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Abstract In the plastic injection molding (PIM), the optimi-
zation of the process parameters is a complex task. The
objective of this study is to propose an intelligent approach
for efficiently optimizing PIM parameters when multiple ob-
jectives are involved, where different objectives, such as min-
imizing part weight, flash, or volumetric shrinkage, present
trade-off behaviors. Multiple objective functions reflecting the
product quality are constructed for the optimization model of
PIM parameters. The proposed approach integrates Taguchi’s
parameter design method, back-propagation neural network
(BPNN), grey correlation analysis (GCA), particle swarm
optimization (PSO) and multiobjective particle swarm optimi-
zation (MOPSO) to locate the Pareto optimal solution for
multiobjective optimization problem. PSO and GCA are ap-
plied to optimize the network structure of BPNN to establish
multiobjective mathematical model (PSO-GCANN) that fine-
ly maps the relationship between the input process parameters
and output multiresponse. MOPSO is used to fine-tune the
Pareto optimal solutions while the approximate PSO-GCANN
is utilized to efficiently compute the fitness of every individual
during the evolution of MOPSO. The illustrative application
and comparison of results show that the proposed methodol-
ogy outperforms the existing methods and can help mold
designers to efficiently and effectively identify optimal pro-
cess parameters.

Keywords Plastic injectionmolding . Back-propagation
neural networks . Grey correlation analysis . Particle swarm
optimization algorithm .Multiobjective optimization

1 Introduction

Injection molding is the most widely used for producing
plastic products. In the process, many parameters such as melt
temperature, mold temperature, hold pressure, cooling time,
etc. are very important; they have direct influence on the
product quality and manufacturing cost. The optimization of
process parameters is a complex and difficult task. Tradition-
ally, the process parameters are often determined by experi-
enced engineers or based on reference handbooks. Then the
process parameters are improved and fine-tuned by trial and
error or Taguchi’s parameter design method. These methods
depend greatly on the experience of molding operators. Espe-
cially, they could potentially be costly and time-consuming in
new resins or new applications. So it is not suitable for
complex manufacturing processes [1]. Taguchi’s parameter
design method can only find the best specified process param-
eter level combination which includes the discrete setting
values of process parameters [2]. Furthermore, when engi-
neers deal with a multiresponse process parameter design
problem, the conventional Taguchi parameter design method
runs into difficulties. Because the optimization of the process
parameters can be considered to be a “black art,” some surro-
gate models are employed, such as response surface method-
ology, artificial neural network (ANN), support vector regres-
sion, Gaussian process, etc. [3–9]. In these surrogate models, a
mathematical approximation is constructed to improve con-
ventional Taguchi’s parameter design. These surrogate models
are capable of effectively treating continuous parameter values
and have the ability to learn arbitrary nonlinear mappings
between noisy sets of input and output data. With the
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development of artificial intelligence, soft computing has been
applied widely to optimize process parameters [10–13]. Com-
bining artificial neural network and genetic algorithm (ANN/
GA) method is proposed to optimize the injection molding
process [12]. Chen [11] developed a self-organizing map plus
a back-propagation neural network model for predicting prod-
uct quality. Azlan [10] proposed a new approach integrating
ANN and GA for estimating a minimum value of machining
performance. However, such single response requirement
rarely exists in practical production process. Generally, there
are multiresponse requirements in product production.

An increase in injection temperature causes a decrease in
melt viscosity, which results in reduced cavity pressure and
shear stress. On the other hand, high melt temperature in-
creases cooling time which lowers productivity. Too short
injection time increases the cavity pressure and shear stress
although it can reduce temperature difference. On the contrary,
a long injection time will lead to a decrease in the flow front
temperature, as well as an increase in melt viscosity and cavity
pressure. It is clear that there are multiresponse requirements
in production. An optimization algorithm must trade off these
conflicting process parameters to obtain optimum parameters
which produce a high-quality part at minimum cost. For the
process parameter design problem of a multiple-input multi-
ple-output (MIMO) production process, many researchers
have developed and employed different optimization schemes
for determining the optimal process parameters for polymer
processing [14–16]. Huang [15] presented an approach for
determining parameter values in melt spinning processes to
yield optimal qualities of denier. Castro [14] used an approach
comprising computer simulation, ANN, and data envelop-
ment analysis (DEA) to determine the proper operating pa-
rameters for finding the best compromise among several con-
flicting performance measures. Chen [16] presented an ap-
proach in a soft computing paradigm for the process parameter
optimization of MIMO plastic injection molding process.
Usually, for many MIMO production processes, the re-
searchers transform the multiobjective optimization problems
to single objective optimization problems and apply surrogate
models or evolutionary algorithms to attain the final optimal
process parameter settings.

Recently, Zhou [17] presented the development of an inte-
grated simulation-based optimization system to adaptively
search for the Pareto optimal solutions to different objective
functions. Wei [18] discussed the combination of the design
method to solve the complex multiobjective optimal perfor-
mance design of large-scale injection molding machines to
find a much better spread of design solutions and better
convergence near the true Pareto optimal front. A triple-
objective optimization model to determine the Pareto optimal
solutions by eliminating the uncertainty in the artificial prior-
ity election are proposed [19]. Solimanpur [20] presented a
new optimization technique based on GA to find multiple

solutions along the Pareto optimal front in machining opera-
tions. Cheng [21] proposed an intelligent methodology for
efficiently optimizing the injection molding parameters when
multiple constraints and multiple objectives are involved.
Although the abovementioned researches have achieved var-
ious levels of success, more efforts should be taken to search
an intelligent optimization strategy for efficiently optimizing
the plastic injection molding (PIM) parameters when multiple
objectives are involved.

For MIMO plastic injection molding, this research proposes
an intelligent process parameter optimization approach to help
manufacturers to determine the final optimal process parameter
settings of PIM to achieve a competitive advantage of product
quality. The proposed approach integrates Taguchi’s parameter
design method, back-propagation neural network (BPNN), grey
correlation analysis (GCA), particle swarm optimization (PSO),
and multiobjective particle swarm optimization (MOPSO) to
locate the Pareto optimal solutions. More specifically, the pro-
posed approach has two phases. First, Taguchi’s parameter de-
signmethod is used to effectively provide the training and testing
data, the PSO plus GCA are applied to optimize the network
structure of BPNN to establish PSO-GCANN model that finely
map the relationship between the input process parameters and
output multiresponse. Second, the finished PSO-GCANNmodel
is employed to compute the values of multiresponse. Then
MOPSO is applied to search for the Pareto optimal set based
on the PSO-GCANN model. We have conducted comparison
experiments to demonstrate the efficacy of the proposed intelli-
gent approach. The final optimal process parameter settings are
selected from the Pareto optimal set according to fuzzy sets
theory [22] for setting up the process parameters and are not
limited discrete value as in Taguchi’s parameter design method.

The rest of this paper is organized as follows. Sect. 2
describes the optimization methodologies including neural
networks, grey correlation analysis, particle swarm optimiza-
tion, and multiobjective optimization. The intelligent process
parameter optimization approach for locating the Pareto opti-
mal solutions to the optimization problem and selecting an
optimization solution according to fuzzy sets theory are put
forward in Sect. 3. Then, Sect. 4 presents an illustrative case
study that demonstrates the effectiveness of the proposed
approach. The advantages of the proposed approach over the
existing methods are also discussed in detail. Finally, the work
is concluded in Sect. 5.

2 Optimization methodologies

The optimization methodologies including BPNN, grey cor-
relation analysis, particle swarm optimization, and
multiobjective particle swarm optimization for developing
the proposed intelligent approach are briefly introduced
below.
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2.1 Back-propagation neural network

Neural network (NN) has been used in control, forecasting,
manufacturing, optimization, etc. In numerous literatures,
BPNN is adopted because it has the advantage of fast response
and high learning accuracy [11]. Woll and Cooper [23] report-
ed that all the nonlinear mappings could be approximated by
BPNN with single hidden layer, so the BPNN used in this
paper is composed of one input layer, one output layer, and
one hidden layer. The number of input neurons in BPNN
equals the number of injection molding parameters to be
optimized, namely, NI. The number of output neurons in
BPNN equals the number of objective functions, NO. The
number of hidden neurons in BPNN can be determined by
the experiential equation NH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N I þ NO
p þ α 1≤α≤10ð Þ

[21]. The hyperbolic tangent function is utilized for all the
transfer functions in BPNN in this paper. The superiority of a
network’s function approach depends on the network struc-
ture, parameters, and problem complexity. If inappropriate
network structure and parameters are selected, the analysis
results of the network may be undesirable. Conversely, the
analysis results will be more significant if appropriate network
structure and parameters are selected.

2.2 Grey correlation analysis

The principle of the GCA [24] is based on the macro- or
microgeometric approach between the behavior factors. The
more similar are the array curves, the closer connection they
have. The detailed calculation formulas are as follows.

The arrays are as follows:

X 0ð Þ
0 rð Þ

n o
; r ¼ 1; 2; 3;…;N 0

X 0ð Þ
1 rð Þ

n o
; r ¼ 1; 2; 3;…;N 1

X 0ð Þ
2 rð Þ

n o
; r ¼ 1; 2; 3;…;N 2

…
X 0ð Þ

k rð Þ
n o

; r ¼ 1; 2; 3;…;Nk

where N1,N2,…,Nk belong to natural number and may be
not equal. The k arrays express k factors. The array {X 0

(0)(r)}
is assigned to main array and {X m

(0)(r)} (m=1,2,…,k) to
sub-arrays. The average of {X m

(0)(r)}, r=1,2,…,Nm, m=0,

1,2,…,k is Xm ¼ 1
Nm

∑
r¼1

Nm

X 0ð Þ
m rð Þ

" #
.

The conversion Ym rð Þ ¼ X 0ð Þ
m rð Þ=Xm is made and the

following arrays called inverted arrays can be obtained:

Y 0 rð Þf g; r ¼ 1; 2; 3;…;N 0

Y 1 rð Þf g; r ¼ 1; 2; 3;…;N 1

Y 2 rð Þf g; r ¼ 1; 2; 3;…;N 2

…
Yk rð Þf g; r ¼ 1; 2; 3;…;Nk

In fact, the transformation from X m
(0)(r) into Ym(r) can be

regarded as a reflection. The grey correlation coefficient ξ0m(r)
at t=r is

ξ0m rð Þ ¼
minm minr

���Y 0 rð Þ−Ym rð Þ
���þ ρmaxm maxr

���Y 0 rð Þ−Ym rð Þ
���

Y 0 rð Þ−Ym rð Þ
���þ ρmaxm maxr

���Y 0 rð Þ−Ym rð Þ
��� ��� ð1Þ

ρ is recognition coefficient in the formula and ρ∈[0,1],
defined as 0.5 generally.

The grey correlation degree of Ym and Y0 is

ς0m ¼
X
r¼1

N

ξ0m rð Þ
" #

=N ð2Þ

The grey correlation degree is a quantitative value of the
correlation between the factors. If the value of grey correlation
degree is higher, the main factor and sub-factor are more
relevant.

2.3 Particle swarm optimization algorithm

The PSO algorithm [25] works by initializing a flock of birds
randomly over the searching space. Each particle successively
adjusts its position toward the global optimum according to
the two factors: the best position encountered by itself (pBest)
and the best position found so far by the whole swarm (gBest).
Supposing searching in a D-dimensional hyperspace, the po-
sition of the ith particle can be presented by a vector Xi=(xi1,
xi2,…, xiD), and its velocity is represented as a vector Vi=(vi1,
vi2,…, viD). The velocity and position of particle i at next
iteration are calculated according to the following equations:

vtþ1
id ¼ wvtid þ c1r1d pBesttid−x

t
id

� �þ c2r2d gBesttd−x
t
id

� � ð3Þ

xtþ1
id ¼ xtid þ vtþ1

id ð4Þ

where t is the index of the current generation; w is the
inertia weight and usually decreases linearly from 0.9 to 0.4
during the run time [26]; c1 and c2 are two positive accelera-
tion coefficients; r1d and r2d are two uniformly distributed
random numbers in the interval [0, 1] for the dth dimension
separately.

2.4 Multiobjective optimization of unitary performance

2.4.1 Mathematical modeling of optimization problem

Supposing that there are NI design variables, NO objective
functions, and NC constraints to be considered in the optimi-
zation of injection molding, the multiobjective optimization
problem can be expressed as
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min y ¼ min F xð Þ ¼ min f 1 xð Þ; f 2 xð Þ;…; f NO
xð Þ� �

s:t: x∈X ¼ x∈Rn
���gi xð Þ≤0; i ¼ 1; 2; ⋅⋅⋅;NC

n o(

ð5Þ
Where x ¼ x1; x2;…; xN Ið Þ is the vector of design vari-

ables with its elements being process parameters; X ¼
x1; x2;…; xN Ið Þjli≤xi≤ui; i ¼ 1; 2; ⋅⋅⋅;N If g is the feasible

domain of vector of design variables x with L ¼
l1; l2;…; lN Ið Þ and U ¼ u1; u2;…; uN Ið Þ being lower and
uppe r l im i t s , r e sp e c t i v e l y ; y ¼ y1; y2;…; yNO

� � ¼
f 1 xð Þ; f 2 xð Þ;…; f NO

xð Þ� �
∈Y is the objective vector and

Y is the objective space composed of multiple subspaces
corresponding to different objective functions; gi(x)≤0 (i=
1,2,⋅⋅⋅,NC) are constraint functions.

2.4.2 MOPSO for locating Pareto optimal solutions

The optimization problem of injection molding expressed in
Eq. (5) has multiple objective functions and constraints. There
is no single optimal solution but rather a set of compromise
solutions named Pareto optimal or nondominated solutions to
such an optimization problem with multiple conflicting objec-
tive functions. Among the Pareto optimal solutions, one solu-
tion is worse with regard to at least one other objective
function if it is better with regard to an objective function.
Thus, the final injection molding scheme should be deter-
mined by designers on the basis of the moldability evaluations
of various Pareto optimal solutions or fuzzy sets theory shown
in Sect. 2.4.3. For the constrained multiobjective optimization
problem defined in Eq. (5), a solution x∗∈X is said to be Pareto
optimal if there is no solution x∈X such that fi(x)≤fi(x∗) for all
i=1,2,⋅⋅⋅,NO with strict inequality for at least one i. Any other
feasible solution x∈X with fi(x)≥fi(x∗) for all i=1,2,⋅⋅⋅,NO is
an inferior solution. The Pareto front of the optimization
problem in Eq. (5) can be obtained by plotting all its Pareto
optimal solutions according to their objective values, which is
a NO−1 dimensional surface.

In the general case, it is difficult to get an analytical expres-
sion of the line or the surface that contains all points of the
Pareto front. The MOPSO [27] is applied to resolve the
constrained multiobjective optimization problem in Eq. (5),
where MOPSO integrates a powerful PSO with the concept
of Pareto optimality to automatically find out solutions illustra-
tive of the nondominated set. Algorithm process of MOPSO
can be described as follows: Initial population POP includingN
individual values are random in the bounding range. First,
according to optimization goal and constraint condition, popu-
lation ranking will be done and the nondominated individuals
of the population are stored in external repository. The popula-
tion will be evolved through the update of velocities and
positions of particles. The population combines with the
nondominated individuals in external repository and the sorting

will be calculated. Then all the nondominated individuals of the
population are stored in external repository again. It is a com-
pleted process of MOPSO algorithm. When the previously set
maximum generation is got by circulation, the algorithmwill be
ended and the Pareto optimal set will be achieved.

2.4.3 Pareto optimizing based on fuzzy sets theory

In the final step, an optimization solution will be selected out
from the Pareto sets which are calculated by MOPSO. Be-
cause manual Pareto-optimizing contains several uncertain
subjective factors, a Pareto sets optimization method based
on fuzzy sets theory [22] is used. Member function fm is
defined as a proportion of number 1 target in one solution:

f m ¼
0 f i > f max

i
f max
i − f i

f max
i − f min

i

f min
i < f i < f max

i

1 f i > f min
i

8>><
>>: ð6Þ

For each nondomination solution R in Pareto sets, domina-
tion function f R could be defined as below:

f R ¼
X
i¼1

N

f Ri

.X
j¼1

N X
i¼1

N

f Rj ð7Þ

N is the number of solution. The larger value of fR is the
better unitary performance of that solution. Therefore, the
solution with maximum fR would be chosen as an optimal
solution from the Pareto optimal set. By sorting the Pareto
optimal set into a depending order according to the value of fR,
optimization sequence of feasible solution can be achieved.

3 Optimization methodology for injection molding
parameters

This research proposes an intelligent approach to effectively
assist engineers in the process parameter optimization for
MIMO plastic injection molding. The proposed approach
integrates Taguchi’s parameter design method, BPNN, GCA,
PSO, and MOPSO to locate the Pareto optimal solutions for
the multiobjective optimization problem. Taguchi’s parameter
design method is used to arrange an orthogonal array exper-
iment and to reduce the number of experiments. Subsequently,
the signal-to-noise ratio (S/N ratio) is employed to determine
the process parameter settings that have minimal sensitivity of
noise under the consideration of most major quality charac-
teristics. In this research, the GCA is used to determine the
hidden neuron number of BPNN to realize the optimization of
BPNN structure. Generally, the PSO algorithm is utilized to
obtain the appropriate connection weights and threshold
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values for BPNN [28]. Moreover, compared with other
algorithms such as the steepest descent algorithm, PSO
converges rapidly with less training cycles when the error
energy is minimized during the training phase of BPNN.
The training of the network will be terminated either when
the maximum training time is reached or when the
mean square error (MSE) between the desired values
and network outputs is reduced to a given level. By
means of the functions of PSO and GCA, the PSO and
GCA are simultaneously applied to optimize BPNN to
establish a PSO-GCANN model which finely maps the
relationship between the input process parameters and
output multiresponse. In this process, the experimental
data of Taguchi’s parameter design method are used to
effectively train and test the PSO-GCANN model. Sub-
sequently, MOPSO is applied to the finished PSO-
GCANN model to search solutions illustrative of the
nondominated set of process parameters. Finally, the
confirmation experiments are performed to confirm the

effectiveness of Pareto optimal process parameter set-
tings based on the PSO-GCANN model, and the final
optimal process parameter settings from Pareto optimal
set are determined according to fuzzy sets theory. The
multiobjective optimization procedure for process pa-
rameters of injection molding includes the following
two stages: the training stage shown in Fig. 1 and the
iteration optimization stage shown in Fig. 2.

3.1 Training stage

Step 1. Identify feasible responses (quality characteris-
tics) as the target requirements of the experi-
ment. The responses which have significant
influence on final product quality must be
confirmed. Moreover, engineers need to
choose the most major responses from all re-
sponses just identified by expert opinion or
experience.

Step 2. Determine the feasible and tractable process param-
eters and levels that influence the performance of
responses. Select an appropriate orthogonal array for
arranging the experiment and acquiring the experi-
mental treatments.

Step 3. Perform experiments for each treatment and
collect the performance measurement of the
responses.

Yes 

No 

Initialize BPNN structure. Set number 
of input neurons; number of output 
neurons; number of hidden neurons and 
transfer function

Initialize position, velocity, 
pBest and gBest of particles 

Output the gBest as neural network 
weight and threshold value

Update position, velocity, pBest and 
gBest of particle in the swarm 

According to the positions of particles
and training samples, calculate MSE 

Does the predictions 
match the training 

acceptance? 

Compute grey correlation degree between 
arrays of hidden layer and arrays of output layer

Output number of hidden neurons for BPNN 

Iteration 
number+1 

Delete the 
hidden nodes 
whose grey 
correlation 
degree is 

smaller than 
the set value

Is all grey correlation 
degrees larger than 

set value? 

Training process finished

No 

Identify the experimental factors 

and quality characteristics 

Choose orthogonal array and the 

experimental levels; collect 

training and testing data 

Quality predictor

Fig. 1 Training stage of optimization procedure using PSO plus GCA

Data analysis of 
orthogonal experiment 

Orthogonal experiment 

Multi-index comprehensive 
evaluation 

Approximate 
Optimization solution 

Range analysis and 

variable analysis 

PSO-GCANN model 
having been trained for 

injection molding 

Neural network model 

Finish optimization process

Select an optimization solution
according to fuzzy sets theory for 
setting up the process conditions 

No 

Multiobjective particle 
swarm global optimization 

Initialize particle swarm and 
external repository 

Is the termination 
criteria satisfied?

Update positions and 
velocities of particles 

Invoke PSO-GCANN model 
to generate the Pareto-optimal 

process parameter settings 

Update pBest, gBest and 
external repository; select gBest

Conduct PIM confirmation 
experiment for Pareto-optimal 

process parameter settings based 
on the PSO-GCANN model 

Yes 

Fig. 2 Iteration stage of optimization procedure
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Step 4. Use PSO plus GCA based on BPNN to develop
PSO-GCANN model that finely maps the relation-
ship between the input process parameters and out-
put multiresponse.

Step 5. Formulate a multiobjective fitness function used in
MOPSO search approach.

3.2 Iteration optimization stage

Step 1. Formulate the fitness function of MOPSO with
ranges of the process parameters and set the
MOPSO parameters.

Step 2. Determine the Pareto optimal process parameter
settings via soft computing. Use MOPSO to
search the Pareto optimal solutions to the cur-
rent PSO-GCANN model. The detail of
MOPSO-based optimization approach can be
referred in [27].

Step 3. Discretize the objective space into archives and then
represent the current Pareto optimal front with a
collection of archives. Perform a confirmation ex-
periment to verify the effectiveness of Pareto optimal
process parameter settings based on the PSO-GCAN
N model predictions.

Step 4. Select an optimization solution from the Pareto op-
timal set according to fuzzy sets theory for setting up
the process parameters.

4 Illustrative example

4.1 Description of optimization problem

In this example, the proposed intelligent approach will
be used to perform the multiobjective process parameter
optimization for injection molding of a thin-walled part
shown in Fig. 3. The plane of the part has a thickness
of 3 mm, and the sides have the length of 80 mm. Melt
temperature, mold temperature, injection pressure, injec-
tion time, holding pressure, holding time, and cooling
time are selected as process parameters. Moreover, each
process parameter has four levels. Table 1 shows the

seven process parameters and their level setting values.
In this illustrative case, there are three concerns regard-
ing part quality: (1) part weight, which should be kept
as light as possible in order to decrease manufacturing
cost; (2) flash, which is a critical quality characteristic
to be minimized to keep product quality; and (3) volu-
metric shrinkage, which should be minimized to im-
prove molded part quality. Three outputs from experi-
mental results (part weight, flash, and volumetric shrink-
age) are selected as the objective values to represent the
above criteria, respectively. Thus, the multiobjective op-
timization problem with the ranges of process parame-
ters to be optimized is defined as follows:

find : Var ¼ Tm; Tw; Pi; ti; Ph; th; tcð Þ
Minimize : part weight
Minimize : flash
Minimize : volumetric shrinkage
Subject to : 180�C≤Tm≤210�C; 35�C≤Tw≤80�C

30≤Pi≤60; 2s≤ ti≤5s; 30≤Ph≤60;
2s≤ th≤5s; 5s≤ tc≤20s

8>>>>>>>><
>>>>>>>>:

ð8Þ

where seven independent process parameters, namely, melt
temperature Tm, mold temperature Tw, injection pressure Pi,
injection time ti, holding pressure Ph, holding time th, and
cooling time tc are optimized to achieve the desired objectives.

4.2 Experimental data

The polymer material used for molding the thin-walled part is
polypropylene (trademark T30S, density 0.955 g/cm3, MFI=
3.2 g/10 min), which is provided by Wuhan Phoenix Co. Ltd.,
China. Experimental data are collected from a hydraulic plastic
injection molding machine. The part weight is measured by an
electric balance which has a precision of 0.01 g. The flash is
measured by an electric caliper which has a precision of 0.01mm.
Furthermore, the shrinkage can be calculated as follow:

S ¼ D−Mð Þ=Df g � 100% ð9Þ

where S is shrinkage, D is the cavity dimension of mold, and
M is the dimension of plastic part. The cavity dimension of
mold and the dimension of plastic part are measured by the
above electric caliper.

In order to establish the PSO-GCANNmodel, according to
the seven selected process parameters and their level setting
values which are shown in Table 1, an L32(4

9) orthogonal
array is selected for arranging the factors and carrying out the
experiment. In this experiment, there are 32 treatments with
different level combinations of the seven factors and five
replications are taken to increase the sensitivity of the statis-
tical analysis. Therefore, 160 sample data are collected. Dur-
ing the collection of samples, first, it takes time for the
injection molding machine and mold base to reach a steady
state. Second, ten shots of each treatment are conducted toFig. 3 Thin-walled part molded with injection molding process
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ensure that the plastic injection molding is stable, and the ten
plastic parts obtained in ten shots of each treatment are
discarded. Finally, the official samples used for training
back-propagation neural network are collected.

4.3 Optimal structure of BPNN based on PSO and GCA

BPNN training is a high-dimensional optimization problem
with many local minima. The mostly used training algorithm
is the back-propagation (BP) algorithm. However, there are
inherent defects in BP. First, the BP is easily trapped in local
minima especially for those nonlinearly separable pattern
classification problems or complex function approximation
problem [29, 30]. Second, the convergence speed of the BP
algorithm is too slow in complex problems. Recently, evolu-
tion algorithm is used to train BPNN because the evolution
algorithm can improve training performance, and many effi-
cient results are derived. However, neural network’s primary
target is to ensure network generalization ability, and the
generalization ability of neural network depends on network
structure (network structure is mainly shown by the number of
hidden layers, the number of hidden neurons, and the function
characteristics of hidden neurons) and characteristics of train-
ing samples. Especially, the determination of the number of
hidden neurons is a difficult problem in the study of BPNN.

In this section, BPNN is optimized to obtain PSO-GCANN
model by applying GCA to determine the number of hidden
neurons and employing PSO to train BPNN. Since better
generalization ability and prediction performance are
achieved, PSO-GCANN model can finely map the relation-
ship between the input process parameters and output
multiresponse. For training BPNN, the objective is to mini-
mize the MSE over all training patterns. The variables consist
of BPNN connection weights and threshold values. Suppose a
3-layer BPNN structure with 7 input neurons, 13 hidden
neurons, and 3 output neurons for PIM quality indicator as
shown in Eq.(8), a 7-13-3 structure of BPNN is constructed
according to Sect. 2.1.

The BPNN is first trained using randomly selected
120 samples. By applying PSO plus GCA, the final
optimized 7-9-3 structure of BPNN, named as PSO-
GCANN model, is obtained. Then the rest 40 samples
of verifying data are used to make predictions. The
network performance is obtained by calculating the
MSE. In order to verify the PSO-GCANN model per-
formance, the experiment of PSO-GCANN is compared
with those of PSONN model and BPNN model which
are trained based on BPNN by PSO and BP algorithms,
respectively. For each algorithm, the results of all ex-
periments are averaged over 50 independent runs
to eliminate random discrepancy. The network

Table 1 Process parameters and settings of the various levels

Melt temperature
(°C)

Mold temperature
(°C)

Injection pressure
(%)

Injection time
(s)

Holding pressure
(%)

Holding time
(s)

Cooling time
(s)

Level 1 180 35 30 2 30 2 5

Level 2 190 50 40 3 40 3 10

Level 3 200 65 50 4 50 4 15

Level 4 210 80 60 5 60 5 20

Table 2 Comparison of the training and checking results for three model quality predictors

Model Item Relative error for training samples Relative error for checking samples

Largest Smallest Average Largest Smallest Average

PSO-GCANN Part weight 0.943 0.116 0.627 1.026 0.137 0.774

Flash 2.169 0.187 1.042 2.738 0.226 1.68

Volumetric shrinkage 2.573 0.429 1.843 2.851 0.656 1.942

PSONN Part weight 1.231 0.185 0.835 1.458 0.194 0.988

Flash 2.845 0.235 1.127 2.937 0.391 1.913

Volumetric shrinkage 3.326 0.573 2.563 3.252 0.914 2.853

BPNN Part weight 1.312 0.192 0.938 1.631 0.348 1.052

Flash 3.032 0.181 1.421 3.467 0.429 2.47

Volumetric shrinkage 3.724 0.577 2.951 4.571 0.836 3.417
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performances of PSO-GCANN, PSONN, and BPNN are
shown in Table 2. The comparison results between the
experimental values and the predicted values of PSO-
GCANN, PSONN, and BPNN under part weight, flash,
and volumetric shrinkage are presented in Fig. 4.

From Table 2 and Fig. 4, it can be seen that the
extrapolation of the three models all are good and the
three models all have high prediction accuracy, but the
expansible error of network trained by PSO plus GCA
is the smallest, and the expansible error of network
trained by BP is larger than that trained by PSO. It
can be concluded that the prediction of the PSO-GCAN
N agrees well with the data from the experiments.
Obviously, the performance of PSO-GCANN is better
than those of PSONN and BPNN, respectively, which
suggests that the PSO-GCANN can indeed benefit from
the optimization of BPNN structure. The PSO-GCANN
provides better generalization ability and prediction per-
formance, so that PSO-GCANN can finely map the
relationship between the input process parameters and
output multiresponse. Thus, it confirms that the predic-
tion ability of PSO-GCANN model further optimized by
MOPSO is adequate enough to achieve the Pareto opti-
mal solutions for this application.

4.4 Optimization results and discussion

To useMOPSO to evaluate the PSO-GCANNmodel to obtain
the current Pareto optimal solutions, the parameters for
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MOPSO are selected as suggested in [27]. The number of
nondominated solutions to be get is set to 200. After estab-
lishing the finalized PSO-GCANN model, the MOPSO is
employed in conjunction with the PSO-GCANN model to
search for the current Pareto optimal solutions. The three-
dimensional Pareto front for Eq. (8) is displayed in Fig. 5.

The predicted responses are nonlinearly correlated to the
process parameters, which features complex interactions.
From Fig. 5, on the basis of the achieved PSO-GCANN
model, it shows that in this specific application there exists
direct trade-off behaviors among the part weight, flash, and
volumetric shrinkage as expected, in which the volumetric
shrinkage decreases with an increase in the part weight and
flash, and vice versa. After employing MOPSO to achieve the
Pareto optimal solutions for PSO-GCANN model, different
combinations of optimal trade-off solutions can be selected
from these solutions according to the designer’s preference for
setting up the process parameters. In order to achieve ratio-
nality and practicality, the designer can also select an optimi-
zation solution from the Pareto optimal solutions according to
fuzzy sets theory for setting up the process parameters.

In order to evaluate the effectiveness and efficiency of the
proposed approach, experiments are conducted to compare the
performance of Gaussian process approach [17] with the
performance of our proposed approach. The optimization
result for the same application with Gaussian process ap-
proach is shown in Fig. 6. From Figs. 5 and 6, it can be seen
that employing MOPSO on the PSO-GCANN model can get
better Pareto front with good distribution than the results of
employing multiobjective genetic algorithm (MOGA) on the
GP surrogate model [17]. To verify the accuracy of this
intelligent optimization approach, four Pareto optimal
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Table 3 Comparison between PSO-GCANN model predictions and GP surrogate model predictions with experimental results under the
corresponding process parameters

PSO-GCANN model GP surrogate model

1 2 3 4 1 2 3 4

Optimal process parameters Melt temperature 199.9 187.8 189.9 197.3 195.7 201.2 188.4 184.5

Mold temperature 36.9 44.85 38.2 37.6 46.99 49.1 51.1 38.4

Injection pressure 39.9 50.99 52.05 45.42 49.7 56.97 53.56 40.2

Injection time 4.5 5 4.8 3.67 4.5 3.9 4.9 4.8

Holding pressure 54.59 46.1 51.27 38.1 50.58 48.86 48.24 39.9

Holding time 4.4 5 4.7 3.4 4.8 4.4 4.6 2.9

Cooling time 20 15.9 15.6 6 18.8 16.8 12.5 6.7

Part weight (g) Model’s prediction 39.2 38.5 38.38 37.55 39.05 38.52 38.33 37.82

Experimental results 38.53 39.38 39.01 36.92 37.96 37.55 39.4 36.95

Difference (%) 1.74 −2.24 −1.62 1.71 2.87 2.58 −2.71 2.35

Flash (mm) Model’s prediction 1.12 0.98 0.55 0.28 1.48 0.85 0.62 0.23

Experimental results 1.08 1.02 0.54 0.27 1.39 0.91 0.67 0.21

Difference (%) 2.78 −3.92 1.85 3.71 6.47 −6.59 −7.46 9.52

Volumetric shrinkage (%) Model’s prediction 1.34 1.42 1.47 1.89 1.34 1.45 1.46 1.93

Experimental results 1.31 1.46 1.51 1.81 1.26 1.36 1.59 1.82

Difference (%) 2.29 −2.74 −2.65 3.31 6.35 7.35. −8.18 6.04

Average difference (%) Volumetric shrinkage=2.75; Part weight=1.83;
Flash=3.07

Volumetric shrinkage=6.86; Part weight=2.63;
Flash=7.51
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solutions based on the PSO-GCANNmodel and GP surrogate
model predictions are selected randomly, respectively. This
research conducts conformation experiments with the above
seven selected corresponding optimal process parameters. The
replication of above conformation experiments is 30 and the
results of conformation experiments are averaged for elimi-
nating random disturbance. The comparison between confir-
mation experimental results and predicted results of the two
models is listed in Table 3. Difference percentages between
confirmation experimental results and predication results of
part weight, flash, and volumetric shrinkage are denoted as
difference (%). From Table 3, the average difference percent-
ages of part weight, flash, and volumetric shrinkage are 2.63,
7.51, and 6.86 % for GP surrogate model, respectively; the
average difference percentages of part weight, flash, and vol-
umetric shrinkage are 1.83, 3.07, and 2.75 % for PSO-GCAN
N model, respectively. It is clear that the average difference
percentages of PSO-GCANN model are much smaller than
those of GP surrogate model, respectively. Especially, the
maximum difference percentage of GP surrogate model under
flash is 9.52%. However, the maximum difference percentage
of PSO-GCANN model under flash is only 3.92 %. It can be
concluded that the PSO-GCANN model has superior predic-
tive ability than GP surrogate model, and the proposed opti-
mization scheme is effective. It can be explained that PSO-
GCANN model realizes the optimization of BPNN structure,
which may be attributed to optimization of the number of
hidden neurons of BPNN by PSO plus GCA algorithm.
Hence, PSO-GCANN model provides better generalization
ability and prediction performance than GP surrogate model
or other surrogate models. Meanwhile, MOPSO has better
global search ability and can be in conjunction with the
PSO-GCANN model to achieve Pareto front with good dis-
tribution than the results of MOGA or other multiobjective
optimization algorithms.

The current approach executes fewer experiments for ob-
jective function evaluations and achieves better solutions.
Therefore, with the help of this multiobjective optimization
approach based on PSO-GCANN model, the optimization
task specified in this application can yield reasonable results
with a reasonably small amount of computing resources.
Although the procedure needs a relatively long time to execute
experiments for obtaining the initial training data, the subse-
quent optimization process could realize lots of benefits from
the trained PSO-GCANN model.

After executing a soft computing model, the Pareto optimal
solutions are determined. According to Pareto optimizing
based on the fuzzy sets theory shown in Sect. 2.4.3, the final
optimal process parameter settings from Pareto optimal set are
determined after the minimum unit tuning and are shown in
Table 4. To demonstrate the effectiveness of the proposed
approach, the experimental results are also analyzed using
conventional Taguchi method. This research conducts an extra
confirmation experiment that has process parameter settings
determined by the Taguchi’s parameter design method under
volumetric shrinkage and flash response consideration. Volu-
metric shrinkage and flash are used as responses, because
weight does not have a target value. The research follows
the two-stage approach of Taguchi’s parameter design method
to determine the optimal process parameter settings under
volumetric shrinkage and flash responses consideration.

Two statistics, standard deviation and mean absolute devi-
ation (MAD ¼ 1

n∑
n
i¼1 Pi−TVj j , where is Pi the specific re-

sponse value of ith confirmation sample, TV is the target value
of the specific response, and n is the number of confirmation
samples), are compared to show the effectiveness of the
proposed approach. To calculate theMAD ofweight response,
it assumes that 38.51 (the weight average of 160 Taguchi
experimental data) is the weight’s target just for comparison
implementation purpose. The comparison results are showed

Table 4 The final optimal process parameter settings according to Pareto optimizing based on fuzzy sets theory

Melt temperature Mold temperature Injection pressure Injection time Holding pressure Holding time Cooling time

MOPSO search result 191.03 42.95 48.12 4.05 48.21 3.96 16.16

After tuning 191 43 48 4 48 4 16

Table 5 Response performance comparison under different approaches

Proposed approach Taguchi method

Part weight Volume shrinkage Flash Part weight Volume shrinkage Flash

Average 38.122 1.415 0.202 38.563 1.732 0.421

Standard deviation 0.0126 0.0053 0.0034 0.0181 0.0114 0.0063

MAD 0.0483 0.0071 0.0024 0.0672 0.0122 0.0046
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in Table 5. The comparison results reveal that the improve-
ment rates of standard deviation under part weight, flash, and
volume shrinkage are 30, 46, and 53 %, respectively, when
using the proposed approach. Moreover, the improvement
rates of MAD under part weight, flash, and volume shrinkage
are 28, 48, and 41 %, respectively, when using proposed
approach.

5 Conclusions

Determination of optimal process parameter settings in PIM is
complex work that influences product quality. Engineers have
conventionally used trial-and-error processes or Taguchi’s
process parameter design method to determine the optimal
process parameter settings. However, the application of these
methods has some shortcomings and may cause engineers to
make undesirable optimal process parameter settings. In this
study, an intelligent approach based on soft computing and
grey correlation analysis is put forward for efficiently opti-
mizing MIMO plastic injection molding parameters when
multiple objectives are involved. The proposed approach in-
tegrates Taguchi’s parameter design method, BPNN, GCA,
PSO, and MOPSO to locate the Pareto optimal solutions for
the multiobjective optimization problem. According to the
implementation results obtained in the illustrative example,
the Pareto optimal solutions determined by the proposed
approach definitely produce better performance compared
with the methods shown in previous literature. Moreover,
the final optimal process parameter settings from Pareto opti-
mal set are determined by fuzzy sets theory definitely produce
better performance in the PIM production process than those
of Taguchi’s approach. Therefore, the proposed methodology
is feasible and effective for process parameter optimization in
MIMO plastic injection molding and can assist the
manufacturing industry in achieving competitive advantages
on quality and costs.
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