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Abstract Cellular manufacturing is an important application
of group technology and the cell formation process is one of
the important steps in designing cellular manufacturing sys-
tem. In recent years, researchers have noticed potential bene-
fits when the layout problem is considered within the cell
formation process. Nevertheless, there are not sufficient stud-
ies about consideration of real-life features in the cell forma-
tion and layout design process. In this paper, a new approach
is presented to integrate the cell formation and its layout
design. The proposed approach has three important design
features not found in other papers. These design features are
multi-row intra-cell layout (layout of machines within the
cells), continuous inter-cell layout (layout of rectangular shape
cells on the planar area), and aisle distance. The objective of
the proposed approach is to form machine cells, find the
layout of machine cells, and obtain the arrangement of ma-
chines within the cells such that the total material handling
cost is minimized. In order to have a more accurate layout
design, the material handling cost is calculated in terms of the
actual position of machines within the cell. Due to the com-
putational complexity of the proposed problem, a heuristic
method is proposed to solve medium- and large-scale prob-
lems in a reasonable computational time. Three lower bounds
are developed for the proposed integrated problem in which
the tightest of them is chosen for evaluating the solution of the
heuristic method. Finally, numerical examples adopted from

the literature are solved to verify the performance of the
proposed heuristic method and illustrate the advantages of
the proposed integrated approach. The results indicated that
the heuristic method is both effective and efficient in solving
real-sized problems. The results also demonstrated that the
proposed layout approach gives better layout design in com-
parison with the existing approaches.
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1 Introduction

Group technology (GT) is a manufacturing philosophy that
identifies and explores the similarities of product design and
manufacturing process. Cellular manufacturing system
(CMS) is an application of GT. It can be used to enhance both
flexibility and efficiency in today’s small-to-medium lot pro-
duction environment. According toWemmerlöv and Hyer [1],
the design of a CMS includes (1) cell formation (CF)—group-
ing parts with similar design features or processing require-
ments into part families and grouping machines into machine
cells on the basis of the operations required by the part
families; (2) group layout—laying out machines within each
cell (intra-cell layout) and cells with respect to one another
(inter-cell layout); (3) group scheduling—scheduling
parts and part families for production; and (4) resource allo-
cation—assigning tools, human, and material resources. The
CMS has more advantages such as decreased setup times,
reduced work-in-process inventories, improved product qual-
ity, shorter lead times, reduced tool requirements, improved
productivity, better quality and production control, increment
in flexibility, and decreased material handling cost [2, 3].
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The CF process is one of the important steps in designing
CMS and generally aims to minimize the total intracellular
and intercellular part movements. The issue of CF has widely
been investigated in the literature and researchers have noticed
potential benefits when the layout problem is considered
within the CF process. Heragu and Kakuturi [4] attempted to
integrate the machine grouping problem with layout problem.
The machine cells are first formed by a heuristic algorithm,
and then, a hybrid simulated annealing algorithm is employed
to construct a near-optimal inter- and intra-cell layout. Aktürk
and Turkcan [5] proposed a solution methodology to simulta-
neously solve the part-family and machine cell formation
problem by considering the intra-cell layout problem. A he-
donistic approach was used to maximize the profit of not only
the overall system but also individual cells. Lee and Chiang
[6] addressed the joint problem of CF and its layout assign-
ment to minimize the inter-cell material flow cost. It was
assumed that cell locations are approximately equally spaced
and machine cells are located along a bidirectional linear
layout. They proposed a new graphic approach based on the
multi-terminal cut tree network model to form machine cells.
A partition procedure was developed to separate the cut tree
into a number of sub-graphs (cells) and assigns the location
sequence of each cell by comparing the cut capacities. Also,
Chiang and Lee [7] employed a simulated annealing approach
augmented with dynamic programming algorithm for solving
the same problem presented by Lee and Chiang [6]. In the
proposed approach, the configuration of a solution is com-
prised of a string of integer values, where each value is
associated with each machine. Then, a dynamic programming
algorithm is applied to partition each string into several seg-
ments (cells) such that the total inter-cell flow cost is mini-
mized. Yin et al. [8] incorporated operation sequences, pro-
duction volumes, and alternative process routings of parts into
a nonlinear mathematical model and aimed to minimize a
weighted sum of both inter-cell and intra-cell movements in
which the weights are based on the actual unit costs of inter-
cell/intra-cell movements. A heuristic methodology was also
developed for solving such a nonlinear problem. Hicks [9]
developed a genetic algorithm (GA) design tool that can be
used for the layout design of cellular and noncellular
manufacturing facilities. The tool can solve layout problems
directly or indirectly by optimizing the results obtained from a
CF algorithm. Chan et al. [10] proposed a two-stage GA base
solution approach for solving the CF problem as well as the
cell layout problem. The first stage is to identify machine cells
and part families. Also, the second stage is to arrange the
layout sequence of machine cells (linear inter-cell layout) in
such a way that the total inter-cell material handling cost is
minimized. In the proposed approach, the inter-cell layout is
considered as a quadratic assignment problem (QAP).
Tavakkoli-Moghaddam et al. [11] presented a new mathemat-
ical model with stochastic demands to minimize the total costs

of inter- and intra-cell movements in both machine and cell
layout problems simultaneously. They assumed that the CF is
known in advance and formulated a biquadratic assignment
problem to obtain the inter- and intra-cell layouts. Wu et al.
[12] developed a GA approach for solving an integrated CF
and group layout problem in CMS considering operation
sequences, work load, machine capacity, demand, batch size,
and layout type. Most recently, Jolai et al. [13] presented a
modified version of proposed model by Wu et al. [12] con-
sidering different parameters such as forward and backward
transportation, different batch sizes for parts, different cell
sizes, operation sequences, and the number of exceptional
elements (an exceptional element is a part which needs to be
processed in more than one cell). They developed an
electromagnetism-like algorithm with a heuristic local search
to minimize the total material handling cost and the number of
exceptional elements. Yalaoui et al. [14] solved a combined
GT problem with a facility layout problem by using a three-
stage method. In the first stage, a GA is used to create part
families and machine cells based on a volume data matrix. In
the second stage, considering the solution of the first stage, an
ant colony optimization mixed with a guided local search is
employed to assign machines to fixed locations (this assign-
ment problem is represented by the QAP). Finally, in the third
stage, a loop on cells is carried out using a minimum and
maximum number of cells to choose the appropriate number
of cells. Kia et al. [15] presented a mathematical model for the
layout design of dynamic CMSs under an uncertain environ-
ment. Single-row layout was considered in the arrangement of
machines within the cells and prespecified locations were used
for the cell layout. This model incorporates several design
features including operation sequence, operation time, alter-
native process routing, duplicate machines, machine capacity,
production volume of parts, and cell reconfiguration. They
used optimization software for solving the proposed problem.
Chang et al. [16] formulated a two-stage mathematical pro-
gramming model to integrate the CF, cell layout, and intracel-
lular machine sequence with the consideration of alternative
process routings, operation sequences, and production vol-
ume. The aim of stage I is to simultaneously solve the CF
and cell layout problems, whereas the primary function of
stage II is to determine the machine layout in each cell on
the basis of the CF determined in stage I. In this study, the
linear single- and double-row layouts were considered as two
alternatives for the cell layout. A tabu search algorithm was
employed to solve the proposed problem. Mahdavi et al. [17]
presented an integrated mathematical model considering CF
and cell layout simultaneously. In this research, machines are
located in a linear form and machine cells are allocated to a set
of predetermined positions in the plant. The proposed model
was solved by an optimization software in order to minimize
the cost of intra-cell moves (regarding forward and
backtracking movements), the cost value of inter-cell traveled
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distance which is acquired via product of travel cost between
two cells and number of travels between them, and the number
of exceptional elements (regarding the production volume of
each part).

Most of the approaches to the CF problem are concerned
with creating machine cells with the minimal number of inter-
cell movements (see [18–24]). However, a CF with the min-
imal number of inter- and intra-cell movements is not always
consistent with the one with the minimal inter- and intra-cell
material handling costs, due to the lack of layout data in the
design process. From the other side, those approaches that
consider the inter- and intra-cell material handling costs in the
CMS design usually have some weakness. These weakness
are consideration of predetermined locations in both inter- and
intra-cell layouts, disregarding the aisle distance and the actual
dimensions of the cells in the inter-cell layout, calculation of
the material handling cost in terms of the center-to-center
distances between the cells (rather than the actual position of
machines), and consideration of the single-row layout in both
inter- and intra-cell layouts (see [4–17]). These weaknesses
result in inappropriate layout design and inefficient material
handling system. To fill these gaps, the present paper ad-
dresses a new integrated approach to the CF and its inter-
and intra-cell layouts. The proposed approach has three im-
portant design features not found in other papers. These de-
sign features are multi-row intra-cell layout (layout of ma-
chines within the cells), continuous inter-cell layout (layout of
rectangular shape cells on the planar area), and aisle distance.
The objective of the proposed approach is to form machine
cells, find the layout of machine cells, and obtain the arrange-
ment of machines within the cells such that the total material
handling cost is minimized. In order to have a more accurate
layout design, the material handling cost is calculated in terms
of the actual position of machines within the cell. Due to the
computational complexity of the proposed problem, a heuris-
tic method is proposed to solve medium- and large-scale
problems in a reasonable computational time. Three lower
bounds are developed for the proposed integrated problem in
which the tightest of them is chosen for evaluating the solution
of the heuristic method. Finally, numerical examples adopted

from the literature are solved to verify the performance of the
proposed heuristic method and illustrate the advantages of the
proposed integrated approach.

2 Problem formulation

In this paper, the CF and inter- and intra-cell layouts are
simultaneously determined by an integrated approach which
is called as integrated cell formation and layout problem
(ICFLP). It is assumed that cells are rectangular in shape.
The inter-cell layout (i.e., the layout of unequal-sized cells
on the plant area) is represented by the continuous layout
problem (two-dimensional layout problem) regarding the
aisles and the orientation of cells. The aisle distance is spec-
ified to provide the necessary distance between each pair of
cells. Also, the intra-cell layout (the multi-row arrangement of
equal-sized machines within the cells) is formulated by the
QAP. To do so, each cell is divided into a rectangular grid
(candidate locations) where each grid cell can be allocated to a
machine. Both the inter- and intra-cell material handling costs
are calculated in terms of the actual position of machines
within the cells and considering part demands, operation
sequences, and unit material handling costs per unit distance.
The proposed approach for the inter- and intra-cell layouts are
illustrated in Fig. 1.

The following notation is used throughout this paper.

Sets

i Index for parts (i=1,…,P)
k,k′ Indexes for machines (k,k′=1,…,M)
l,l′ Indexes for cells (l,l′=1,…,C)
m Index for columns (m=1,…,Col)
n Index for rows (n=1,…,Rol)

Parameters

P Number of parts
C Maximum number of cells allowed
M Number of machines

Fig. 1 Schematic illustration on
the proposed approach for the
inter- and intra-cell layouts
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di Demand of part i
cA
i;k;k

0 Unit intra-cell material handling cost for transporting
part i from machine k to machine k′ per unit distance

cE
i;k;k

0 Unit inter-cell material handling cost for transporting
part i from machine k to machine k′ per unit distance

f i;k;k 0 Number of times that an operation at machine k
immediately follows an operation at machine k′ for
part i

wl Width of cell l
hl Height of cell l
Rol Number of rows in cell l
Col Number of columns in cell l
Ll;l0 Aisle distance between cells l and l′
Al,m Length of the center of columnm of cell l in the x-axis

with respect to the lower left corner of cell l
Bl,n Length of the center of row n of cell l in the y-axis

with respect to the lower left corner of cell l

Decision variables

(xl,yl) Horizontal and vertical coordinates of the centroid
of cell l, respectively

ul =1 if cell l is located vertically; 0 otherwise
zk,l =1 if machine k is assigned to cell l; 0 otherwise
zk,l,m
x

=1 if machine k is assigned to column m of cell l; 0
otherwise

zk,l,n
y =1 if machine k is assigned to row n of cell l; 0

otherwise
dx
k;k

0
;l;l

0 Horizontal distance between machine k in cell l and
machine k′ in cell l′

dy
k;k

0
;l;l

0 Vertical distance between machine k in cell l and
machine k′ in cell l′

dk;k 0 ;l Rectilinear distance between machines k and k′ in
cell l

Proposed model According to the description given above,
the ICFLP can be formulated as the following mixed-integer
nonlinear programming model.

ICFLP : min
X
l

X
k
0
>k

X
i

dic
A
i;k;k

0 f i;k;k 0 zk;lzk 0 ;ldk;k 0 ;l

þ
X
l≠l0

X
k
0
>k

X
i

dic
E
i;k;k

0 f i;k;k 0 zk;lzk 0 ;l0 d x
k;k

0
;l;l

0 þ d y

k;k
0
;l;l 0

� �
:

ð1:1Þ

Subject to

d x
k;k

0
;l;l

0 ¼ xl � wl þ hl � wlð Þul
2

þ
XCol
m¼1

Al;mz
x
k;l;m þ ul

XRol
n¼1

Bl;nz
y
k;l;n �

XCol
m¼1

Al;mz
x
k;l;m

 !����� �xl 0

þwl 0 þ hl0 � wl 0
� �

ul 0

2
�
XCol 0
m¼1

Al
0
;mz

x
k
0
;l 0 ;m

� ul0
XRol 0
n¼1

Bl 0 ;nz
y

k
0
;l 0 ;n

�
XCol 0
m¼1

Al 0 ;mz
x
k
0
;l 0 ;m

0
@

1
Aj;∀k 0

> k; l ≠ l
0
; ð1:2Þ

d y

k;k
0
;l;l 0

¼ yl �
hl þ wl � hlð Þul

2
þ
XRol
n¼1

Bl;nz
y
k;l;n þ ul

XCol
m¼1

Al;mz
x
k;l;m �

XRol
n¼1

Bl;nz
y
k;l;n

 !����� �yl 0

þ hl 0 þ wl 0 � hl 0
� �

ul 0

2
−
XRol 0
n¼1

Bl 0 ;nz
y

k
0
;l 0 ;n

� ul 0
XCol0
m¼1

Al 0 ;mz
x
k
0
;l 0 ;m

�
XRol0
n¼1

Bl 0 ;nz
y

k
0
;l 0 ;n

0
@

1
Aj;∀k 0

> k; l ≠ l
0
; ð1:3Þ

dk;k 0 ;l ¼
XCol
m¼1

Al;m z xk;l;m � z x
k
0
;l;m

� ������
�����þ

XRol
n¼1

Bl;n z yk;l;n � z y
k
0
;l;n

� ������
�����;∀k 0

> k; l; ð1:4Þ

X
l

XCol
m¼1

z xk;l;m ¼ 1;∀k; ð1:5Þ
X
l

XRol
n¼1

z yk;l;n ¼ 1;∀k; ð1:6Þ
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X
l

zk;l ¼ 1;∀k; ð1:7Þ

zk;l ¼
XCol
m¼1

XRol
n¼1

z xk;l;mz
y
k;l;n;∀k; l; ð1:8Þ

X
k

z xk;l;mz
y
k;l;n ≤1;∀l;m; n; ð1:9Þ

xl � xl0
�� ��≥wl þ hl � wlð Þul þ wl

0 þ hl 0 � wl
0

� �
ul 0

2
þ Ll;l 0

orð Þ
yl � yl0
�� ��≥hl þ wl � hlð Þul þ hl 0 þ wl

0 � hl0
� �

ul 0

2
þ Ll;l 0 ;∀l

0
> l;

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:10Þ

xl; yl; zk;l; d
x
k;k

0
;l;l 0

; d y

k;k
0
;l;l 0

; dk;k 0 ;l ≥0;∀k
0
> k; l ≠ l

0
; ð1:11Þ

ul; z
x
k;l;m; z

y
k;l;n∈ 0; 1f g;∀k; l;m; n: ð1:12Þ

Objective function (1.1) minimizes the total material han-
dling cost, where the first term is the intra-cell material han-
dling cost, associated with the movement of parts between
machines within each cell, and the second term is the inter-cell
material handling cost due to the exceptional elements.
Constraints (1.2) and (1.3) calculate the vertical and horizontal
distances between two machines in two distinct cells, respec-
tively. Constraint (1.4) measures the rectilinear distance be-
tween the machines belonged to a same cell. Constraints (1.5)
and (1.6) ensure that each machine is assigned to one column
and one row, respectively. Constraint (1.7) ensures that each
machine is assigned to one cell. Constraint (1.8) computes the
cell which machine k is allocated. Constraint (1.9) represents
that each candidate location in each cell can only be occupied
by one machine. Constraint (1.10) ensures that cells do not
overlap; in this constraint, the ‘or’ operator between the first
and second terms implies that at least one of these terms must
be satisfied. Finally, set of constraints (1.11) and (1.12) is the
logical binary and nonnegativity requirements on the decision
variables. Note that in the above model, constraints (1.7) and
(1.8) satisfy the binary requirement on decision variable zk,l.
So, decision variable zk,l is considered as a positive variable.

The proposed model for the ICFLP is a mixed-integer
nonlinear programming problem with absolute operators in
constraints (1.2)–(1.4) and (1.10) as well as quadratic terms in
objective function (1.1) and constraints (1.2), (1.3), (1.8), and
(1.9). The presence of nonlinear terms in the model makes it
difficult to solve the problem to optimality even for small
instances. Thus, the linearization techniques should be applied
to convert the model into a mixed-integer linear programming
problem. To do so, we can use the generic linearization

methods given in Appendix 1. In this way, the product terms
within constraints (1.2) and (1.3) as well as the absolute
operators in constraints (1.2)–(1.4) are first linearized by
methods (4.1) and (4.2), respectively. Then, the product terms
in objective function (1.1) is linearized according to method
(4.3). Next, the product term in constraint (1.8) is linearized by
(4.4). Finally, the absolute operators as well as the ‘or’ oper-
ator in constraint (1.10) are linearized by method (4.5). The
linearized model will be used to evaluate the quality of the
lower bounds in the next section.

3 Lower bounds for the ICFLP

Since both the CF and layout problems are NP-hard [25–28],
the ICFLP becomes NP-hard; it means that time for obtaining
an optimal solution becomes unlikely large as the problem
size grows. In this section, three lower bounds, namely, L1,
L2, and L3, are presented for the ICFLP. The quality of the
lower bounds is evaluated by the optimal solution of the
ICFLP through solving several small and small-to-medium-
scale instances from the literature. The tights lower bound will
be used to evaluate the solutions of the proposed heuristic
method in Sect. 6.

3.1 Lower bound L1

The mathematical model of the first lower bound considered
for the ICFLP is as follows:

L1 : min
X
k
0
>k

FA
k;k

0
X
l

zk;lzk0 ;l

 !
þ
X
k
0
>k

FE
k;k

0 1−
X
l

zk;lzk 0 ;l

 !
1þ Lmin
� �

:

ð2:1Þ

Subject toX
k

zk;l ≤ Rol � Col;∀l; ð2:2Þ

X
l

zk;l ¼ 1;∀k; ð2:3Þ

zk;l ∈ 0; 1f g;∀k; l: ð2:4Þ

Where parameters FA
k;k

0 , FE
k;k

0 , and Lmin are calculated as

follows:

FA
k;k

0 ¼
X

i

c Ai di f i;k;k 0 ;∀k
0
> k; ð2:5Þ
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FE
k;k

0 ¼
X

i

c Ei di f i;k;k 0 ;∀k
0
> k; ð2:6Þ

Lmin ¼ min
l>l 0

Ll;l 0
n o

: ð2:7Þ

In order to linearize the above model, objective function
(2.1) is rearranged as follows:

L1 : min 1þ Lmin
� �X

k
0
>k

FE
k;k

0−
X
l

X
k

zk;l

X
k
0
>k

FE
k;k

0 1þ Lmin
� �

−FA
k;k

0

� �
zk 0 ;l

0
@

1
A: ð2:8Þ

Now,model L1 can be linearized according tomethod (4.6)
give in Appendix 1.

Proposition.1 The optimal objective function value of model
L1 is a lower bound for the ICFLP.

Proof Assuming that the dimensions of all candidate
locations are 1×1, the distances between the machines
in a same cell will always be greater than or equal to 1
unit. Therefore, the term zk;lzk 0 ;ldk;k 0 ;l in objective func-

tion (1.1) can be replaced by zk;lzk 0 ;l . Also, it is clear

that the distances between the machines in distinct cells
are always greater than or equal to 1+Lmin. So, the term

∑
l 0≠l

zk;lzk 0 ;l 0 dx
k;k

0
;l;l 0

þ dy
k;k

0
;l;l 0

� �
in objective function

(1.1) can be estimated by 1þ Lmin
� �

1−∑
l
zk;lzk 0 ;l

� �
.

From the other side, constraints (1.5)–(1.9) can be re-
laxed into constraints (2.2)–(2.4) and the remaining
constraints can be ignored. Therefore, it is concluded
that the optimal objective function value of model L1 is
better than or equal to that of the ICFLP. Consequently,
the optimal objective function value of model L1 is a
lower bound for the ICFLP. □

3.2 Lower bound L2

This model is a modified version of the QAP proposed
in [29] and called as the grid representation quadratic
assignment problem (GRQAP). The GRQAP has less
number of binary variables in comparison with the
traditional QAP. The GRQAP can solve small- and
small-to-medium-scale problems almost two times faster
than the QAP and also with less physical memory.
According to [29], two sets of binary variables zkm

x

and zkn
y are introduced for the assignment of facilities

(machines) to the candidate locations (columns and
rows, respectively). The formulation of the GRQAP is
as follows:

L2 : min
X
k
0
>k

F A
k;k

0
X
m

Am z xk;m � z x
k
0
;m

� ������
�����þ

X
n

Bn z yk;n � z y
k
0
;n

� ������
�����

 !
:

ð2:9Þ

Subject toX
k

z xk;mz
y
k;n ≤ 1;∀m; n; ð2:10Þ

X
m

z xk;m ¼ 1;∀k; ð2:11Þ

X
n

z yk;n ¼ 1;∀k; ð2:12Þ

z xk;m; z
y
k;n ∈ 0; 1f g;∀k;m; n: ð2:13Þ

Where parameter FA
k;k

0 is computed by Eq. (2.5).

Objective function (2.9) minimizes the total intra-cell ma-
terial handling cost. Note that, in the above model, the restric-
tion on the cell capacities is not taken into account. It means
that all machines are assigned to one cell. Constraint (2.10)
ensures that each candidate location can be occupied by one
machine. Constraints (2.11) and (2.12), respectively, represent
that each machine is assigned to one column and one row.

Model L2 can be linearized according to the generic line-
arization methods given in Appendix 1. In this way, the
absolute operators in objective function (2.9) and the product
term in constraint (2.10) are linearized by applying methods
(4.2) and (4.4), respectively.

Proposition.2 The optimal objective function value of model
L2 is a lower bound for the ICFLP.

Proof Enforcement of facilities to get arranged within
prespecified layout shapes may increase the total material
handling cost [30]. So, regardless of the cell structures (i.e.,
constraints (1.5)–(1.10)), each machine can be placed any-
where on the planar area and, as a result, the total material
handling cost may decrease. From the other side, as it was
assumed that the dimensions of machines are equal in size
(i.e., 1×1), the problem can be formulated by the QAP [31].
Finally, since model L2 is a modified version of the QAP, it is
concluded that the optimal objective function value of model
L2 is a lower bound for the ICFLP. □
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3.3 Lower bound L3

The previous lower bounds do not consider the capac-
ity of the cells as well as the aisle distance between

the cells. In order to overcome these shortcomings,
lower bound L3 is presented which considers these
parameters. The formulation of lower bound L3 is as
follows:

L3 : min
X
k
0
>k

F A
k;k

0
X
l

zk;lzk 0 ;l

 ! X
m

Am z xk;m � z x
k
0
;m

� ������
�����þ

X
n

Bn z yk;n � z y
k
0
;n

� ������
�����

 !

þ
X
k
0
>k

F E
k;k

0 1�
X
l

zk;lzk 0 ;l

 ! X
m

Am z xk;m � z x
k
0
;m

� ������
�����þ

X
n

Bn z yk;n � z y
k
0
;n

� ������
�����þ Lmin

 !
: ð2:14Þ

Subject to (2.2)–(2.4) and (2.10)–(2.13).
Where parameters FA

k;k
0 , FE

k;k
0 , and Lmin are calculated by

Eqs. (2.5)–(2.7).
Model L3 can be linearized according to the generic line-

arization methods given in Appendix 1. First, the product
terms and the absolute operators are linearized by using
methods (4.4) and (4.2), respectively. Then, the problem is
linearized by applying method (4.7).

Proposition.3 The optimal objective function value of model
L3 is a lower bound for the ICFLP.

Proof The objective function and the constraints of model L3
are a combination of those in models L1 and L2. As models
L1 and L2 are lower bounds for the ICFLP, it can be conclud-
ed that the optimal objective function value of model L3 is
also a lower bound for the ICFLP. □

4 Evaluating the lower bounds

In this section, the quality of lower bounds L1, L2, and
L3 is tested on small- and small-to-medium-scale prob-
lems adopted from the literature. Each problem is
solved with different configurations (i.e., the number
of cells, the dimensions of cells, and aisle distance
between the cells). It should be noted that all the
problems are solved by the GAMS/CPLEX solver on a
personal computer with 2.4 GHz CPU, 2 GB memory,
and Windows 7 operating system. The characteristic of
the problems as well as computational results are given
in Table 1. In this table, column ‘C×(Col×Rol)’ indi-
cates the physical configuration of the cells. For in-
stance, the term ‘2×(2×1), (3×1)’ indicates that we
have three cells. The first two cells are composed of
two columns and one row and the third cell is com-
posed of three columns and one row. Also, the relative
gap between the optimal objective function value of

each lower bound and that of the ICFLP is shown in
Fig. 2.

As can be seen in Table 1, all the problems were solved
optimally except for problems 13 and 19 which were not
solved optimally by the ICFLP within a reasonable computa-
tional time (in this paper 10,000 s). Nevertheless, as the
objective function value of lower bound L3 is equal to that
of the ICFLP, we can conclude that the objective function
value of the ICFLP for problems 13 and 19 is optimal. The
average gap between the ICFLP and lower bounds L1, L2,
and L3 are 15.55, 16.38, and 4.46 %, respectively. According
to this measure, we can conclude that lower bound L3 is the
tightest bound for the ICFLP with a minimum gap of 0 % and
a maximum gap of 14.6 %. As a result, this lower bound will
be used in Sect. 6.2 to evaluate the solution of the heuristic
method on medium- and large-scale problems.

5 Proposed heuristic method

As mentioned earlier, the ICFLP is NP-hard. In this section, a
heuristic method composed of four sub-models, namely, M1,
M2, M3, and M4, is suggested to effectively solve medium-
and large-scale problems. In fact, the proposed heuristic meth-
od decomposes the ICFLP into four smaller sub-problems
which are easier to solve than the ICFLP. After creating an
initial solution, the iteration between these sub-problems is
considered to gradually improve the solution. Figure 3 shows
the flowchart of the proposed heuristic method.

In the following sub-sections, a detailed description of the
proposed heuristic method is given.

5.1 Stage 1 (forming machine cells)

In this stage, the machine cells are formed according to the
following model:

M1 : max
X
k
0
>k

X
l

F A
k;k

0 zk;lzk 0 ;l: ð3:1Þ
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Subject to (2.2)–(2.4).
Where parameter FA

k;k
0 is computed by Eq. (2.5).

Objective function (3.1) maximizes the total intra-cell ma-
terial movements cost (this leads to the minimization of the
total inter-cell movement cost). Also, the remaining con-
straints are the same as explained before. Note that the

resulting solution of this stage (i.e., ezk;l ) becomes the input
of the next stage.

The product term in objective function (3.1) can be linear-
ized by applying method (4.4) given in Appendix 1.

5.2 Stage 2 (creating a primary cell layout)

In this stage, according to the output of model M1, a primary
cell layout is created. As the cell layout is still unknown, the
centroid of each cell is used as the measuring point to calculate
the distances between the machines. The following model is
applied to obtain an initial cell layout.

M2 : min
X
l
0
>l

X
i

X
k
0≠k

dic
E
i;k;k

0 f i;k;k 0ezk;lezk 0 ;l0
0
@

1
A xl � xl0
�� ��þ yl � yl0

�� ��� �
:

ð3:2Þ

Subject to (1.10)–(1.12).where,ezk;l is the optimal value of
variable zk,l obtained by model M1.

Objective function (3.2) minimizes the total inter-cell ma-
terial handling cost which is estimated by considering the

Table 1 Comparison results for evaluating lower bounds

Problem ICFLP Lower bound L1 Lower bound L2 Lower bound L3

No. Source Size
(M×P)

Aisle
distance

Cell sizes
C×(Col×Rol)

OFV Time (s) OFV Time (s) OFV Time (s) OFV Time (s)

1.1 [13] 6×9 0.5 2×(3×1) 39.25 4.75 30 0.04 26 0.75 35.5 6.48

1.2 [13] 6×9 0 2×(3×1) 32.5 5.00 24 0.06 26 0.75 31 8.71

1.3 [13] 6×9 0.5 3×(2×1) 46.25 152 35 0.05 26 0.75 39.5 6.51

1.4 [13] 6×9 0 3×(2×1) 35 174 26 0.07 26 0.75 34.5 8.17

2.1 [5] 6×20 0.5 2×(3×1) 34,678.44 4.96 27,187.15 0.11 27,533.94 0.64 32,314.72 8.38

2.2 [5] 6×20 0 2×(3×1) 30,294.53 5.86 22,803.24 0.06 27,533.94 0.64 30,294.53 8.53

2.3 [5] 6×20 0.5 3×(2×1) 43,624.035 162 33,192.86 0.06 27,533.94 0.64 37,421.135 6.08

2.4 [5] 6×20 0 3×(2×1) 32,604 172 24,516.14 0.07 27,533.94 0.64 32,135.42 8.57

3.1 [11] 7×8 0.5 1×(3×1),
1×(4×1)

2800 15.05 2600 0.04 2800 0.63 2800 2.92

3.2 [11] 7×8 0.5 1×(3×1),
1×(2×2)

2800 7.65 2600 0.04 2800 0.63 2800 2.92

3.3 [11] 7×8 0.5 2×(2×1),
1×(3×1)

2800 91.25 2600 0.04 2800 0.63 2800 9.92

3.4 [11] 7×8 0.5 4×(2×1) 3300 11,836 3100 0.16 2800 0.63 3200 7.73

3.5 [11] 7×8 0 4×(2×1) 2800 >10,000* 2600 0.05 2800 0.63 2800 34.38

4.1 [32] 8×7 0.5 2×(4×1) 16 18.37 13 0.07 14 1.01 14 6.49

4.2 [32] 8×7 0.5 2×(2×2) 14 28.56 13 0.07 14 1.01 14 6.49

4.3 [32] 8×7 0.5 2×(2×1),
1×(2×2)

14 244 13 0.04 14 1.01 14 8.42

4.4 [32] 8×7 0.5 2×(3×1),
1×(2×1)

21.5 1462 18 0.06 14 1.01 18.75 37.48

4.5 [32] 8×7 0.5 4×(2×1) 19.5 8281 18 0.06 14 1.01 18.75 43.71

4.6 [32] 8×7 0 4×(2×1) 16.5 >10,000* 15 0.07 14 1.01 16.5 68.21

M no. of machines, P no. of parts, C no. of cells, Col no. of columns in the cells, Rol no. of rows in the cells OFVobjective function value

*In this case the solve procedure was interrupted after 10,000 seconds
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Fig. 2 Relative gap between the optimal objective function value of the
lower bounds and that of the ICFLP (for the small-scale problems)
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center-to-center distances between the cells. The remaining
parameters and constraints are the same explained before.

The nonlinear terms in model M2 are linearized
according to the generic linearization methods given in
Appendix 1. First, the absolute operators in objective
function (3.2) are linearized by using method (4.2).
Then, method (4.3) is applied to resolve the nonlinearity
of the product terms.

5.3 Stage 3 (arranging/rearranging machines within the cells)

In this stage, by considering the assignment of machines
to the cells and the cell layout, a mathematical model is

presented to determine the arrangement of machines
within the cells such that the total martial handling cost
is minimized. The proposed model is as follows:

M3 : minTC1 ¼
X
k>k

0

X
l

F A
k;k

0ezk;lezk 0 ;ldk;k 0 ;l
þ
X
k>k

0

X
l≠l0

FE
k;k

0ezk;lezk 0 ;l 0 d x
k;k

0
;l;l

0 þ d y

k;k
0
;l;l 0

� �
:

ð3:3Þ

Subject to (1.9), (1.11), and (1.12).

d x
k;k

0
;l;l

0 ¼ x~l � wl þ hl � wlð Þu~l
2

þ
XCol
m¼1

Al;mz
x
k;l;m þ u~l

XRol
n¼1

Bl;nz
y
k;l;n �

XCol
m¼1

Al;mz
x
k;l;m

 !����� �x~l0

þ wl 0 þ hl 0 � wl 0
� �

u~l 0

2
−
XCol 0
m¼1

Al 0 ;mz
x
k
0
;l 0 ;m

� u~l0
XRol 0
n¼1

Bl
0
;nz

y

k
0
;l 0 ;n

�
XCol 0
m¼1

Al 0 ;mz
x
k
0
;l 0 ;m

0
@

1
Aj;∀ z~k;l ¼ z~k 0 ;l0 ¼ 1; k

0
> k; l≠l

0
;

ð3:4Þ

d y

k;k
0
;l;l

0 ¼ y~l �
hl þ wl � hlð Þu~l

2
þ
XRol
n¼1

Bl;nz
y
k;l;n þ u~l

XCol
m¼1

Al;mz
x
k;l;m �

XRol
n¼1

Bl;nz
y
k;l;n

 !����� �y~l0 þ
hl 0 þ wl 0 � hl 0

� �
u~l0

2

�
XRol 0
n¼1

Bl 0 ;nz
y

k
0
;l 0 ;n

� u~l 0
XCol0
m¼1

Al 0 ;mz
x
k
0
;l 0 ;m

�
XRol0
n¼1

Bl 0 ;nz
y

k
0
;l 0 ;n

0
@

1
Aj;∀z~k;l ¼ z~k 0 ;l 0 ¼ 1; k

0
> k; l ≠ l

0
: ð3:5Þ

Fig. 3 Follow chart of the
proposed heuristic method
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dk;k 0 ;l ¼
XCol
m¼1

Al;m z xk;l;m−z
x
k
0
;l;m

� ������
�����

þ
XRol
n¼1

Bl;n z yk;l;n−z
y

k
0
;l;n

� ������
�����;∀zk;l ¼ zk 0 ;l ¼ 1; k

0
> k; l;

ð3:6Þ

XCol
m¼1

z xk;l;m ¼ ezk;l;∀k; l; ð3:7Þ

XRol
n¼1

z yk;l;n ¼ ezk;l;∀k; l; ð3:8Þ

Where ezk;l is the optimal value of decision variable zk,l
obtained by model M1. Also, exl , l, and ũl are the optimal
value of decision variables exl ,exl , and exl derived from model
M2 or model M4 which is presented in the next subsection.

Objective function (3.3) minimizes the total material han-
dling cost (the first term is the total intra-cell material handling
cost and the second one is the total inter-cell material handling
cost). Constraints (3.4) and (3.5), respectively, calculate the
vertical and the horizontal distances between the machines in
distinct cells. Also, constraint (3.6) calculates the rectilinear
distance between the machines in a same cell. Constraints
(3.7) and (3.8), respectively, ensure that each machine is
assigned to one column and one row in its corresponding cell.
The remaining constraints are the same explained before.

According to the generic linearization methods given in
Appendix 1, the nonlinear terms in model M3 are linearized as

follows. First, the absolute operators in constraints (3.4)–(3.6)
are linearized by method 4.2. Then, method (4.3) is applied to
resolve the nonlinearity of the product terms in objective
function (3.3).

5.4 Stage 4 (re-designing cell layout)

In this stage, the cell layout is re-designed by assuming that
the intra-cell layout is fixed. As the layout of machines within
the cells is assumed to be fixed, the total intra-cell material
handling cost becomes constant. The major difference be-
tween the model which is presented in this subsection (i.e.,
model M4) and model M2 is that in model M2, the material
handling cost is calculated in terms of the center-to-center
distances between the cells. However, in model M4, the actual
position of machines is taken into account; this results in more
accurate cell layout. To formulate such a problem, we need to
consider eight possible positions for the placement of machine
cells on the planar area. These possible positions for a ma-
chine cell with five machines are illustrated in Fig. 4.

The proposed model for re-designing cell layout is as
follows:

M4 : minTC2 ¼
X
k
0
>k

X
l

f A
k;k

0 z~k;lz~k 0 ;l A
~
k−A

~
k
0

�� ��þ B
~
k � B

~
k
0

�� ��� �
þ
X
k
0
>k

X
l≠l0

f E
k;k

0 z~k;lz~k 0 ;l 0 dx
k;k

0
;l;l 0

þ dy
k;k

0
;l;l 0

� �

ð3:9Þ

Subject to (1.10)–(1.12).

dx

k;k
0
;l;l 0

¼ xl � wl þ hl � wlð Þul

2
þ A~k þ ulu

0
l hl � wl þ 2A~k � 2B~k
� �þ u

0
l wl � 2A~k
� �þ ul B~k � A~k

� �����
�xl 0 þ

wl
0 þ hl 0 � wl

0
� �

ul
0

2
�A~

k
0ul

0ul
0
0
hl 0 � wl

0 þ 2A~
k
0 � 2B~

k
0

� �
u

0
l 0 wl

0 � 2A~
k
0

� �þ ul
0 B~

k
0 � A~

k
0

� �����;
8z~k;l ¼ z~

k
0
;l

0 ¼ 1; k
0
> k; l¼= l

0
; ð3:10Þ

dy
k;k

0
;l;l 0

¼ yl �
hl þ wl � hlð Þul

2
þ B~k þ ulu

″
l wl � hl � 2A~k þ 2B~k
� �þ u″l hl � 2B~k

� �þ ul A
~
k � B~k

� ��yl 0

þ hl 0 þ wl 0 � hl 0
� �

ul 0

2
� B~k 0 � ul 0u

″
l 0 wl 0 � hl 0−2A

~
k
0 þ 2B~k 0

� �
−u″l 0 hl 0 � 2B~k 0

� �
−ul0 A~k 0 � B~k 0

� �j;
8z~k;l ¼ z~k 0 ;l 0 ¼ 1; k

0
> k; l¼= l

0
;

ð3:11Þ

u
0
l; u

″
l∈ 0; 1f g;∀l: ð3:12Þ

Where eAk ¼ ∑
l
∑
Col

m¼1
Al;mezxk;l;m and eBk ¼ ∑

l
∑
Rol

n¼1
Bl;nezyk;l;n .

In the above model, ezxk;l;m and ezyk;l;n are the optimal

values of decision variables zk,l,m
x and zk,l,n

y obtained by
model M3, and ezk;l is the optimal value of decision

variable zk,l obtained from model M1. Also, decision
variables ul

′ and ul
″ besides decision variable ul are used

to specify the direction of machine cells and represent
one of eight possible positions for the placement of a
machine cell. Table 2 shows the possible coordinates of
a hypothetical machine within a cell considering differ-
ent values of these variables.
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Objective function (3.9) minimizes the total material han-
dling cost. As mentioned before, the arrangement of machines
within the cells are assumed to be fixed. Therefore, the first
term of objective function (3.9), i.e., the total intra-cell mate-
rial handling cost, becomes constant. Constraints (3.10) and
(3.11), respectively, calculate the horizontal and vertical dis-
tances between the machines in distinct cells. Constraint
(3.12) is the logical binary requirement on decision variables.
The remaining constraints are the same explained before.

According to the generic linearization methods given in
Appendix 1, model M4 can be linearized as follows. First, the
product term and the absolute operators in the first and the
second part of objective function (3.9) are linearized by using
methods (4.4) and (4.2), respectively. Then, the product term
in the second part of objective function (3.9) is linearized by
applying method (4.3).

6 Computational results

In this section, the performance of the proposed heuristic
method is evaluated by solving several problems from the
literature. The heuristic method was formulated in the

GAMSmodeling software and the CPLEX solver was chosen
for solving the problems. The proposed problems are classi-
fied into two sets and each set is solved separately. Also, in the
rest of this section, the proposed integrated approach is com-
pared to a similar approach from the literature. It should be
noted that all experiments in this section are performed on the
same computer used in Sect. 4.

6.1 Small- and small-to-medium-scale problems

The first set of problems includes the same small- and small-
to-medium-scale problems which were solved in Sect. 4.
These problems are solved by the heuristic method and the
results are compared with the optimal objective function value
of the ICFLP. The computational results are given in Table 3.
In this table, column ‘No. iter.’ indicates the number of sub-
models solved in the heuristic method; also, column ‘Error
(%)’ shows the relative difference between the objective func-
tion value of the ICFLP and that of the heuristic method. This
measure is calculated as follows: Error=(OFVHeuristic−
OFVICFLP)/OFVICFLP×100.

The results show that except for problems 1.1, 1.2, 2.3, and
4.4, the remaining problems were solved optimally by the
heuristic method. The average error for those problems which

M4 M5

M1 M2 M3

M5 M4

M3 M2 M1

M1 M2 M3

M4 M5

M3 M2 M1

M5 M4

M3

M4

M2 M5

M1

M1 M4

M2 M5

M3

M3

M1

M5 M2

M4

M4 M1

M3

M5 M2

Position 1 Position 2 Position 3 Position 4 

Position 5 Position 6 Position 7 Position 8 

Fig. 4 Possible positions for
placement of a hypothetical
machine cell with five machines

Table 2 possible coordinates of a
machine within a cell in terms of
various combinations of decision
variables ul, ul

′, and ul
″

Position ul ul
′ ul

″ x-axis y-axis

1 0 0 0 xl−wl
2 þ eAk yl−

hl
2 þ eBk

2 0 0 1 xl−wl
2 þ eAk yl þ hl

2−eBk

3 0 1 0 xl þ wl
2−eAk yl−

hl
2 þ eBk

4 0 1 1 xl þ wl
2−eAk yl þ hl

2−eBk

5 1 0 0 xl−hl
2 þ eBk yl−

wl
2 þ eAk

6 1 0 1 xl−hl
2 þ eBk yl þ wl

2−eAk

7 1 1 0 xl þ hl
2−eBk yl−

wl
2 þ eAk

8 1 1 1 xl þ hl
2−eBk yl þ wl

2−eAk
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were not solved optimally is about 3.18 %. Also, our compu-
tations show that the proposed heuristic method is able to

solve each problem in less than 0.7 s. The average computa-
tion time for these problems is almost 0.47 s. These imply the
good performance of the proposed heuristic method in solving
small- and small-to-medium-scale problems in terms of both
solution quality and computation time.

6.2 Medium- and large-scale problems

The second set of problems includes 10 medium- and large-
scale problems adopted from the literature. The characteristics
of these problems are presented in Table 4. Note that for these
problems, some necessary information was not available in
the source paper (e.g., part demands, material handling costs,
etc.). Hence, we added the required data to each problem.
Each problem is investigated with different configurations
(including the number of cells, the physical shape of cells,
and the aisle distance between the cells). This group of prob-
lems is solved by the heuristic method and the solutions are
compared with the results derived from lower bound L3. As
lower bound L3 is on the basis of the QAP, some of these
problems may not be solved optimally within a reasonable
computational time (because the QAP is NP-hard). As a result,
depending on the scale of each problem, the solver is
interrupted after a specified time. The computational results
are given in Table 5. In this table, column ‘C×(Col×Rol)’
indicates the physical configuration of the cells, column ‘Time
limit’ shows the maximum allowable time that can be spent in
heuristic method for solving each sub-model, column ‘No.

Table 3 Computation results of the proposed heuristic method on
small- and small-to-medium-scale problems

Problem no. ICFLP Heuristic Error (%)

OFV OFV No. iter. Time (s)

1.1 39.25 40 4 0.292 1.9

1.2 32.5 34 4 0.314 4.6

1.3 46.25 46.25 5 0.722 0.0

1.4 35 35 5 1.711 0.0

2.1 34,678.44 34,678.44 4 0.286 0.0

2.2 30,294.53 30,294.53 4 0.323 0.0

2.3 43,624.035 44,286.99 5 0.779 1.5

2.4 32,604 32,604 5 0.822 0.0

3.1 2800 2800 4 0.288 0.0

3.2 2800 2800 4 0.282 0.0

3.3 2800 2800 4 0.284 0.0

3.4 3300 3300 4 0.659 0.0

3.5 2800 2800 4 0.511 0.0

4.1 16 16 4 0.251 0.0

4.2 14 14 4 0.274 0.0

4.3 14 14 4 0.253 0.0

4.4 21.5 22.5 4 0.302 4.7

4.5 19.5 19.5 4 0.285 0.0

4.6 16.5 16.5 4 0.270 0.0

Table 4 Characteristic of medium- and large-scale problems

Problem no. Scale
(M×P)

Source Supplementary information Descriptions

di,∀i
cA
i;k;k

0 ;∀i; k; k
0

cE
i;k;k

0 ;∀i; k; k
0

5 Medium
(8×20)

[32] 1 1 2 –

6 Medium
(11×7)

[24] 1 1 1.5 Processes of parts are done according
to the machine indexes in increasing order

7 Medium
(10×20)

[33] – 1 1.5 Processes of parts are done by the first routing

8 Medium
(12×10)

[11] – – 10 Mean demand of parts is considered

9 Medium
(12×18)

[34] – 1 1.5 –

10 Large
(15×30)

[35] – 1 1.5 Processes of parts are done according to the
machine indexes in increasing order

11 Large
(16×43)

[36] 1 1 1.5 Processes of parts are done according to the
machine indexes in increasing order

12 Large
(17×20)

[24] 1 1 1.5 Processes of parts are done according to the
machine indexes in increasing order

13 Large
(20×20)

[37] 1 1 2 –

14 Large
(24×40)

[38] – 1 1.5 –
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Table 5 Computation results of the proposed heuristic method on medium- and large-scale problems

Problem Lower bound L3 Heuristic method Gap (%)

No. Aisle distance Cell sizes
C×(Col×Rol)

OFV Time (s) OFV Time limit (s) No. iter. Time (s)

5.1 0.25 2×(2×2) 81 123.785 91 – 4 0.368 11.0

5.2 0.25 2×(2×1), 1×(2×2) 88.5 351.419 99 – 6 2.202 10.6

5.3 0.25 4×(2×1) 102.5 278.94 114.5 – 5 15.065 10.5

6.1 0.25 2×(3×2) 16.75 7168.957 16.75 – 4 1.215 0.0

6.2 0.25 3×(2×2) 16.75 7200a 16.75 – 4 0.380 0.0

6.3 0.5 3×(2×2) 17.5 4127.069 17.5 – 4 0.369 0.0

6.4 0.25 4×(3×1) 18.5 7200a 18.5 – 4 0.457 0.0

6.5 0.5 4×(3×1) 20 7200a 20 – 4 0.668 0.0

7.1 0.5 2×(3×2) 27,488.25 7200a 29,393.2 – 4 1.039 6.5

7.2 0.5 2×(5×1) 27,588.5 7200a 32,203.25 – 4 0.492 14.3

7.3 0.5 3×(2×2) 29,596 7200a 34,807.75 – 5 1.709 15.0

7.4 0.5 3×(4×1) 29,596 7200a 34,324.75 – 4 0.772 13.8

7.5 0.5 4×(3×1) 30,948.25 7200a 36,133.75 – 5 13.759 14.4

7.6 0.5 5×(2×1) 34,039.5 7200a 40,279.5 10 5 20.338 15.5

8.1 0.5 3×(2×2) 10,650 7200a 10,720 – 4 0.994 0.7

8.2 0.5 4×(3×1) 11,590 7200a 12,800 – 4 0.598 9.5

8.3 1 4×(3×1) 12,410 7200a 13,910 – 4 0.593 10.8

8.4 0 6×(2×1) 10,550 7200a 10,550 5 4 12.758 0.0

8.5 0.5 6×(2×1) 12,380 7200a 13,105 5 4 12.793 5.5

8.6 1 6×(2×1) 14,110 7200a 15,660 5 4 12.729 9.9

9.1 0.5 3×(2×2) 10,197.5 7200a 11,343.75 – 4 1.107 10.1

9.2 0.5 4×(3×1) 11,330 7200a 14,018.75 – 6 32.849 19.2

9.3 0.5 4×(2×1), 1×(2×2) 11,575 7200a 13,505.00 5 5 10.548 14.3

9.4 0.5 2×(3×1), 3×(2×1) 12,410 7200a 13,448.75 5 6 15.449 7.7

9.5 0.5 6×(2×1) 12,735 7200a 14,810.00 10 5 29.698 14.0

10.1 0.25 3×(3×2) 20,061.500 7200a 20,237.75 20 5 40.353 0.9

10.2 0.25 3×(5×1) 19,770.875 7200a 20,305.25 – 5 1.192 2.6

10.3 0.25 4×(4×1) 23,368.875 7200a 24,173.875 – 5 1.515 3.3

10.4 0.25 5×(3×1) 24,560.875 7200a 25,636 10 5 14.779 4.2

11.1 0.5 3×(3×2) 149.75 7200a 166.50 – 4 7.606 10.1

11.2 0.5 4×(2×2) 161.75 7200a 181.25 – 5 18.497 10.8

11.3 0.5 3×(2×2), 2×(2×1) 161.5 7200a 181.25 10 5 12.822 10.9

11.4 0.5 6×(3×1) 164.5 7200a 189.25 20 5 40.798 13.1

12.1 0.25 3×(3×2) 63.25 10,000a 64.50 – 4 18.548 1.9

12.2 0.25 3×(2×2), 1×(3×2) 66.25 10,000a 66.25 – 5 3.525 0.0

12.3 0.25 3×(2×2), 2×(3×1) 68.75 10,000a 73.25 – 5 2.050 6.1

12.4 0.25 6×(3×1) 70.25 10,000a 78.125 10 5 21.102 10.1

13.1 0.25 3×(4×2) 114.5 18,000a 118.5 20 4 40.634 3.4

13.2 0.25 4×(3×2) 117 18,000a 127 20 8 89.963 7.9

13.3 0.25 5×(2×2) 149 18,000a 167 10 5 23.081 10.8

13.4 0.25 5×(4×1) 149 18,000a 161 10 6 27.989 7.5

13.5 0.5 7×(3×1) 143 18,000a 172 200 8 921.401 16.9

14.1 0.25 3×(4×2) 63,582.5 18,000a 64,490 100 7 300.919 1.4

14.2 0.25 4×(3×2) 72,537.5 18,000a 77,127.5 50 4 51.734 6.0

14.3 0.25 5×(5×1) 73,906 18,000a 79,912.5 – 4 34.535 7.5

14.4 0.25 6×(2×2) 78,665 18,000a 79,140 – 5 21.151 0.6

14.5 0.25 8×(3×1) 89,650 18,000a 96,235 100 7 401.659 6.8

a In this case, the solver was interrupted after a specified time
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iter.’ indicates the number of sub-models solved in the heu-
ristic method, and column ‘Gap (%)’ shows the relative gap
between the objective function value of model L3 and that of
the heuristic method. This measure is defined as follows:
Gap=(OFVHeuristic−OFVL3)/OFVL3×100.

From Table 5, it can be observed that the heuristic
method is able to find good solution in a reasonable
amount of computation time for the proposed medium-
and large-scale problems. For this set of problems, the
average gap is equal to 7.6 %. Particularly, in problems
6.1 and 6.3, the relative gap is equal to 0. From the other
side, for these two problems, the lower bound model was
solved optimally. Therefore, we can conclude that the
solutions of the heuristic method for problems 6.1 and
6.3 are optimal. The results also show that the number of
cells, the aisle distance between the cells, and the layout
type within the cells are important factors in designing
manufacturing cells. For instance, in problem 13, when
double-row layout with four cells is considered (i.e., prob-
lem 13.3), the material handling cost is obtained 127 units.
However, when the same problem is solved for linear
layout with five cells (i.e., problem 13.4) the material
handling cost is increased to 161 units by 26.77 %.
Therefore, careful attention should be paid to these param-
eters in order to achieve the best configuration of cells.

6.3 Comparison of the proposed approach with a similar study

To show the advantages of the proposed layout approach
(continuous cell layout and multi-row machine arrange-
ment), this approach is compared with one of the similar
approaches in the literature. To do so, six test instances
adopted from Chang et al. [16] are solved by the proposed
heuristic method and the solutions are compared with
their solutions. The data set of these instances can be
obtained from the following link: http://sites.google.com/
site/chinjuchang/data/Production_data.pdf. In order to

compare the solutions under comparable setting, both
the inter- and intra-cell material handling costs are as-

sumed to be 1 unit (i.e., cE
i;k;k

0 ¼ cA
i;k;k

0 ¼ 1;∀i; k; k
0
).

Also, the aisle distance between the cells is assumed to
be 1 unit. Chang et al. [16] solved these problems by
using a tabu search algorithm. They considered linear
double-row layout for the placement of machine cells
(discrete cell layout) and linear layout for the arrangement
of machines within the cells. Table 6 shows a comparison
between the layout approach presented in this study and the
ones proposed in [16]. In this table, column ‘Imp. (%)’ indi-
cates the improvement percent in the total material handling
cost. This measure is calculated as follows: Imp.=(TCC−
TCH)/TCC×100. Where TCC is the total material handling
cost calculated for the solutions presented in [16] and TCH is
the total material handling cost obtained by the proposed
heuristic method. Also, the solutions of the heuristic method
as well as the solutions reported in [16] are illustrated in
Appendix 2.

From Table 6, we can see that for all the problems, our
solutions are considerably better than those found by
Chang et al. [16]. For problems 15, 17, and 19, the CF
result (the assignment of the machines to the cells) found
by the heuristic method is identical with that found by
Chang et al. [16] (see Appendix 2). For all the problems,
the total inter-cell material handling cost, TCE, found by
the heuristic method, is far better than that found by Chang
et al. [16]. This demonstrates the potential benefits that
could be derived from considering continuous cell layout
rather than discrete cell layout. Moreover, for all the prob-
lems, the total intra-cell material handling cost, TCA, found
by the heuristic method, is better than or the same as that
calculated for the solutions reported in [16]. This also
implies the advantage of the proposed multi-row machine
arrangement over the single-row machine arrangement. In
spite of the fact that the heuristic method costs more
computation time compared to the tabu search algorithm

Table 6 Comparison results between the proposed approach and Chang et al. [16] approach

Problem Chang et al. [16] approach
(discrete cell layout and linear machine arrangement)

Proposed approach
(continuous cell layout and multi-row machine arrangement)

Imp. (%)

No. Size
(M×P)

TCA TCE TCC Time (s) Cell sizes
C×(Col×Rol)

TCA TCE TCH Res. time (s) Time (s)

15 8×20 38 37 78 0.31 2×(4×1) 38 31 69 – 0.40 11.54

16 12×19 72 156 228 0.65 3×(2×2) 67 112 179 – 0.75 21.49

17 18×35 15,400 26,085 41,485 1.74 3×(3×2) 13,675 16,705 30,380 10 21.36 26.77

18 20×20 57 91 148 1.14 5×(5×1) 56 53 109 10 62.42 26.35

19 20×51 298 493 791 2.07 5×(5×1) 293 277 570 10 50.59 27.94

20 25×40 79 147 226 2 7×(2×2) 71 113 184 100 257.95 18.58

TCA total intra-cell material handling cost, TCE total inter-cell material handling cost, TCC and TCH=TC
A +TCE total material handling cost
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proposed in [16], but it still can solve these problems in
reasonably less computation time (less than 258 s).

7 Conclusions and directions for further research

In this paper, we presented a new integrated approach, namely,
ICFLP, to the CF and its inter- and intra-cell layout design.
The ICFLP has three design features that were not studied in
previous research. These design features include multi-row
intra-cell layout (for the arrangement of machines within the
cells), continuous cell layout, and aisle distance. Also, in the
proposed problem, the material handling cost is calculated in
terms of the actual position of machines within the cells. This
measure results in the precise evaluation of the material han-
dling cost and consequently leads to a more accurate layout
design. As the ICFLP is NP-hard, a heuristic method was
developed to solve medium- and large-scale problems in a
reasonable computational time. Also, three lower boundswere
proposed for the ICFLP. The performance of the proposed
heuristic method was evaluated in two sections. In the first
section, a set of small-scale test instances was solved by the
heuristic method and the results were compared to the optimal
solution of the ICFLP. The results indicated that the heuristic
method is able to solve most of small-scale problems to
optimality. Also, for those cases which were not solved
optimally, the average error is about 3.18 %. In the second
section, a set of medium- and large-scale test instances
were solved by the proposed heuristic method and the
results were evaluated by the tightest lower bound. Our
computations indicated that the proposed heuristic method
can solve these set of problems in a short amount of time
and with an average gap of 7.6 %. In another part of this
research, the proposed layout approach (continuous inter-
cell and multi-row intra-cell layout) was compared to a
conventional layout approach in which the inter-cell layout
is assumed to be discrete and the intra-cell layout is as-
sumed to be single-row. The comparisons revealed that the
continuous inter-cell layout is far better than discrete inter-
cell layout and it can lead to a considerable improvement in
the total material handling cost. Moreover, it was demon-
strated that in some cases, the multi-row intra-cell layout is
better than the single-row intra-cell layout and it can re-
duce the total material handling cost.

Finally, the following issues are suggested for further
research:

& The consideration of other design factors in the proposed
problem, such as alternative process routings, capacity of
machines, actual dimensions of machines in the intra-cell
layout, pick-up and drop-off points in the layout design,
etc.

& The extension of the proposed problem to include ma-
chine duplication and part subcontracting

& The integration of the proposed problem with other im-
portant issues in CMS, particularly group scheduling and
production planning

& The implementation of meta-heuristic algorithms, espe-
cially Simulated Annealing and GA, for solving problems
of larger scale for this integrated CMS problem

Appendix 1. Generic linearization methods adopted
from [22, 28–31, 39, 40]

min f x; yð Þ:
S:t: :
g x; yð Þ þ yh xð Þ≤ ≥ð Þa;
x≥0;
y∈ 0; 1f g:

≡

min f x; yð Þ:
S:t: :
g x; yð Þ þ z≤ ≥ð Þa;
−My≤z≤My;
h xð Þ−M 1−yð Þ≤z≤h xð Þ þM 1−yð Þ;
x≥0;
z : free;
y∈ 0; 1f g:

ð4:1Þ

Where a is a constant and M is a large enough number.
f(x,y) and g(x,y) are linear functions in term of variables x
and y and h(x) is a linear function in terms of decision
variable x. Also, z is an auxiliary positive variable used to
resolve the nonlinearity of the product term yh(x).

min g xð Þj j: ≡

minxþ þ x−:
S:t: :
xþ−x− ¼ g xð Þ;
xþ; x− ≥0:

ð4:2Þ

Where g(x) is a linear function of variable x. Also, x+ and x−

are auxiliary variables use to resolve the nonlinearity of the
absolute term |g(x)|.

minxyf zð Þ:
S:t: :
x; y∈ 0; 1f g;
z≥0:

≡

minw:
S:t: :
w≥ f xð Þ−M 2−x−yð Þ;
x; y∈ 0; 1f g;
w; z≥0:

ð4:3Þ

Where f(z) is a positive linear function in terms of contin-
uous variable z. Also, w is an auxiliary positive variable used
to resolve the nonlinearity of the product term xyf(z).
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min maxð Þ f x; yð Þ þ cxy:
S:t: :
g x; yð Þ þ axy≤b;
x; y∈ 0; 1f g:

≡

min maxð Þ f x; yð Þ þ cz:
S:t: :
g x; yð Þ þ az≤b;
z≤x;
z≤y;
z≥xþ y−1;
z≥0;
x; y∈ 0; 1f g:

ð4:4Þ

Where a, b, and c are constants; f(x,y) and g(x,y) are linear
functions in term of variables x and y. Also, z is an auxiliary
positive variable used to resolve the nonlinearity of the prod-
uct term xy.

min f x; x
0
; y; y

0
� �

:

S:t: :
x−x

0�� ��≥a;
or

y−y
0�� ��≥b;

x; x
0
; y; y

0
≥0:

≡

min f x; x
0
; y; y

0
� �

:

S:t: :
x−x

0 þM pþ rð Þ≥a;
x
0
−xþM 1−pþ rð Þ≥a;

y−y
0 þM 1þ q−rð Þ≥b;

y
0
−yþM 2−q−rð Þ≥b;

p; q; r∈ 0; 1f g;
x; x

0
; y; y

0
≥0:

ð4:5Þ

Where a and b are constants. p and q are the binary
auxiliary variables used to resolve the nonlinearity of the
absolute operators. Also, r is an auxiliary binary variable used
to represent the ‘or’ operator.

minc−x
X

i

aiyi:

S:t: :
x; yi∈ 0; 1f g;∀i:

≡

minc−z:
S:t: :
z≤
X

i

aiyi;

z≤Mx;
x; yi∈ 0; 1f g;∀i;
z≥0:

ð4:6Þ

Where c and ai are positive constants and M is a
large enough number. Also, z is an auxiliary positive
variable used to resolve the nonlinearity of the product
term x∑

i
aiyi .

minaxyþ b 1−xð Þ yþ cð Þ:
S:t: :
x∈ 0; 1f g;
y≥0:

≡

minaw1 þ bw2:
S:t: :
w1≥y−M 1−xð Þ;
w2≥yþ c−Mx;
x∈ 0; 1f g;
y;w1;w2≥0:

ð4:7Þ

Where a, b, and c are positive constants and M is a
large enough number. Also, w1 and w2 are auxiliary var-
iables used to resolve the nonlinearity of the product
terms xy and (1−x)(y+c), respectively.

Appendix 2. Solutions of the problems solved in Sect. 6.3

Problem 15

Problem 16

11 12

10 7

4 8

1 9

5 6

3 2

1 4 8 9

3 5 2 6

7 10 11 12

Chang et al. [16] approach

Proposed approach

6 5 1 3

8 7 4 2

5 6 3 1

8 7 4 2

Chang et al. [16] approach Proposed approach
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Problem 17

Problem 18

2019 8

10189 1 12

23 1114

516 17

13

4

15

7

6

Proposed approach

2019810189 1 1223 11 14

516 17 134 1576

Chang et al. [16] approach

16

8

310

189

715 14

1 511

17

13

12

2

6

4

5 11 1 15 109

17 13 6 4 212

7 14 3 16 188

Proposed approach

Chang et al. [16]
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Problem 19

Problem 20

9 8

10

5 16

19 4

21 6

22 15

7 18

12 23

13

14

25 3

20 11

1 2

24 17

Proposed approach

5 1619 4

21 6 22 15

7 181223

131425320 11

1 224 17

9 8 10

Chang et al. [16] approach

6

7

1 129

25 16

17 10 154 1314

18 8 3 11 19 20

Chang et al. [16] approach

19

11

3

6

1

12

9

2

5

16

17

10

20

15 4 13

14

18

8

7

Proposed approach
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