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Abstract In this paper, we propose an optimal Bayesian
control policy with two sampling intervals minimizing the
long-run expected average maintenance cost per unit time
for a partially observable deteriorating system. Unlike the
previous optimal Bayesian approaches which used periodic
sampling models with equidistant intervals, a novel sam-
pling methodology is proposed which is characterized by
two sampling intervals and two control thresholds. The dete-
rioration process is modeled as a 3-state continuous time
hidden-Markov process with two unobservable operating-
states and an observable failure state. At each sampling
epoch, the multivariate observation data provides only par-
tial information about the actual state of the system.We start
observing the system with a longer sampling interval. If the
posterior probability that the system is in the warning state
exceeds a warning limit, observations are taken more fre-
quently, i.e., the sampling interval changes to a shorter one,
and if the posterior probability exceeds a maintenance limit,
the full inspection is performed, followed possibly by pre-
ventive maintenance. We formulate the maintenance control
problem in a partially observable Markov decision process
(POMDP) framework to find the two optimal control lim-
its and two sampling intervals. Also, the mean residual life
(MRL) of the system is calculated as a function of the pos-
terior probability. A numerical example is provided and
comparison of the proposed scheme with several alternative
sampling and maintenance control strategies is carried out.
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Nomenclature

Xt State of the system at time t

qij Instantaneous transition rate
Pij (t) Transition probability function from

state i to state j

νi Exponential distribution parameter of
the sojourn time in state i

ξ Failure time of the system
�1 Longer sampling interval
�2 Shorter sampling interval
Yn1�1 Residual of the observation at time

n1�1

μi Mean vector of normally distributed
observation in state i

�i Covariance matrix of normally dis
tributed observation in state i

f (y | i) Conditional density of the observation
vector given the state is i

W Warning limit
M Maintenance control limit
(h, I ) Inspection state
PM Preventive maintenance state
TI Inspection time
TM Preventive maintenance time
TF Failure replacement time
τ Expected sojourn time
C Expected cost
K Number of subintervals of [0, 1]
�n1�1 Posterior probability at time n1�1
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fξ (t) Probability density of the time to
failure

E(ξ) Expected time to failure
MRL Mean residual life of the system
R(t | �n1�1+n2�2) Conditional reliability function
h(t) Hazard rate function

1 Introduction

Technical systems in modern production and manufacturing
industries deteriorate and fail as the result of usage and age
which often leads to high production cost and low system
availability. To avoid costly failures, preventive mainte-
nance (PM) is commonly performed while the system is
still operational. Traditional PM models can be classified
into three different categories: (i) age replacement models
[1, 30], (ii) the block replacement models [3, 27], and (iii)
the periodic maintenance models [2, 12]. Such traditional
models are simple and easy to implement; however, they
do not take into account the information obtained from
condition monitoring (CM), resulting in inaccurate failure
predictions and low maintenance cost reduction [10].

The state-of-the-art maintenance program that over-
comes the above problem of the traditional PM models
which do not utilize CM information is known as the
condition-based maintenance (CBM). The CBM program
collects information through condition monitoring and rec-
ommends maintenance actions based on the observed data.
In the CBM, the maintenance actions are performed only
when the observed data indicate severe system deteriora-
tion. When applying CBM, the average cost is significantly
reduced by eliminating the unnecessary maintenance oper-
ations [7, 10, 19, 33]. In the CBM, the data are usually
collected in three different ways: (i) continuously, (ii) peri-
odically with equal and constant sampling intervals, and
(iii) non-periodically, i.e., using different and time-varying
sampling intervals. Most of the current CBM data collec-
tion procedures belong to category (ii), i.e., the CBM data
are collected at equidistant sampling epochs. Considering
regular sampling, the main focus of the CBM approaches
in [13, 14, 19, 31] was to determine the optimal mainte-
nance policy that minimizes or maximizes a given objective
function. However, when the sampling is costly, it is impor-
tant to determine jointly the optimal times when the sam-
pling/inspection should be performed, and how to use this
information for making maintenance decisions. Recently,
[18] has formulated and analyzed this joint optimization
problem in a discrete setting and established the form of the
optimal policy. An early work which demonstrates the bene-
fits of non-periodic sampling of a deteriorating system with
N fully observable states is [22]. Under reasonable mono-
tonicity assumptions, the authors partially characterized the

form of the optimal policy and proved that the equidistance
sampling is not optimal and the time between two consec-
utive samples should monotonically decrease as the system
deteriorates.

The same observation has been made in the quality con-
trol literature. For example, [34] is a recent contribution in
the quality control area which proposed an adaptive single
control chart for jointly monitoring both the process mean
and variability. Based on an exponentially weighted mov-
ing average procedure, two different sampling intervals are
used, i.e., a longer sampling interval when the process is
in control, and a shorter sampling interval when the chart
indicates the possibility of the out of control condition. Sim-
ilarly, [23] proposed a sequential probability ratio test chart
(SPRT) with a variable sampling interval scheme, which
uses a longer sampling interval when the process is likely to
be in control. On the other hand, a shorter sampling interval
is adopted when there is an indication that the process shifts
to an out-of-control condition. The results showed a signifi-
cant improvement in the overall efficiency of the chart with
two sampling intervals when compared with the SPRT chart
with a single sampling interval.

Reference [29] developed a statistical adaptive process
control mechanism for a system with two dependent pro-
cess steps. An adaptive sampling interval Zx control chart
is designed to monitor the quality variable corresponding to
the first process step, while another adaptive sampling inter-
val Ze control chart is used to monitor the second process
step. The longer sampling interval is used when both sam-
ple statistics (Zx and Ze) fall inside the warning limits. The
shorter sampling time is used instead, when both sample
statistics fall outside the warning limits but inside the con-
trol limits. More related references can be found in [25, 26]
and [4].

However, the above-mentioned non-periodic sampling
interval approaches have been applied only to traditional
(non-Bayesian) control charts and have not yet been consid-
ered for Bayesian control charts which were proved to be
optimal in quality control by [5] for a univariate attribute
process control and by [20] for a multivariate variable
process control.

In this paper, a multivariate Bayesian control chart with
two different sampling intervals is considered for a CBM
application. We start monitoring the system with a longer
sampling interval. A new sample is taken less frequently
during the time when the system is in its healthier state,
i.e., when the posterior probability is below the warning
limit, and the system is monitored more frequently when
the system degrades and the posterior probability exceeds a
warning limit. Finally, if the posterior probability exceeds
a maintenance limit, the full inspection is performed fol-
lowed by preventive maintenance if the true alarm occurs.
We compare the performance of the proposed maintenance
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policy with two other maintenance policies: (i) the Bayesian
control policy which takes a sample at regular sampling
epochs, and (ii) the well-known age-based replacement
policy. The deterioration process is modeled as a 3-state
continuous-time hidden-Markov process. States 0 and 1 are
not observable, representing good (healthy) and warning
(unhealthy) system condition, respectively. Only the failure
state 2 is assumed to be observable. Upon system failure,
corrective maintenance is performed. In addition, based on
the proposed model and the posterior probability statistic,
analytical expressions are derived for the conditional relia-
bility and the mean residual life functions of the system. The
proposed methodology is advantageous over its traditional
counterparts as it dynamically updates the estimates of the
reliability when a new observation becomes available.

Finally, we note that the proposed model has several
potential applications. For example, there is a close rela-
tion between maintenance application and medical decision
making in the health care industry, such as monitoring and
treating breast cancer. The question that arises naturally at
this point is when and how often to screen a patient who
could develop breast cancer. Also, the cost associated with
annual screening must be compared with the medical cost of
cancer treatments. The main issue with the existing method-
ologies is that the screening is not performed at the right
time or, on the other hand, too infrequently or too often.
The methodology proposed in this paper can be applied to
such healthcare situations where the proposed method pro-
vides decisions that minimize the total expected medical
costs, while maximizing the effectiveness of screening and
treatment over the lifetime of the patient.

The remainder of the paper is organized as follows.
Section 2 summarizes the assumptions and provides the
details of the problem and model formulations. In Section 3,
we present the Bayesian control scheme for the cost mini-
mization problem. In Section 4, a computational procedure
is developed in the SMDP framework based on the policy
iteration algorithm to compute the optimal sampling inter-
vals, the optimal Bayesian control limits, and the minimum
average maintenance cost. Section 5 deals with the compu-
tation of the mean residual life. In Section 6, a numerical
example is provided to demonstrate the effectiveness of the
proposed sampling and maintenance scheme by compar-
ing the newly developed policy with two different policies.
Finally, Section 7 concludes the paper.

2 Model formulation

Consider the deteriorating system which is characterized
by a continuous-time homogeneous hidden-Markov chain
{Xt : t ≥ 0} with the state space S = {0, 1, 2} with
two unobservable operational states 0 and 1 representing

the good (healthy) and warning (unhealthy) state, respec-
tively, and an observable failure state (state 2). Note that
using only two operational states is sufficient in most prac-
tical applications (see, e.g., [16]). In many cases, the system
deterioration is gradual, but to detect a severe system con-
dition, it is important to define only two distinct phases.
The first phase is the normal phase where the observations
behave approximately as a stationary process, i.e., the pro-
cess stationarity is not grossly violated. Once the system
degradation has passed a certain level, the behavior of the
observations changes substantially. We refer to this phase as
the warning state. The instantaneous transition rates for the
state process are given by

qij = lim
h→o

P (Xh = j | X0 = i)

h
< +∞, i �= j

qii = −
∑

i �=j

qij , (1)

where i, j ∈ {0, 1, 2}, and the state transition rate matrix Q

can be written as follows:

Q =
⎡

⎣
−(q01 + q02) q01 q02

0 −q12 q12
0 0 0

⎤

⎦ , (2)

where q01, q02, and q12 are the instantaneous transition rates
of the Markov process. We assume that the state process is
non-decreasing with probability 1, i.e., qij = 0 for all j < i

and the failure state (state 2) is absorbing.
The system can make transitions from state 0 to state 1

with probability p01, or from state 0 to state 2 with proba-
bility p02. The system is assumed to start in the healthy state
(state 0), i.e., P(X0 = 0) = 1. It is assumed that the sojourn
times in state 0 and 1 are exponentially distributed. The tran-
sition probability matrix is obtained by explicitly solving the
Kolmogorov backward differential equations ([28]) and it is
given by

P = [Pij (t)]

=
⎡

⎢⎣
e−ν0t q01(e

−ν1t−e−ν0t )
ν0−ν1

1 − e−ν0t − q01(e
−ν1t−e−ν0t )
ν0−ν1

0 e−ν1t 1 − e−ν1t

0 0 1

⎤

⎥⎦,

(3)

where ν0 = q01 + q02, ν1 = q12.
Let ξ = inf{t ∈ R+ : Xt = 2} be the observable

failure time of the system. We start monitoring the system
using longer sampling interval �1 and switch to shorter
sampling interval�2 when the posterior probability exceeds
a warning limit which indicates increased system degrada-
tion. The information obtained at time n1�1 or n1�1+n2�2

is denoted by Yn1�1 , and Yn1�1+n2�2 , n1, n2 ∈ N, respec-
tively, where �1 > �2. While the system is in state 0
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(healthy state), the observations follow Nd(μ0, �0), which
is a d-dimensional normal distribution with mean vector μ0

and covariance matrix �0, and when the system is in state 1
(warning state), the observations follow Nd(μ1, �1), where
μ0, μ1, �0, �1 are assumed to be known model parameters
which can be estimated from the data together with the hid-
den Markov model parameters [15]. Given that the state is
equal to i, where i = {0, 1}, the conditional density of the
observation vector is given by

f(y |i)= 1
√

(2π)d |�i |
exp

(
−1/2(y−μi )

T �−1
i (y−μi )

)
. (4)

After collecting an observation sample and processing the
new information, one of the following three actions A(i) ∈
{1, 2, 3} must be taken at each decision epoch:

1. Continue and take a new sample after �1 time units.
2. Continue and take a new sample after �2 time units.
3. Stop operation and perform full system inspection,

followed possibly by preventive maintenance.

When the system is new or renewed, the posterior probabil-
ity that it is in the warning state is equal to zero, and we take
the first sample after �1 time units. If the posterior proba-
bility that the system is in state 1 exceeds a warning limit
W , observations are taken more frequently, i.e., the sam-
pling interval changes to a shorter one having the length of
�2 time units. If the posterior probability exceeds a mainte-
nance limit M , the system is stopped and the full inspection
is performed, followed possibly by preventive maintenance.
We consider the following cost structure:

1. CS : Sampling cost incurred every time we observe the
system.

2. CI : Inspection cost incurred when full inspection is
performed, which takes TI time units.

3. CP : Preventive maintenance cost when preventive
maintenance is performed, which takes TP time units.

4. CF : Failure (replacement) cost incurred when correc-
tive maintenance is performed, which takes TF time
units.

We make a reasonable assumption that CF ≥ CP + CI .
Note that, if the failure cost is less than the cost of pre-
ventive maintenance, the optimal action is always to do
corrective maintenance only, i.e., system replacement upon
failures.

From renewal theory, for any stationary policy δ, deter-
mined by the sampling intervals (�1, �2), warning limit W
and the maintenance limit M , the long-run expected aver-
age cost per unit time is calculated as the expected total cost
(TC) incurred in one cycle divided by the expected cycle
length (CL), where a cycle is completed when either pre-
ventive or corrective maintenance is carried out or when the

false alarm occurs, which brings the system to as-good-as-
new condition. The objective is to minimize the long-run
expected average cost per unit time defined as follows:

Eδ(T C)

Eδ(CL)
. (5)

Let

Tw = inf{n1�1 : �n1�1 ≥ W }, (6)

represent the first time when the posterior probability
exceeds the warning limit W . Also, let

TM = inf{n1�1 + n2�2 : �n1�1+n2�2 ≥ M}, (7)

represent the first time when the posterior probability
exceeds the maintenance limit M . Note that n2 can be equal
to zero.

The total number of samples in a replacement cycle is
N = max{n1 + n2 : n1�1 + n2�2 ≤ TM ∧ ξ}. Based on
the cost definition given above, the total cost per cycle is
calculated as follows:

T C = CS.N + CI I(ξ>TM) + CP I(ξ>TM,XTM
=1)

+CF I(TM>ξ). (8)

The cycle length CL is given by the following equation:

CL = min(TM, ξ) + TI I(ξ>TM)

+TP I(ξ>TM,XTM
=1) + TF I(ξ<TM). (9)

The terms on the right-hands side (RHS) of Eq. 8 rep-
resent the total sampling cost, inspection cost, preventive
maintenance cost, and failure cost. In the next section, we
introduce Bayesian control chart and present the formulas
for the calculation of the posterior probabilities of the sys-
tem being in the warning state and derive a formula for the
calculation of the conditional reliability function.

3 The CBM policy based on Bayesian control chart
and two sampling intervals

The Bayesian control chart monitors the posterior probabil-
ity that the system is in the warning state. For the proposed
CBM policy, the observations are taken using longer sam-
pling interval �1, and if the posterior probability that the
system is in state 1 exceeds the warning limit W , observa-
tions are taken more frequently, i.e., the sampling interval
changes to a shorter one, �2. Once the posterior proba-
bility exceeds the maintenance threshold M , full system
inspection is performed followed possibly by preventive
maintenance. We assume that after an inspection, repair, or
replacement, a new system cycle begins.
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Next, the posterior probability that the system is in an
unhealthy state is presented separately for longer sampling
interval �1, and shorter sampling interval �2. The posterior
probability for longer sampling interval �1 is calculated as
follows:

�n1�1 = P(Xn1�1 = 1 | ξ > n1�1, Y1, ..., Yn1�1)

= θ1

θ2 + θ1
, (10)

where

θ1 = f (Yn1�1 | 1)(P01(�1)(1−�(n1−1)�1)

+P11(�1)�(n1−1)�1),

and

θ2 = f (Yn1�1 | 0)P00(�1)(1−�(n1−1)�1),

where �n1�1 is the probability that the system is in the
warning state given all available information until time
n1�1, which represents sufficient information for decision-
making. The term Pij (�1) represents the transition proba-
bility of the state process for the longer sampling interval
�1. The terms f (Yn1�1 | 0) and f (Yn1�1 | 1) are the
conditional densities of the observation vectors at sampling
epoch n1�1 given the hidden state (see Eq. 4). Similarly, for
the shorter sampling interval, the posterior probability for
n2 > 0 is given by

�n1�1+n2�2 =
P(Xn1�1+n2�2 = 1 | ξ >n1�1+n2�2, Y1, ..., Yn1�1+n2�2)

= θ ′
1

θ ′
2 + θ ′

1
, (11)

where

θ ′
1 = f (Yn1�1+n2�2 | 1)(P01(�2)(1 − �n1�1+(n2−1)�2)

+P11(�2)�n1�1+(n2−1)�2),

and

θ ′
2 = f (Yn1�1+n2�2 | 0)P00(�2)(1 − �n1�1+(n2−1)�2).

We further need to simplify the posteriors given by Eqs. 10–
11. From Eq. 4, the ratio of the conditional density of the
observation vector in healthy state over the conditional den-
sity of the observation vector in warning state is a ratio of
two normal densities which has the following representation

f (y |0)
f (y |1) =

(2π)d |�0|−1/2 exp
[
−1/2(y−μ0)

′�−1
0 (y−μ0)

]

(2π)d |�1|−1/2 exp
[
−1/2(y−μ1)

′�−1
1 (y−μ1)

]

= h exp[1/2((Yn1�1−B)′A(Yn1�1−B) + C)], (12)

where

A = �−1
1 − �−1

0 ,

B =
(
�−1

1 − �−1
0

)−1 (
�−1

1 μ1 − �−1
0 μ0

)
,

C =
(

μ1
′�−1

1 μ1−μ′
0�

−1
0 μ0

)
−B

′(
�−1

1 μ1−�−1
0 μ0

)
,

and h = (|�1| · |�0|−1)
1/2

. (13)

Using Eqs. 12 and 13, the posterior probability in Eq. 10
simplifies to

�n1�1=
D1

�(n1−1)�1

h exp[1/2(Vn1�1+C)]D0
�(n1−1)�1

+D1
�(n1−1)�1

,

(14)

where

D0
�(n1−1)�1

= P00(�1)(1 − �(n1−1)�1), (15)

D1
�(n1−1)�1

= P01(�1)(1−�(n1−1)�1)+P11(�1)�(n1−1)�1,

(16)

Vn1�1 = (Yn1�1 − B)T A(Yn1�1 − B). (17)

The terms h, A, B, and C are defined in Eq. 13.
The same approach is applied for the shorter sam-

pling interval �2 which is omitted here to save the space.
For the development of the computational algorithm in
the SMDP framework presented in Section 4, the calcu-
lation of the conditional reliability function is required.
Lemma 1 below provides the formula for the reliability
function.

Lemma 1 For any t ∈ R+, the conditional reliability
function is given by

R(t | �n1�1+n2�2) = (1 − �n1�1+n2�2)(1 − P02(t))

+�n1�1+n2�2(1 − P12(t)). (18)

The proof of Lemma 1 is in Appendix.
In the next section, we develop the computational algo-

rithm in the SMDP framework, which will be used to find
the optimal CBM policy.

4 Computational algorithm in the SMDP framework

In this section, we develop a computational algorithm in
the SMDP framework. We start monitoring the system with
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longer sampling interval, �1. Suppose that at the sampling
epoch n1�1, the system has not failed, i.e., ξ > n1�1,
and we compute the posterior probability using Eq. 10.
We partition the posterior probability interval [0, 1] into K

subintervals. For a fixed large K , we define the coded value
of π as k, 1 ≤ k ≤ K , if the current value of the pos-

terior probability is in the interval
[

k−1
K

, k
K

)
. We define

the set L1 = {(i, 1) : i < W }, where the first compo-
nent indicates that the coded posterior probability is below
the warning limit, i.e., i < W , and the second component
indicates that the sampling interval is �1. If the posterior
probability exceeds the warning limit, the shorter sampling
interval will be used and the SMDP is defined to be in
state (j, 2), where j is the current coded value of the pos-
terior probability above the warning limit, and the second
component indicates that the next sampling interval is �2.
We define the set L2 = {(j, 2) : W ≤ j < M}. We
note that W, M ∈ {1, 2, ..., K}, W ≤ M . We define the
set L3 = {(h, I ) : M ≤ h}, where I indicates that the
full inspection is initiated when the system enters a state in
this set.

Similarly, if the posterior probability is above the main-
tenance limit, and after full system inspection the system
is found to be in unhealthy state, the SMDP is defined
to be in state PM , where PM represents the preventive
maintenance state. We define the set L4 = {PM}.

Finally, the SMDP is defined to be in state F upon
observable system failure. We define the set L5 = {F }.

Thus the state space for the SMDP is given by L =
{0}∪L1∪L2∪L3∪L4∪L5. For the cost minimization prob-
lem, the SMDP is determined by the following quantities
[28]:

1. Pr,k = the probability that the system will be in state
k ∈ L at the next decision epoch given the current state
is r ∈ L.

2. τr = the expected sojourn time until the next decision
epoch given the current state is r ∈ L.

3. Cr = the expected cost incurred until the next decision
epoch given the current state is r ∈ L.

Using quantities defined above, for a fixed warning limit
W and maintenance limit M , the long-run expected aver-
age cost g(W, M) can be obtained by solving the following
system of linear equations:

ur = Cr − g(W, M)τr +
∑

k∈L

Pr,kuk, for r ∈ L

u0 = 0. (19)

Next, computation of the transition probabilities will be
considered.

4.1 Computing the transition probabilities

The SMDP transition probabilities for the states defined
above are calculated as follows:

1. For i and k below the warning limit:

P(i,1),(k,1) =
P

(
k − 1

K
≤�n1�1 <

k

K
, ξ >n1�1 |ξ >(n1−1)�1, i

)

= P

(
k − 1

K
≤ �n1�1 <

k

K
| ξ > n1�n1 , i

)

×P(ξ > n1�1 | ξ > (n1 − 1)�1, i)

= P

(
k − 1

K
≤�n1�1 <

k

K
| ξ >n1�1, i

)
R(�1 | i).

(20)

2. Similarly, for k below and j above the warning limit:

P(k,1),(j,2)

= P

(
j − 1

K
≤�n1�1 <

j

K
|ξ >n1�1, k

)
R(�1 |k).

(21)

3. The transition probability from state (j, 2) to state
(g, 2) where j, g < M , and the shorter sampling
interval �2 is used, is given by

P(j,2),(g,2)

= P

(
g − 1

K
≤�n1�1+n2�2<

g

K
| ξ >n1�1+n2�2,j

)

×R(�2 | j). (22)

Note that the sampling interval will be �2 after the
switching point even if the posterior probability falls
below the warning limit.

4. When the posterior probability exceeds the mainte-
nance limit M , full system inspection is performed and
the transition probability is given by

P(i,1),(h,I )

=P

(
h − 1

K
≤ �n1�1 <

h

K
|ξ > n1�1, i

)
R(�1 | i),

(23)

and

P(j,2),(h,I )

=P

(
h − 1

K
≤�n1�1+n2�2<

h

K
|ξ>n1�1+n2�2, j

)

×R
(
�2 | j

)
. (24)

5. The system can make transition from state (h, I ) either
to state 0 which indicates false alarm and the system
being in healthy state, or to state PM , which indicates
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true alarm and the PM is initiated. The corresponding
transition probabilities are given by

P(h,I),0 = 1 − h − 0.5

K
,

P(h,I),PM = h − 0.5

K
. (25)

6. When the system is in the observable failure state
F , mandatory corrective maintenance is performed to
bring the system to healthy state. Therefore, the remain-
ing transition probabilities are

P(i,1),F = 1 − R(�1 | �n1�1)

= (1 − �n1�1)P02(t) + �n1�1P12(t),

P(j,2),F = 1 − R(�2 | �n1�1+n2�2)

= (1 − �n1�1+n2�2)P02(t)

+�n1�1+n2�2P12(t),

PPM,0, = 1,

PF,0 = 1. (26)

The second term on the RHS of Eq. 20 is calculated using
the conditional reliability given by Eq. 18, while the first
term on the RHS of Eq. 20 is given by Eq. 27 as follows:

P

(
k − 1

K
≤ �n1�1 <

k

K
| ξ > n1�1, i

)
=

P(a < Vn1�1 ≤ b|Xn1�1=0)

⎡

⎣
D0

�(n1−1)�1

D1
�(n1−1)�1

+ D0
�(n1−1)�1

⎤

⎦

+ P(a < Vn1�1 ≤ b|Xn1�1=1)

⎡

⎣
D1

�(n1−1)�1

D1
�(n1−1)�1

+ D0
�(n1−1)�1

⎤

⎦ , (27)

where

a = 2 ln

⎡

⎣
(1 − k

K
)D1

�(n1−1)�1
k
K

D0
�(n1−1)�1

h

⎤

⎦ − C and

b = 2 ln

⎡

⎣
(1 − k−1

K
)D1

�(n1−1)�1

k−1
K

D0
�(n1−1)�1

h

⎤

⎦ − C.

Imhof [9] presented a method for the calculation of the
cumulative distribution function of Vn1�1 | Xn1�1 . The
author showed that an indefinite quadratic form in nor-
mal vectors can be expressed as a linear combination of
independent noncentral chi-square variables with positive

and negative coefficients. Equation 28 can be simplified
as

P

(
k − 1

K
≤�n1�1 <

k

K
| ξ > n1�1, Y1, ..., Y(n1−1)�1, i

)

= T0

(
k−1

K
,

k

K
|ξ ≥n1�1, i

)⎡

⎣
D0

�(n1−1)�1

D1
�(n1−1)�1

+ D0
�(n1−1)�1

⎤

⎦

+T1

(
k−1

K
,

k

K
|ξ ≥n1�1, i

)⎡

⎣
D1

�(n1−1)�1

D1
�(n1−1)�1

+D0
�(n1−1)�1

⎤

⎦ ,

(28)

where

T0

(
k − 1

K
,

k

K
| ξ ≥ n1�1, i

)
= F0(b) − F0(a),

T1

(
k − 1

K
,

k

K
| ξ ≥ n1�1, i

)
= F1(b) − F1(a). (29)

Fi(.) is the cumulative distribution function of Vn1�1 given
the state is i, for i = 0, 1.

4.2 Computing the expected costs and the mean
sojourn times

The expected cost incurred until the next sampling epoch
for state (i, 1) where (i, 1) < W and the longer sampling
interval �1 is used, is given by

C(i,1) = E(Cost | (i, 1))

= E(Cost | ξ ≤ n1�1) × P(ξ ≤ n1�1)

+ E(Cost | ξ > n1�1) × P(ξ > n1�1)

= CS × R(�1 | �n1�1). (30)

The expected cost incurred until the next sampling epoch for
state (j, 2) where W ≤ (j, 2) < M and shorter sampling
interval �2 is used, is given by

C(j,2) = E(Cost | (j, 2))

= E(Cost |ξ ≤n1�1+n2�2)×P(ξ ≤n1�1+n2�2)

+ E(Cost |ξ >n1�1+n2�2)×P(ξ >n1�1+n2�2)

= CS × R(�2 | �n1�1+n2�2). (31)

The expected cost incurred until the next sampling epoch for
state h such that h ≥ M , when the full system inspection is
performed, is given by

C(h,I) = E(Cost | (h, I )) = CI . (32)

The expected cost incurred until the next sampling epoch
for state PM is given by

CPM = E(Cost | PM) = CP , (33)
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and finally, the expected cost in the failure state F is CF .
Using the conditional reliability function, the mean sojourn
time for state (i, 1) is derived as follows:

τ(i,1) =
∫ �1

0
R(t | �n1�1)dt = (1 − �n1�1)

×
[
1 − e−ν0�1

ν0
+ q01

ν0 − ν1

×
(

ν0(1 − e−ν1�1) − ν1(1 − e−ν0�1)

ν0ν1

)]

+�n1�1

1 − e−ν1�1

ν1
. (34)

The mean sojourn time for state (j, 2) is obtained as
follows:

τ(j,2) =
∫ �2

0
R(t | �n1�1+n2�2)dt = (1 − �n1�1+n2�2)

×
[
1 − e−ν0�2

ν0
+ q01

ν0 − ν1

×
(

ν0(1−e−ν1�2)−ν1(1 − e−ν0�2)

ν1ν0

)]

+�n1�1+n2�2

1 − e−ν1�2

ν1
. (35)

The mean sojourn time when the posterior probability is
above the maintenance limit, i.e., h ≥ M , and the full
system inspection is performed, is given by

τ(h,I ) = TI . (36)

The mean sojourn time when the PM action is performed is

τPM = TP . (37)

Finally, the mean sojourn time for the failure state is given
by

τF = TF . (38)

This completes our proposed computational algorithm in the
SMDP framework. Next, we derive an analytical formula
for residual life prediction.

5 Residual life prediction

In this section, we derive the explicit formula for the MRL
function in terms of the posterior probability statistic, which
is given by the following lemma.

Lemma 2 For any t ∈ R+, the mean residual life is given
by

MRLn1�1+n2�2 = �n1�1+n2�2(q02 − q12) + q01 + q12

q12(q01 + q02)
.

(39)

Proof

MRLn1�1+n2�2

= E{ξ − n1�1−n2�2 | ξ > n1�1+n2�2, �n1�1+n2�2}
=

∫ ∞

0
R(t | �n1�1+n2�2)dt

= �n1�1+n2�2(q02 − q12) + q01 + q12

q12(q01 + q02)
, (40)

where E{·} denotes the expectation operator, and the condi-
tional reliability function is given by Eq. 18.

6 Experimental results

In this section, we illustrate the proposed computational
procedure with a numerical example. We assume that the
system deterioration follows a continuous-time homoge-
neous hidden-Markov chain {Xt : t ≥ 0} with state space
{0, 1, 2}. States 0 and 1 are unobservable, representing the
healthy and unhealthy operational states, respectively, and
state 2 corresponds to the observable failure state. The
sojourn time in state 0 has an exponential distribution with
parameter ν0 = q01+q02, and the sojourn time in state 1 has
an exponential distribution with parameter ν1 = q12. The
state parameters are given by q01 = 0.026, q02 = 0.004,
and q12 = 0.3. The residual observation process is obtained
through CM and it is assumed that each observation vector
follows N2(μ0, �0) when the system is in the healthy state
and N2(μ1, �1) when the system is in the unhealthy state
with the following parameters:

μ0 =
(

0.21
−0.01

)
�0 =

(
1.5 0.61
0.61 1.9

)

μ1 =
(
0.75
0.54

)
�1 =

(
1.81 1.97
1.97 2.22

)
.

Maintenance time parameters are given by TI = 3, TP =
4, TF = 10, and maintenance cost parameters are CS =
5, CI = 10, CP = 500, CF = 3500. We compute the opti-
mal sampling intervals (�1 and �2) and the control limits
W and M that minimize the long-run expected average cost
per unit time. Number K = 30 defining 30 subintervals of
[0, 1] is used to obtain the optimal results which are shown

Table 1 Results for the optimal Bayesian control policy with two
sampling intervals

Optimal Optimal

Optimal Optimal long short

warning maintenance sampling sampling Average

limit (W ) limit (M) interval (�1) interval (�2) cost

0.133 0.3666 3 2 55.8432
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Fig. 1 a The illustration of the proposed Bayesian control policy. b The mean residual life of the system

in Table 1. The policy iteration algorithm gives the follow-
ing optimum values: the longer sampling interval �1 = 3,
the shorter sampling interval �2 = 2, the warning limit
W = 0.133, the inspection limit M = 0.3666, and the
minimum expected average cost is equal to 55.8432. The
algorithm took 22.35 s for each run on an Intel Core(TM) i5
CPUwith 2.27 GHz. Figure 1a shows the posterior probabil-
ity plot for the simulated data together with the warning and
maintenance limits. Figure 1b shows the mean residual life
of the system. It is observed that when the posterior prob-
ability exceeds the maintenance limit, the system’s residual
life starts to decrease significantly. It is assumed that the
system starts working from healthy state, i.e., �0 = 0. So
the corresponding MRL is equal to:

MRL0 = q01 + q12

q12(q01 + q02)
= 1

ν0
+ p01

ν1
, (41)

where p01 = q01
ν0
. It has also been shown (see [15]) that:

fξ (t) = p01
ν0ν1

ν0 − ν1
(e−ν1t − e−ν0t ) + p02ν0e

−ν0t . (42)

Using Eq. 42, the expected time to failure of the system is
given by

E(ξ) =
∫ ∞

0
tfξ (t) = 1

ν0
+ p01

ν1
, (43)

which agrees with Eq. 41. The numerical value of MRL0 is
equal to 36.22.

Table 2 Results for the optimal Bayesian control policy with one
sampling interval

Optimal maintenance Optimal sampling

limit interval Average cost

0.3 3 62.8623

6.1 Comparison with other policies

In this subsection, we compare the performance of our
proposed maintenance policy with other policies: (i) the
Bayesian control policy with one sampling interval and (ii)
age-based policy.

First, we compare the proposed maintenance policy with
a policy using a single sampling interval and a single control
limit. All the parameters remain the same as in the previous
example. As shown in Table 2, in this case, the minimum
long-run expected average cost is equal to 62.8623, which
is a significant increase. The optimal sampling interval for
this policy is equal to 3.

Next, we compare the proposed optimal Bayesian control
policy with the well-known age-based replacement policy
which does not take condition monitoring information into
account. Consider an age-based policy that initiates pre-
ventive maintenance at time n�. From renewal theory, the
expected average cost per unit time for this policy is given
by

C(n) = CF F(n�) + CP F̄ (n�)
∫ n�

0 F̄ (s)ds
, (44)

where F(t) = p02(t) is the distribution function of ξ

and F̄ (t) = 1 − F(t). Reference [1] proved that under
the age-based replacement policy, the optimal preventive
replacement time γ satisfies

h(γ )

∫ γ

0
R(t | 0)dt − (1 − R(γ | 0)) = CP

CF − CP

, (45)

where the conditional reliability function is given by

R(t | 0) = 1 − p02(t) = e−ν0t + q01(e
−ν1t − e−ν0t )

ν0 − ν1
, (46)
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and the hazard rate function is given by

h(t) = 1

R(t | 0) .
(

−dR(t | 0)
dt

)
=

(ν0 − ν1)ν0e
−ν0t − q01(ν0e

−ν0t − ν1e
−ν1t )

(ν0 − ν1)e−ν0t + q01(e−ν1t − e−ν0t )
. (47)

Based on Eqs. 44–47 and considering the same parame-
ters, the minimum long-run expected average cost using
the age-based policy increased to 89.4692, which is con-
siderably higher than the optimal average cost obtained
by the proposed maintenance policy with two sampling
intervals.

7 Conclusions

In this paper, we have proposed a Bayesian CBM pol-
icy with two sampling intervals for a partially observable
deteriorating system subject to random failure. The dete-
rioration process is modeled as a 3-state continuous-time
hidden-Markov process. States 0 and 1 are not observable,
representing good and warning system condition, respec-
tively. Only the failure state 2 is assumed to be observable.
Upon system failure, corrective maintenance is performed.
The system is subject to CM at discrete time epochs,
starting with a longer sampling interval. If at a sampling
epoch the posterior probability that the system is in state
1 exceeds a warning limit, observations are taken more
frequently, i.e., the sampling interval changes to a shorter
one. If the posterior probability exceeds a maintenance
limit, the full system inspection is performed followed by
preventive maintenance, if the system is found to be in
the warning state. The optimal control problem has been
formulated and solved in the SMDP framework. The pro-
posed optimal sampling and maintenance policy which is
easy to implement has been compared with Bayesian con-
trol policy using periodic sampling as well as with the
traditional age-based policy, showing considerably lower
average maintenance cost. We have considered a hidden
Markov model to describe the deterioration process which
has been successfully applied to real data (see, e.g, [16]).
Further improvement can be expected by considering a hid-
den semi-Markov model, which is a suitable topic for future
research.
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Appendix: Proof of Lemma 1

Proof The reliability function can be obtained by condi-
tioning as follows:

R(t | �n1�1+n2�2)

= P(ξ > n1�1+n2�2+t |ξ > n1�1+n2�2, Y1, ...,

Yn1�1+n2�2 , �n1�1+n2�2)

= P(Xn1�1+n2�2+t �= 2 |ξ > n1�1+n2�2, Y1, ...,

Yn1�1+n2�2 , �n1�1+n2�2)

= P(Xn1�1+n2�2+t �= 2 | Xn1�1+n2�2 = 0,

ξ > n1�1+n2�2, Y1, ..., Yn1�1+n2�2 , �n1�1+n2�2)

×P(Xn1�1+n2�2 =0 | Y1, ..., Yn1�1+n2�2 , �n1�1+n2�2)

+P(Xn�1+n2�2+t �= 2 | Xn1�1+n2�2 = 1,

ξ > n1�1 + n2�2, ..., Yn1�1+n2�2 , �n1�1+n2�2)

×P(Xn1�1+n2�2 =1 |Y1, ..., Yn1�1+n2�2 , �n1�1+n2�2)

= (1−�n1�1+n2�2)(1−P02(t))+�n1�1+n2�2(1−P12(t)).

(48)
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