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Abstract Planning distributed manufacturing facilities is one
of the most challenging tasks in the supply chainmanagement.
This paper proposes a production planning algorithm for the
multi-level, multi-item capacitated lot-sizing problem
(MLCLSP) in a supply chain network that takes back order
into account. MLCLSP is a mixed integer linear programming
(MIP) problem and is NP-hard. This paper presents an effi-
cient, hybrid, heuristic algorithm named greedy rolling hori-
zon search (GRHS) that combines a rolling horizon local
search heuristic with an exact linear program (LP) solver.
Computational experiments show that GRHS performs well
in terms of total costs and computational time and is superior
to existing meta-heuristics, such as tabu search, simulated
annealing, and genetic algorithms.
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1 Introduction

This paper presents a comprehensive solution method for
multi-level, multi-item capacitated lot-sizing problems
(MLCLSP) in the distributed manufacturing context. The
method combines search heuristic and exact LP solver to build
production schedules into the supply chain planning process.

Constructing the production schedule corresponds to calculat-
ing the required quantities of raw materials, components, and
end products that should be purchased or produced in each
period while minimizing total costs and considering capacity
and back-order constraints. In the production planning process
of distributed manufacturing facilities, proper decisions on lot
sizing have a significant impact on system performance and
productivity and hence also on the company’s ability to en-
hance its market competitiveness [8]. Therefore, it is crucial to
develop and to improve an effective solution methodology for
distributed lot-sizing problems.

The capacitated version of lot-sizing problem has been
proven to be NP-hard by Maes et al. [18], meaning that this
problem is also theoretically hard to solve. Real-world prob-
lems are much more complicated and computationally chal-
lenging, requiringmore efficient methods [22]. To reduce these
difficulties, decomposition or relaxation has been adopted as a
practical method to quickly discover adequate solutions.

Typical approaches using decomposition and relaxation
methods are discussed below. Belvaux and Wolsey [4] has
proposed a special branch and cut system that uses relax-and-
fix heuristics to solve lot-sizing problems. Stadtler [20] and
Federgruen et al. [9] have adopted the idea of “time windows”
in their methodologies to decompose the whole problem into
several sub-problems defined by a “lot-sizing window” or a
“progressive interval” then solving them in order. Akartunali
and Miller [1] also have used a relax-and-fix approach with
time windows. The basic idea of relax-and-fix with time win-
dows is to relax all the binary variables continuously except for
the variables in the periods of the predefined time window,
solve the problem, and, using the solution obtained, fix the
binary variables in the window. The next window is then
processed in the same manner. Although there are many
problem-specific heuristics in the mixed integer problem
(MIP) literature, there are comparatively few formal MIP heu-
ristics. In an effort to devise a tailorable heuristic, Fischetti and
Lodi [10] have presented MIP heuristics that use the idea of
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branching on the neighborhoods of the current MIP solution,
and Danna et al. [7] have proposed a relaxation induced neigh-
borhood search (RINS) that searches the neighborhood be-
tween the LP relaxation solution and the current MIP solution.
Li et al. [17] have devised a simple three-stage approach that is
applicable to both single-level and multi-level, multi-item ca-
pacitated dynamic lot-sizing problem and showed its simplicity
and general applicability. Goren et al. [13] have developed a
hybrid approach by combining genetic algorithms (GAs) and a
fix-and-optimize heuristic to solve the capacitated lot-sizing
problem with setup carryover and showed that the performance
of the pure GAs improves when hybridized with the fix-and-
optimize heuristic. Chan and Chung [5] and Chan et al. [6]
applied GAs with analytic hierarchy process (AHS) and a
biased random key GAs to demand driven supply chain and
lot-sizing problems, respectively. Almada-Lobo and James [2]
have also employed a tabu search and a variable neighborhood
search meta-heuristic to solve the multi-item capacitated lot-
sizing and scheduling problem with sequence-dependent setup
times and costs, indicating that their approach gives an efficient
performance for solving medium- to large-sized problems.

From the perspective of a problem model and solution
approach, the main differences between the research above
and our model are as follows: (1) single-site manufacturing
facilities vs. multi-site (distributed) facilities, which increase
the complexity of MIP problem; (2) overtime vs. back orders,
which are realistic considerations and give manufacturing
firms more flexibility when making decisions because they
often accept excess demand beyond overtime capacities; and
(3) efficient hybridization of the exact solver and search heu-
ristic optimization approach, which can be applied to many
similarly formulated MIP problems, such as scheduling, dis-
tribution, and portfolio optimization problems among others.

Together with increasing computing power, commercial
LP/MIP solvers, such as CPLEX or XpressMP, have been
capable of solving large problems. However, real-world ap-
plications are growing in size due to the complexity of pro-
duction systems. Because solving the general MIP to optimal-
ity is a matter of great difficulty, commercial LP/MIP solvers
are not able to solve general, real-world applications within an
acceptable timeframe. Even so, the solvers perform well when
solving larger LP and MIPs, provided that they have only a
few binary decisions. For our approach, we use this potential
and merge it with a rolling horizon local searchmethod named
greedy rolling horizon search (GRHS). We have tested GRHS
on three test problem sets and compared our solutions with
those of commercial solver and the existing meta-heuristics
(tabu search, simulated annealing, and genetic algorithm).

The rest of this paper is organized as follows. Section 2
presents a model formulation for production planning prob-
lems in a supply chain network. Section 3 describes a hybrid
heuristic approach for the model presented in Section 2.
Section 4 presents experimental results to evaluate the

performance of the proposed approach. Finally, Section 5
contains the concluding remarks.

2 Problem statement and model formulation

A supply chain with multiple manufacturing facilities is con-
sidered in this paper. Each facility has capacity restriction and
deals with multiple component or end products. In the existing
literature, overtime and overtime cost are often employed [14,
19, 3]; however, it is almost impossible to meet the excess
demand by the deadline with only overtime. Therefore, this
study allows back orders for every facility but imposes a
penalty for it. The production of the products can share the
capacities of each facility. The notations and assumptions used
for problem formulation are as follows.

Assumptions:

1. A product can be used as a common part for several end
products (general bill of material).

2. The planning horizon is equally divided into several plan-
ning periods.

3. The order quantity can be produced within a specified
period.

4. Each resource has limited capacity.
5. Back order for both external and internal demand is

allowed.
6. Each facility can have independent demand as well as

dependent demand.
7. The production of an item consumes resource capacity

only during that period.
8. Resource setup for an item cannot be carried over to the

next period.

Notations:

k=1,…,
K

index of component and end products

t=1,…,
T

index of planning period

j=1,…,
J

index of facilities

S(k) set of indices for the immediate successors of item
F(k) set of indices for the facilities capable of producing

item
qkjt planned output quantity for item in period t at

facility j
zkjt inventory level of item k at the end of period t at

facility j
bokjt back-order quantity of item k at the end of period t

at facility j
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cjt available capacity of facility j in period t
dkjt demand for item k in period t at facility j
aki number of units of item k required to produce one

unit of item i
hkj inventory holding cost for item k at facility j
skj setup cost for item k at facility j
bkj back-order cost for item k at facility j
vkjt production time per unit of item k in period t at

facility j
ukjt setup time of item k in period t at facility j
M a large number
ykjt binary production decision variable for item k

during period t at facility j. The relationship with
qkjt is defined by yk jt ¼ 0 if qk jt ¼ 0;

�

1 otherwise:

With these assumptions and notations, the supply chain
planning problem can be formulated as the following MIP.

MIP:

Minimize
X

k¼1

K X

j¼1

J X

t¼1

T

sk jyk jt þ hk jzk jt þ bk jbok jt
� �

;ð1Þ

subject to

qk jt þ zk jt−1−zk jt þ bok jt−bok jt−1−
X

i∈S kð Þ
j∈F kð Þ

akiqi jt

¼ dk jt ∀ k; j and t; ð2Þ

X

k¼1

K

vk jtqk jt þ uk jtyk jt

� �
≤c jt ∀ jand t; ð3Þ

bok jt−bok; j;t−1≤dk jt þ
X

i∈S kð Þ
j∈F kð Þ

akiqi jt ∀ k; jand t; ð4Þ

qk jt−Myk jt ≤0 ∀k; jand t; ð5Þ

zk j0 ¼ zk jT ¼ 0 ∀k and j; ð6Þ

zk jt ≥0 ∀k; jand t; ð7Þ

qk jt ≥0 ∀k; jand t; ð8Þ

bok jt ≥0 ∀k; jand t; ð9Þ

yk jt∈ 1; 0f g ∀ k; jand t; ð10Þ

The above supply chain planning model is carried out over
time horizon T. Each component or end item incurs an inven-
tory holding cost if it is kept as inventory and a setup cost if a
purchasing/production order is released. Failure to meet the
demand incurs a back-order cost as well. The objective func-
tion (1) states that the sum of the setup, inventory holding, and
back-order costs has to be minimized. Constraint (2) reflects
the multi-level production structure and the mass-balance
relationships between item inventories in the system over the
planning horizon. A production quantity of product k in period
t is available in period t to satisfy external demand dkjt or to be
used in the production of the succeeding product i. Inequality
(3) states that the production quantities and setups must meet
the capacity constraints for all facilities, and inequality (4)
specifies that, for a particular period, the back-order level
increase from the previous period should be less than the
quantity of the demand during that period. Inequality (5)
ensures that a facility is set up for product k in period t if the
product is produced during this period. Equation (6) states that
there are neither initial nor ending inventories. Inventory
levels (7), production quantities (8), and back-order quantities
(9) cannot be negative, and the setup variable (10) is binary.
This model captures several important aspects of production
planning problems: the bill of material (BOM) structure, as
characterized by aki, which defines the supply structure re-
quired to produce the end item; the fundamental trade-off
among setup, inventory and back-order costs; and the com-
plicating factor of limited capacity.

3 GRHS algorithm

The goal of our study is to find a near-optimal solution
because solving the MIP problem for realistic scenarios using
an optimal procedure, such as branch and bound, is impracti-
cal. To incorporate these points in our heuristic, we propose a
hybrid heuristic algorithm named GRHS. Based on the rolling
horizon local search procedure, GRHS makes the principle
production decisions (ykjt), that is to determine when and in
which facility should production take place. Then the produc-
tion quantity (qkjt), inventory level (zkjt), and back-order quan-
tity (bokjt) are subsequently determined by solving the
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remaining LP problem with a general LP solver. And these
happen in a hybrid manner. As an additional improvement, the
reduced LP is repeatedly solved only within the specified time
window with production decisions (ykjt) beyond the window
fixed. The time window switches the search scope by moving
back and forth along the time horizon. A decision-maker can
trade in solution time for solution quality by deciding on the
time window parameters: rolling speed and width and the
number of iterations in which the MIP solution is constructed,
relaxed, and optimized. The details of GRHS are described as
follows.

Notations:

S* is the current set of ykjt’s for all k, j, t
opp(ykjt) is the opposite value of the current value of ykjt, i.e.,

if ykjt=1, then opp(ykjt)=0, and vice versa
H is the set of decision variables in an MIP solution
H* is the set of decision variables in the best-so-far

MIP solution
L is the set of decision variables in an LP solution
TFence is the width of the rolling horizon
RSize is the speed of the rolling forward
STBase is the starting period of the rolling horizon
maxitr is the maximum number of iterations allowed in

the algorithm

3.1 GRHS

GRHS is an iterative algorithm and has maxitr iterations. In
each iteration, the algorithm goes through two major proce-
dures. Firstly, termed the “construction procedure,” generates
an initial feasible solution. The next “improvement proce-
dure” enhances the initial solution using the local search with
rolling horizon method. GRHS can be characterized as a
global search because the algorithm explores unvisited solu-
tion space throughmaxitr numbers ofmulti-start, starting from
the new initial solution. A general overview of GRHS is
presented in pseudo codes in Fig. 1.

3.2 Construction procedure

The construction procedure creates a feasible solution, as
shown in Fig. 2. To obtain an initial feasible solution for
starting GRHS, theMIPmodel can be reduced to an LPmodel
by randomly assigning an integer value of 0 or 1 to ykjt. The
LP model can then be solved with a known optimal LP solver.
The optimal LP solution is applied to the original MIP model.
The resulting optimal LP solutions might be infeasible for the
original MIP problem. This infeasibility can be eliminated by
finding all unreasonable production lots with qkjt=0 and ykjt=1
then changing the corresponding ykjt to 0. The construction

GRHS ( maxitr , RSize , TFence )

begin

H* := 
for itr :=1 to maxitr do

S* := 
STBase := 0
construction procedure (S*, H*)
improvement procedure (S*, H*, STBase, TFence, RSize)

end for
end

Fig. 1 GRHS algorithm
procedures

construction (S*, H*)

begin

for all k , j and t do // convert a MIP into a LP

r := a random number drawn from [0,1]
if r > 0.5 then S* := S* U { kjty := 1 } // randomly decide the binary integer variable kjty

else S* := S* U { kjty := 0 }
end for
L := Solution{LP_Solver(S*)}
H := L U S*
if H is feasible then H* := H
else   

for all k , j and t do // feasibility process

if kjtq = 0 and kjty = 1 then S* := S*-{ kjty }, S* := S* U { kjty := 0 }
end for
H* := L U S*

end if
end

Fig. 2 Construction procedure
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procedure finally generates a feasible solution. As illustrated
in Fig. 3, the solution can be used as an initial solution for
further enhancement.

3.3 Improvement procedure

The output of the construction procedure is an initial solution
for the next improvement procedure where it can be enhanced
through the local search with rolling horizon procedures. Note
that the number of alternative solutions generated in the local
search process grows very large as the size of the MIP prob-
lem increases. Although the computational time for solving a
single LP problem is trivial, the entire local search process
results in a computational burden for obtaining an efficient
solution. To lessen the burden, this study adopts timewindows
and utilizes ykjt variables only in the time window for neigh-
borhood generation. There are K×J×T numbers of ykjt vari-
ables in the original MIP formulation. In each time window,

however, there are at most K×J×TFence numbers of ykjt
variables, which are the target of neighborhood generation.

The improvement procedure is iterative, and each iteration
is composed of six major steps. In the first step, the time
window is defined by STBase, TFence and RSize. STBase
represents the starting point of the time window, and the width
of it can be confined by TFence. RSize determines the rolling
speed of the time window. The time window can be used as
the rolling horizon. In the second step, ykjt variables within the
time window get new values, and the remaining variables stay
the same. That is, in the procedure, only each ykjt variable for
STBase≤t<min(STBase+TFence,T) in the current solution
gets the new value, which is the opposite of the current value.
For example, if ykjt, which is within the time window, has 0
value in the current solution, the value is changed to 1. The
new value can be represented as opp(ykjt). Then the resulting
problem becomes an LP problem that is solved by the known
optimal solver in the third step. The optimal LP solution, the

improvement procedure (S*, H*, STBase, TFence, RSize)

begin

while STBase < T do

for all k , j and STBase min(STBase + TFence, T) do // search only for time window

S*:= S* - { kjty }

S*:= S* U { ( )kjtopp y } //Change S* by substituting ( )kjtopp y for kjty
end for
L :=solution{LP_Solver(S*)}
H := L U S*
if H is infeasible then 

for all k , j and t do // feasibility process

if kjtq = 0 and kjty = 1 then S* := S* - { kjty }, S* := S* U { kjty := 0 }
end for

end if
H := L U S*
if value(H) < value(H*) then H* := H
STBase := STBase + Rsize

end while
end 

Fig. 3 Improvement procedure

Table 1 Problem types
Parameters Type I Type II Type III

Planning periods in (T) 18 18 18

Number of facilities (J) 5(A,B,C,D,E) 5(A,B,C,D,E) 7(A,B,C,D,E,F,G)

Number of items (K) 11(2) 20(4) 40(6)

BOM coefficient (akj) 1 1 1

Processing time for a product (vkjt) U [0.5, 2.0] U [0.5, 2.0] U [0.5, 2.0]

Setup time (ukjt) U [1, 5] / U [10, 15] U [1, 5] / U [10, 15] U [1, 5] / U [10, 15]

Setup cost (skj) U [1, 10] / U [20, 30] U [1, 10] / U [20, 30] U [1, 10] / U [20, 30]

Inventory holding cost (hkj) U [1, 10] U [1, 10] U [1, 10]

Back-order cost (bkj) U [20, 30] U [20, 30] U [20, 30]

Demand per period (dkjt) U [5, 30] U [5, 30] U [5, 30]
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result of the third step, is applied to the original MIP problem
in the fourth step. If the MIP solutions are infeasible, then the
fifth step is to follow the same process performed in the
construction procedure to make the solution feasible. In the
last step, the resulting new feasible MIP solution is compared
with the best-so-far solution (H*). The better solution is saved
as H*. The current window is moved forward by RSize(-
STBase←STBase+RSize) for the next iteration of the local
search, and the above processes are continued until STBase
becomes equal to or greater than T.

When a time window is rolling, RSize and TFence control
the rolling speed and the scope of the local search space. The
effects of these decision parameters on algorithm performance
will be examined through computational experiments in
Section 4.

4 Computational experiments

4.1 Test problems

Three types of problems (types I, II, and III) are used to verify
the performance of the proposed algorithm. As in Table 1, the
planning horizon of all problem types consists of 18 periods
(T=18). While problem type III consists of seven facilities (A,
B, C, D, E, F, G) with 40 end products, subassemblies, and
component parts, types I and II consist of five facilities (A, B,
C, D, E) with 11 and 20 items, respectively. In addition, the
numbers in parentheses represent the number of end products
for each problem type.

Figures 4 and 5 illustrate the BOM structure and the process
plans among facilities for the different parts. To simplify the
experiment without any loss of generality, BOM coefficients
are set to 1. Figure 5 presents the precedence relation between
the facilities or within a facility. Note that while the product
structure is non-cyclic (as no operation can be its own prede-
cessor), the facility precedent structuremay be cyclic in general.

When it comes to test instance, we consulted the exiting
literature (e.g., [15, 23]) to generate data. No agreed-upon
standard test bed has been established and accepted in the field,
and it is doubtful whether such a data set can be established
which covers all the different distributed lot-sizing problems
arising in reality. Therefore, to simplify our experiment and
without loss of generality, we employed uniform distribution
referring to the existing literature. As given in Table 1, two
different setup costs and times are used. In other words, if the

(a) (b) (c)
1 A 2 A 3 A 4 A 5 A 6 A

7 B 8 B 9 B 10 A 11 B

12 C 13 C 14 C 15 C 16 B 17 B
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D 23 C 24 C

25 E 26 E 27 E 28 E 29 E

30 F 31 E 32F
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G

1 A 2 A
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1 A 2 A 3 A 4 A

5 B 6 B 7 A

8 C 9 C 10 C 11 B 12 B
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D
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D

15
D 16 E 17 C
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Fig. 4 BOM structures for each problem type: a I, b II, and c III (The alphabets in the circles indicate the facilities indices)

A

B

C

D

E

A

B

C

D

E

(a) (b) (c)
A

B

C

D

E

F

G

Fig. 5 Facility precedence structures of problem type: a I, b II, and c III

Table 2 Decision
parameters Parameters Values

maxitr 1, 3, 5

RSize 2, 4, 6

TFence 3, 6, 12, 18
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next operation occurs in the same facility, the setup cost and time
are created from uniform distribution with smaller parameters
than the occasion that the next operation occurs in a different
facility. The same inventory holding and back-order costs are
applied to all problem types. Demands per period are the same
for all problem types. The available capacity of each facility per
period can be calculated by multiplying the sum of the averages
of processing time and setup time by the average of demand:

C jt ¼ Avg dk jt
� �� Avg vk jt

� �þ Avg uk jt
� �� � ð11Þ

4.2 Preliminary experiments

The decision parameters are determined during the prelimi-
nary experiments. The decision parameters that are expected
to affect the performance of GRHS algorithm are (1) maxitr,
(2) RSize, and (3) TFence. Whereas maxitr decides the total
number of iterations, RSize and TFence control the rolling
speed and the breadth of the time window, respectively. The
various levels of parameters used in this experiment are pre-
sented in Table 2.
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Fig. 6 Selections of efficient
parameter pair (RSize, TFence)
based on REO and RET analysis
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Fig. 7 Average REO comparison
according to maxitr
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To analyze the effects of the decision parameters, the
performance of GRHS against a known MIP solver,
XpressMP (©Dash Optimizations), for three problem types is
evaluated. For each problem type, 30 problems are randomly
generated. A relative error on objective value (REO) and a
relative error on computational time (RET) are used as per-
formance measures:

REO ¼ SGRHS‐SMIP

SMIP
ð12Þ

where

SGRHS is the total cost of the solution obtained by GRHS.
SMIP total cost of the solution obtained by solving the

original MIP problem using XpressMP solver. Note
that while problem types I and II solutions are
optimal, the type III solution may not be optimal
because we stop XpressMP after 12 h of running
time.

RET ¼ TGRHS‐TMIP

TMIP
ð13Þ

where
TGRHS and TMIP are the computational times required to

obtain SGRHS and SMIP of equation (12), respectively.
All the algorithms proposed in this paper were implement-

ed in XpressMP and calculated on a Pentium 3.0-GHz ma-
chine with a 4-GB main memory.

4.2.1 Results and findings

Figure 6 shows the GRHS performance results compared to
the MIP solver on total costs and computational times for
various decision parameters. Results show that for problem
types I and II, RSize and TFence do not affect the perfor-
mances unless RSize is bigger than TFence. For type III, as
TFence increases, GRHS performs better for all RSize values.
However, when the RSize value is 6, TFence does not impact
the REO except when the value of TFence is 3. Regarding
RET, in most cases, a larger RSize and a smaller TFence work
better. From these results, the values for RSize and TFence are
chosen to be 6 and 6 and are used for the comparison with
meta-heuristics in the next section.

Figures 7 and 8 represent the performance results of GRHS
with respect to the MIP solver on REO and RET for three
levels of maxitr. As seen in the figures, a larger maxitr gives
better GRHS results for all problem types. However, for
problem type III, the average REO improvement is relatively
small when themaxitr value is changed from 3 to 5. Similarly,
for problem type III, the average RET is not increased sub-
stantially when the maxitr value is increased from 1 to 3.

Table 3 Multiple range tests (Method 99.0 % Duncan)

Algorithms Count Mean Homogeneous groups

GRHS 100 0.000158 X

SA 100 0.001299 X

TS 100 0.001547 X

GA 100 0.023259 X

A
v e

r a
ge

R
E
T

Fig. 8 Average RET comparison
according to maxitr
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However, that is not the case when the maxitr value is in-
creased from 3 to 5. Therefore, the appropriate maxitr value is
selected as 3 in this study.

4.3 Comparison with the existing meta-heuristics

Using problem type III, this section compares GRHS with the
three existing meta-heuristic algorithms: tabu search (TS),
simulated annealing (SA), and genetic algorithms (GA). De-
tailed procedures for TS, SA, and GA employed for the
comparison are described in Appendix. In addition, compre-
hensive overviews of TS, SA, and GA can be found in Glover
[11, 12], Kirkpatrick et al. [16], and Vergana et al. [21].

Because problem types I and II are not practical problems,
only problem type III cases are tested for comparison. One
hundred random type III problems are generated. Note that it
is meaningless to perform computational time analysis be-
cause GRHS with maxitr=3 and (RSize, TFence=(6,6)) for
type III, is approximately 33 % (i.e., planning horizon /
TFence×100) faster than TS, SA, and GA that have maxitr×
K×J×T iterations in total. Therefore, we only take into ac-
count the comparison of the algorithms’ objective function
values.

We use the STATGRAPHICS Centurion XV software pack-
age to perform the analysis of variance (ANOVA). If a factor is
significant, the Duncan multiple range test is then performed. All
of the statistical analyses use a significance level of α=0.01. In
addition, wemeasure a relative deviation error (RDE) as follows:

RDE ¼ SAlgorithm−SBest
SBest

ð13Þ

where

SAlgorithm is the total cost of the solution obtained by GRHS,
TS, SA, or GA.

SBest is the best total cost found during execution.

We use “A>B” to represent that algorithm A is significantly
better than algorithm B and “A=B” to represent that algo-
rithms A and B do not show a statistically significant differ-
ence. Duncan’s test, which is presented in Table 3, shows
GRHS>SA=TS>GA.

5 Conclusion

In this paper, we have considered a multi-level, multi-item
capacitated lot-sizing problem in the supply chain network
that takes back order into account. To solve the problem, we
have proposed an efficient hybrid heuristic algorithm named
GRHS, which is a hybrid rolling horizon heuristic algorithm.
Computational results have shown that the proposed algo-
rithm not only finds excellent solutions for problems of real-
istic size in a reasonable computation time but also is superior
to existing meta-heuristic algorithms, such as tabu search,
simulated annealing, and genetic algorithms. Extending the
GRHS algorithm to supply chain planning with demand un-
certainty and developing a collaborative coordination meth-
odology under a partial information sharing environment
would be interesting to pursue in further research.

Appendix

Procedures for comparative meta-heuristics
Evaluate procedures used in comparative meta-heuristics

S LPf V improved H

improved false

LPf S

LPf infeasible

LPf V
improved true

V LPf V

H H S S H
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Tabu search (TS)

maxitr
*S

kjty k j t
**S *S
**V **S

V

kjtL kjty kjtL
*L

H ∅
V ∞ V

kjtL , ,k j t∀
*L

*S kjty
*S LPf V improved H
maxitr maxitr

**V ∞ **V
k j t *S

kjty kjty k j t

kjty

kjty

*S LPf V improved H

improved kjtL

kjtL LPf **V
**V LPf **V LPf
**S *S **S *S

k ′ k
j′ j
t ′ t

kjty

kjty

**V ∞
*S

*S **S

kjtL 1kjtL − , ,k j t∀

k j tL ′ ′ ′
*L
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Simulated annealing (SA)

maxitr

H ∅
V ∞ V

*S kjty
*S LPf V improved H

Temp | /10 |V
β

maxitr maxitr
**V ∞ **V

k j t *S

kjty kjty k j t

kjty

kjty

*S LPf V improved H

LPf **V *S
**V LPf **V LPf
**S *S **S *S

**[ ( ) / ]LPexp f V Temp− −
**V LPf **V LPf
**S *S **S *S

kjty

kjty

**V ∞
*S

Temp *Tempβ
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Genetic algorithm

maxitr
P
*S **S

C *S **S

kjty k j t

H ∅
V ∞ V

P 1 100, ,S S

pS
p
LPf V improved H 1, ,100p =

* * *maxitr K J T * * *maxitr K J T
*S **S ∈ P

C *S **S
k j t

kjty kjty kjty

C C
LPf V improved H

i [ | 1, ,100]
SS

LP LP
pif max f p= =

iS C

References

1. Akartunali K, Miller AJ (2009) A heuristic approach for big bucket
multi-level production planning problems. Eur J Oper Res 193:396–
411

2. Almada-Lobo B, James RJW (2010) Neighbourhood search meta-
heuristics for capacitated lot-sizing with sequence-dependent setups.
Int J Prod Res 48:861–878

3. Almeder C (2010) A hybrid optimization approach for multi-
level capacitated lot-sizing problems. Eur J Oper Res 200:
599–606

4. Belvaux G, Wolsey LA (2001) Modeling practical lot-sizing prob-
lems as mixed-integer programs. Manag Sci 47:993–1007

5. Chan FTS, Chung SH (2004) A multi-criterion genetic algorithm for
order distribution in a demand driven supply chain. Int J Comput
Integr Manuf 17(4):339–351

6. Chan FTS, Tibrewal RK, Prakash A, Tiwari MK (2014) A biased
random key genetic algorithm approach for inventory-based multi-
i tem lot-s iz ing problem. J Eng Manuf . doi :10.1177/
0954405414523594

7. Danna E, Rothberg E, Pape CE (2005) Exploring relaxation induced
neighborhoods to improve MIP solutions. Math Program 102:71–90

8. Ertogral K,Wu SD (2000) Auction-theoretic coordination of produc-
tion planning in the supply chain. IIE Trans 32:931–940

9. Federgruen A, Meissner J, Michal T (2007) Progressive interval
heuristics for multi-item capacitated lot-sizing problems. Oper Res
55:490–502

10. Fischetti M, Lodi A (2008) Repairing MIP infeasibility through local
branching. Comput Oper Res 35:1436–1445

11. Glover F (1989) Tabu search—part I. ORSA J Comput 1:190–
206

12. Glover F (1990) Tabu search—part II. ORSA J Comput 2:4–32

13. Goren HG, Tunali S, Jans R (2012) A hybrid approach for the
capacitated lot sizing problem with setup carryover. Int J Prod Res
50:1582–1597

14. Helber S, Sahling F (2010) A fix-and-optimize approach for the
multi-level capacitated lot sizing problem. Int J Prod Econ 123:
247–256

15. Hung YF, Chien KL (2000) A multi-class multi-level capacitated lot
sizing model. J Oper Res Soc 51:1309–1318

16. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simu-
lated annealing. Science 220:671–680

17. Li Y, Tao Y, Wang F (2012) An effective approach to multi-item
capacitated dynamic lot-sizing problems. Int J Prod Res 50:5348–
5362

18. Maes J, McClain JO, Van Wassenhove LN (1991) Muti-level capac-
itated lotsizing complexity and LP-based heuristics. Eur J Oper Res
53:131–148

19. Sahling F, Buschkuhl L, Tempelmeier H, Helber S (2009) Solving a
multi-level capacitated lot sizing problem with multi-period setup
carry-over via a fix-and-optimize heuristic. Comput Oper Res 36:
2546–2553

20. Stadtler H (2003) Multilevel lot sizing with setup times and multiple
constrained resources: internally rolling schedules with lot-sizing
windows. Oper Res 51:487–502

21. Vergana FE, Khouja M, Michalewicz Z (2002) An evolutionary
algorithm for optimizing material flow in supply chain. Comput Ind
Eng 43:407–421

22. Wu T, Shi L (2011) Mathematical models for capacitated multi-level
production planning problemswith linked lot sizes. Int J Prod Res 49:
6227–6247

23. Wu CH, Lin JT,WuHH (2010) Robust production and transportation
planning in thin film transistor-liquid crystal display (TFT-LCD)
industry under demand and price uncertainties. Int J Prod Res 48:
6037–6060

406 Int J Adv Manuf Technol (2015) 78:395–406

http://dx.doi.org/10.1177/0954405414523594
http://dx.doi.org/10.1177/0954405414523594

	A hybrid heuristic approach for production planning in supply chain networks
	Abstract
	Introduction
	Problem statement and model formulation
	GRHS algorithm
	GRHS
	Construction procedure
	Improvement procedure

	Computational experiments
	Test problems
	Preliminary experiments
	Results and findings

	Comparison with the existing meta-heuristics

	Conclusion
	Appendix
	References


