−1

� �����
����

ð19bÞ

σo ¼ σs0 2−
D

E

� �
þ Dffiffiffi

3
p 1−Δto=r0

R=d0

	 

1þ ln

2R=d0
2R=d0 þ 1−Δto=r0

� �����
����

ð20bÞ

If the influence of the additional tensile force is neglected,
namely, σT=0, the equation above can be simplified as fol-
lows:

σi ¼ σs0 1−
D

E

� �
ln
2R=d0−1
2R=d0

−1
� �

−
Dffiffiffi
3

p 1

R=d0
1þ ln

2R=d0
2R=d0−1

� �����
����

ð19cÞ

σo ¼ σs0 1−
D

E

� �
þ Dffiffiffi

3
p 1−Δto=r0

R=d0

	 

1þ ln

2R=d0
1þ 2R=d0−Δto=r0

� �����
���� ð20cÞ

898 Int J Adv Manuf Technol (2015) 78:895–905



When the thinning of the outer convex portion of the tube is
neglected, the average equivalent stress of the outer convex
portion of the bending tube can be given as follows:

σo ¼ σs0 1−
D

E

� �
þ Dffiffiffi

3
p 1

R=d0

	 

1þ ln

2R=d0
2R=d0 þ 1

� �����
���� ð20dÞ

3.2 Finite element analysis of the bending stress distribution

The value of stress calculated by equations above is just the
average stress of the tube surface; however, the FEM results
represented in Fig. 2 reveal that the equivalent stress of the
bending tube surface σ along the circumferential direction of
the bending tube and bending line direction is non-uniform.
Along the circumferential direction of tube’s cross-section, the
maximum equivalent stress is localized at the field around the
end of the minimum and the maximum bending radius. In the
upper and the lower surface being parallel to the bending
plane, the equivalent stress is quite small. Figure 3 describes
the distribution of the maximum equivalent stress along the
bending line. The result shows that the maximum equivalent
stress of the innermost and the outermost of the bending tube
are mainly localized at a small field near the bending angle 30°
to the terminating end, and the equivalent stress in the outer
convex portion of tube is remarkably greater than that in the
inner concave portion of tube, namely σo max > σi max . For
the bent portion of the tube, incompletely unloading, the
maximum equivalent stress σ decreases rapidly when
reaching the leading end. The equivalent stress of the outer

convex portion of tube σo in the middle portion of tube shows
a platform when decreasing. Though the deformation zone is
in the loading state, it is still necessary to give the bending
moment and the additional tensile force to the bent tube, for
which the equivalent stress σ doesn’t decrease to zero. The
equivalent stress σ in the leading end and the terminating end
decrease significantly due to the moderating effect of defor-
mation and a certain amount of equivalent stress is also
generated in the unbent portion of the tube. As the terminating
end is near the instantaneous bending deformation zone which
is still in loading state, the equivalent stress σ in the termi-
nating end around the tangent point of the unbent tube and the
bending die is always greater than that of the leading end.

If the axial tensile force is considered, the average equiva-
lent stress σ in the outer convex portion of bending tube
increases due to the increase of the total tangential tensile
force, while the average equivalent stress σ in the inner
concave portion of bending tube decrease due to the decrease
of total deformation stress induced by the additional tensile
force. As shown in Fig. 4, when the additional tensile force σT
is equal to the yield stress of the tube σs, the average equiv-
alent stress in the outer convex portion of bending tube is
significantly greater than that in the inner concave, namely, σo

> σi . The calculated curves of σo agree well with the FEM
results and show the similar variation tendency. While the
additional tensile force is not considered, namely, σT=0, the
calculated curves of σo significantly fall and the calculated
curves of σi rise, namely, σo > σi . It is important to note
that approximate formula can only be used to calculate the
average equivalent stress σ , while the FEM results data σ is
the maximum value. Actually when averaging the FEM re-
sults, we obtain σi ¼ 433:49MPa and σo ¼ 430:84MPa ,
agreeing with the relation of the approximate calculation
results, namely, σi > σo .

As the bending radius/diameter ratio R/d0 decreases, the
calculated results of σ and the simulation data all increase.

Fig. 2 The distribution of equivalent stress and FEM results of
deformation

Fig. 3 The distribution of the maximum equivalent stress along the
bending line (FEM result)
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When assuming σT=σs, the variation tendency of the FEM
results agrees well with that of the experimental data, namely,
the σ increases with the decreasing of R/d0. While σT=0, the
calculated curve of σi almost coincides with the FEM results.
When R/d0≤2, the calculated curves (σT=σs) increase rapidly
with the decreasing of R/d0. However, the calculated curves
(σT=0) don’t show the above variation tendency when R/d0≤
2. Actually, during the tube-bending testing and the industrial
producing, the critical defects of crack or dent on tube wall

would be induced by smaller R/d0. Generally, R/d0=2 is
identified as the bending limit of the small coreless diameter
tube.

4 The influence of the additional tensile fore on bending
deformation

4.1 The displacement of the bending strain neutral layer

In pure bending, the stress neutral layer (NL) and the strain NL
are kept moving toward the bending center under the function
of bending moment to ensure that the stress and the strain are
parallel to the bending plane [17]. If the additional tensile
force is uniformly and independently applied in the tangential
direction of the bending arc, the additional tensile force σTand
the tangential stress induced by the bending moment must
meet the static equilibrium relationship to keep the bending
shape. It is assumed that the average wall thickness of the
inner concave portion and the outer convex portion of bending
tube separately are ti and to. If there is no significant
ovalization on the cross-section of the tube, the static equilib-
rium equations in the tangential direction of bending arc can
be given as follows:

Z
π

0

σs 1−
D

E

� �
þ σT þ D

r sinφþ sinαð Þ
R−rsinα

	 

rmtodφþ

Z
πþα

π

σs 1−
D

E

� �
þ σT þ D

r sinφþ sinαð Þ
R−rsinα

	 

rmtodφ

þ
Z 2π

2π−α
σs 1−

D

E

� �
þ σT−D

r sinφþ sinαð Þ
R−rsinα

	 

rmtodφþ

Z 2π−α

πþα
−σs 1−

D

E

� �
þ σT þ D

r sinφþ sinαð Þ
R−rsinα

	 

rmtidφ ¼ 0

ð21Þ

where rm is the radius of the middle circle of the wall
thickness.

According to large amount of experiment data and simula-
tion results, the minimum wall thickness in the outer convex
portion to min gradually increases along the radial direction of
the tube, changes to t0 in the strain neutral layer, and finally
changes to the maximum wall thickness in the inner concave
portion of tube ti max. Then, the average wall thickness of the
inner concave and the outer convex portion of tube are
expressed as follows

ti ¼ t0 þ t0 þΔtð Þ
2

¼ t0 þ Δt

2
; to ¼ t0 þ t0−Δtð Þ

2
¼ t0−

Δt

2
ð22Þ

Substituting Eq. 22 into Eq. 21 and integrating, the dis-
placement angle related to the NL could be given approxi-
mately as follows:

αj j ¼
π
2

σT

D
−
σs

D
1−

D

E

� �
Δt

t0

	 

R=r−sinαð Þ− π

2
sinαþ Δt

t0
cosα

σs

D
1−

D

E

� �
−
σT

D

Δt

t0

	 

R=r−sinαð Þ−Δt

t0
sinα

ð23Þ

If σT=σs, Eq. 23 can be simplified as follows:

α ¼
π
2

σs

D
1− 1−

D

E

� �
Δt

t0

	 

R=r−sinαð Þ− π

2
sinαþ Δt

t0
cosα

σs

D
1−

D

E

� �
−
Δt

t0

	 

R=r−sinαð Þ−Δt

t0
sinα

ð23aÞ

It is revealed that the displacement angle α related to the
NL increases with the increase of the additional tensile force

Fig. 4 The approximate calculation results of equivalent stress of the
loading bending tube
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σT and the displacement angle α related to the NL has definite
function relation to the variation of wall thickness Δt/t0. The
displacement angle α related to the NL and the radius of the
middle circle in the wall thickness rm could be calculated by
testing σT and Δt/t0. When σT=σs and the variation of wall
thickness of tube is neglected, the displacement angle α
related to the NL is calculated by numerical method, involving
three different materials of 1Cr18Ni9Ti tube, 5A03 tube, and
T2 tube. When R/d0=3, the results respectively are as follows:
α1Cr18Ni9Ti=36.888°, α5A03=25.786°, αT2=19.939°.

4.2 The influence of the additional tensile force on the wall
thickness

In the NC tube bending, the additional tensile force aggravates
the thinning of the outer wall of the tube and remits the
thickening of the inner wall of the tube. Therefore, wrinkling
rarely occurs in bending of thin-walled tubes with small
diameter. The bending of thin-walled tubes with small diam-
eter always fails due to the limited stiffness of the cross-
section of the tube and the dent on tube wall before cracking
[18]. Though the cracking in bending rarely happens, the quite
smaller wall thickness decreases the stiffness in using and will
induce the explosion in the conveying process of high-
pressure fluid. Therefore, the related industrial application
should be controlled and checked accurately.

Based on the assumpt ion that the volume is
uncompressible during bending, according to Eq. 6 and the
plane strain relation, we can obtain the variation of wall
thickness Δt/t0 as the following:

Δt

t0
¼ 1þ sinα

2R=d0 þ 2t0=d0−sinα
ð24Þ

From Eq. 24, it is shown that the variation of wall thickness
Δt/t0 and the bending radius/diameter ratio R/d0 depend on the
wall thickness/diameter ratio t0/d0 of tube. According to
Fig. 5, it is revealed that the displacement angle α related to
the NL accelerates the drawing deformation and induces the
decrease of the wall thickness, namely, the greater the move-
ment (α) of the NL, the more significant the growing of
variation of wall thickness Δt/t0. For the same α, the variation
of wall thickness Δt/t0 increases with the decrease of the
bending radius/diameter ratio R/d0 and the decrease of the
wall thickness/diameter ratio t0/d0, but the variation of Δt/t0
with R/d0 is much greater than the variation of Δt/t0 with t0/d0.
It means that the bending radius/diameter ratio R/d0 influences
the variation of wall thickness more in the tube bending
without mandrel.

According to the calculated curves, as the bending defor-
mation becomes moderate with the increase of R/d0, the
growing tendency of Δt/t0 becomes insignificant with the

increase of the movement (α) of the NL. For smaller bending
radius/diameter ratio R/d0, the bending deformation acceler-
ates more greatly and the greater the movement (α) of the NL,
the more significant the growing tendency of Δt/t0 is. When
the NL moves to the inner concave surface of te tube where α
is nearπ/2, Δt/t0 does not vary with the increase ofα anymore.

When the tangential strain and the radial strain are
expressed by the true strain, based on the plane deformation
relation, the variation of wall thickness Δt/t0 could be
expressed as the following:

Δt

t0
¼ 1

2t0=d0

1

2
þ R

d0
þ t0

d0

� �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ R

d0
þ t0

d0

� �2

−2
t0
d0

1þ sinαð Þ
s2

4
3
5
ð25Þ

To learn the real situation of the distributions of wall
thickness, the bending tubes in the experiment are bisected
along the central layer of bending longitudinal direction and
the wall thickness of different location is measured. As in
Fig. 6, the wall thickness of the outer convex portion of tube
is significantly smaller than that of the inner concave. Mean-
while, the wall thickness of the outer convex portion of tube is
non-uniformly distributed. The significant increase and de-
crease of the wall thickness are all in the middle portion of the
tube. The most significant wall thickness reduction is around
the field where θ=30° near the bending terminating end,
which is related to the maximum equivalent stress (FEM
result) and the causation will be studied as important part of
the following work.

To study the influence of the bending deformation condi-
tion on the approximate calculated results, the α calculated in
certain deformation is substituted into the Eqs. 24 and 25. The
calculated curve of the variation of Δt/t0 with R/d0 is shown in
Fig. 7.in which some measuring results are concluded. From
the curves, it is revealed that the calculated and the measured
Δt/t0 all decrease with the increase of R/d0 and being

Fig. 5 The variation of wall thickness with the accreting of the
movement of the NL
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compared with the nominal strain, the curves calculated by
Eq. 25 with the true strain are more close to the measured
results. In addition, if the displacement of the NL is neglected,
the approximate calculation curves (α=0) are lower and more
close to the measuring results. The calculated results of Δt/t0
are relatively larger than the measuring results, indicating that
there is some shortage in the approximate formula and it may
be attributed to the ignorance of the cross-sectional ovalization
and displacement of the bending tube.

4.3 The influence of additional tensile force on the shape
of the cross section of the tube

In the NC tube-bending test, the inner concave portion of tube
is restricted by the grooves of the bending die, and the outer
radius remains unchanged. While the outer convex portion of
tube is in contactless and free-deformation condition, the
deformation and displacement in radial and circumferential
direction of the outer convex portion of tube will be induced
by the combined function of the bending moment and the
additional tensile force, attributing to the ovalization of the

cross-section of the tube [19]. Figure 8a shows the simulation
result of the distribution of the equivalent stress and the shape
change of the cross-section of the tube. Fig. 8b shows the
experimental result of the shape change of the cross-section of
the tube, agreeing well with the simulation result in the
ovalization of the cross-section of the tube in representative
region. It is revealed that the ovalization deformation is mainly
located in the middle portion of the tube, but the ovalization in
the two end of the tube reduces due to the moderate deforma-
tion of the straight portion. The maximum equivalent stress in
the inner concave portion of tube is discontinuous and the
wrinkling tendency occurs in the inner concave portion of the
tube. In the practical NC tube bending, the wrinkling rarely
happens in thin-walled tubes with small diameter.

The ovalization deformation not only destroys the rigidity
of the cross section of bending tube but also leads to the
unpredictable pressure and flow pulsation in conveying pro-
cess of high pressure fluid. The severe ovalization of the tube’s
inner contour is also the potential cause inducing the explo-
sion in the conveying process of high-pressure fluid, which is
necessary to be paid great attention in producing as same as
the thinning of the tube wall. Based on the assumption of
plane strain εφ=0, the thinning of the outer convex portion of
tube is the most important factor influencing the outline shape
of the tube. The ratio of the minor axis to the original radius of
outer contour of bending tube φm can be expressed as

φm ¼ d0−dmin

d0
¼ Δt

d0
ð26Þ

According to the relation of Eq. 24 and 25, we could obtain
the following:

φm ¼ t0
d0

1þ sinα
2R=d0 þ 2t0=d0−sinα

ð27Þ
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4
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Since the approximate calculation above is based on the
plane strain assumption, besides the bending deformation
conditions, the thinning of the tube wall and the displacement
of the strain neutral layer are also important factor affecting
the outer contour of the tube. As shown in Fig. 9, the calcu-
lated curves of φm is lower than the measured results but the
variation tendency of the two results agree well. It means that
when R/d0>2 (the range of routine bending of thin-walled

Fig. 6 The longitudinal profile of bending tube

Fig. 7 The approximate calculation results and the FEM results of Δt/t0
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coreless tubes with small diameter), the φm increases gradu-
ally as the decrease of the bending radius/diameter ratio R/d0.
However, in the case of R/d0=2, the φm increases quite
rapidly. In addition, the greater the wall thickness/diameter
ratio t0/d0, the larger the calculated results of φm are. The
conclusion above seems in conflict with the above-
mentioned conclusion that Δt/t0 decreases with the t0/d0 in-
creasing. Then the Eq. 26 is adjusted as fallowing:

φm ¼ Δt

t0
⋅
t0
d0

ð26aÞ

It is understandable that when the variation of wall thick-
ness Δt/t0 is unchanged, the increasing of t0/d0 means the
decrease of d0, which increases the value of φm

5 The control of the additional tensile force

It is revealed from theabove analysis that proper control of the
additional tensile force can reduce the thinning of the bending
tube’s wall and the ovalization of the cross-section of the tube.
For the linear hardening material model, when the stress state
in tangential direction is only considered, the total outer tan-
gential tensile force should be smaller than the ultimate tensile
strength of material [20, 21]. Namely, when σT≤σs, we obtain
the following:

σb≥σs þ σT þ D εθ−εs−εθTð Þ ¼ σs þ σTð Þ 1−
D

E

� �
þ D

ro þ rsinα

R−rsinα

ð29Þ
Substituting the equation of original outer radius of tube ro,

namely, ro=r0-Δt, we can obtain the allowable tangential
additional tensile stress as the following:

σT½ �≤ 1

1−D=E
σb−

D

2R=d0−sinα
1−2

Δt

t0

t0
d0

þ sinα

� �	 

−σs

ð30Þ
If the thinning of the outer convex portion of tube and the

possible radial displacement are neglected, it is approximatively
considered that ro=r0, the Eq. 30 can be simplified as

σT½ �≤ 1

1−D=E
σb−D

1þ sinα
2R=d0−sinα

� �
−σs ð31Þ

The above equation provides significant reference for the
design of NC tube bender and the NC tube-bending tech-
niques, namely, the additional tensile force should be less than
the above value in Eq. 31. Otherwise, the bigger value of σT
will lead to the severe thinning of the tube wall and even the
crack. To simplify the calculation, we substitute the equation

Fig. 8 The experimental results
and FEM microtomy of the
ovalization of the cross-section of
the tube in representative region

Fig. 9 The approximate calculated results and the testing measured
results of φm
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α=0.64 into Eq. 31 and obtain the curves in Fig. 10. It is shown
that the allowable tangential additional tensile stress [σT] in-
creases with the increase of R/d0. For T2 tube and 5A03 tube,
when R/d0>2 (the range of routine bending of thin-walled
coreless tubes with small diameter), the [σT] could be larger
than the initial yield strength σs, while for 1Cr18Ni9Ti tube,
only when R/d0>3, the [σT] is allowed to be larger than σs.

If the engineering allowable value of variation of wall
thickness Δt/t0 is substituted into Eq. 30, the obtained value
of [σT] is a little larger but almost coincides with the calculated
curves in above coordinates, indicating that it is inappropriate
to enlarge the additional tensile force in the allowable range of
the variation of tube’s wall thickness. Especially for the bend-
ing deformation conditions of smaller R/d0, the additional
tensile force should be reduced as much as possible.

when R/d0=2, for 1Cr18Ni9Ti tube, the calculated addi-
tional tensile force has the following relation, namely, [σT]≤0,
indicating that it is no more allowable to apply additional
tensile force on the tube. It is also one of the main reasons
for the principle that the limit bending radius/diameter ratio R/
d0≈2 in conventional coreless bending of smaller diameter
and thin wall thickness tubes. In the real bending production,
it is more likely to utilize the push bending or the other
bending methods when R/d0≤2.

According to the above analysis, the maximum allowable
additional tensile force can be derived as follows:

T½ �≤ 1

1−D=E
σb−D

1−Δt=r þ sinα
2R=d0−sinα

� �
−σs

	 

πd0t0 1−

t0
d0

� �
ð32Þ

If the thinning of the outer convex portion of tube is
neglected, Eq. 32 can be simplified as follows:

T½ �≤ 1

1−D=E
σb−D

1þ sinα
2R=d0−sinα

� �
−σs

	 

πd0t0 1−

t0
d0

� �
ð32aÞ

The meaning of the above equation is that the sliding
friction between the surface of tube wall and the grooves of
the pressure die and the wiper die must be considered in the
design, debugging, using of NC tube bender, and the process
of NC tube bending. The excessive friction between the
surface of tube wall and the grooves of the pressure die may
enlarge the additional tensile force and lead to the severe
thinning of the tube wall and even the crack.

Therefore, the roughness of working surface of the grooves
should be reduced and the lubrication problem should be
taken into consideration according to the specific bending
deformation situation.

6 Conclusions

(1) The formulas are derived to calculate the average princi-
pal stress and the equivalent stress in different directions
of the bending tube surface. The average equivalent
stress is close to the FEM result and the variation ten-
dency of the average equivalent stress agrees well with
the experimental data. The FEM results show that the
equivalent stress is non-uniformly distributed along the
longitudinal direction of bending tube. The maximum
equivalent stress is localized at the field around the
terminating and the equivalent stress reduces gradually
when close to the two end of the tube due to the moderate
deformation of the straight portion. The equivalent stress
of the terminating end is larger than that of the leading
end.

(2) In the NC tube bending, the additional tensile force
enlarges the displacement of the strain NL, reduces the
thickening of the wall of the inner concave portion of
tube, and accelerates the thinning of the outer convex
portion of tube. The calculated results of the variation of
wall thickness Δt/t0 are close to the FEM experimental
data, and the calculation accuracy of the formulas de-
rived by using the true stress is relatively higher. By
analysis, it is believed that the calculation deviation is
attributed to the deformation and displacement of the
cross-section of the tube in circumferential direction.

(3) The thickening of the wall in inner concave portion of
tube and the thinning of the wall in outer convex portion
of tube lead to the ovalization of tube’s inner and outer
contour, not only destroying the rigidity of the cross
section of bending tube but also inducing the unpredict-
able pressure and flow pulsation in conveying process of
high-pressure fluid. The ratio of the minor axis to the
original radius of outer contour of bending tube is a little
lower than that of the experimental data. But, the varia-
tion tendency is similar that the φm increases with the
decrease of the bending radius/diameter ratio R/d0.

Fig. 10 The relation of the allowable additional tensile stress with the
bending radius/diameter ratio R/d0
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(4) The approximate calculation and analysis show that the
additional tensile force must be controlled to avoid the
collapsing and the crack of the tube’s wall attributed to
the extreme thinning of the tube wall and the worse ratio
of the minor axis to the original radius of outer contour of
bending tube. In addition, it is suggested that the rough-
ness of working surface of the grooves should be reduced
and the lubrication problem should be taken into consid-
eration to indirectly control the additional tensile force.
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