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Abstract This paper presents a new adaptive acc-jerk-limited
nonuniform rational B-spline (NURBS) interpolation method
based on an optimized S-shaped C2 quintic feedrate planning
scheme. At first, the modified quintic feedrate profile for each
sharp corner during the acceleration/deceleration (acc/dec)
stage is constructed. To this end, two feedrate slope correction
coefficients (FSCC) are introduced for zero end point accel-
eration and jerk conception in acc/dec stage of each sharp
corner. Also, a new algorithm is recommended to compute the
acc/dec stage traverse time with respect to the deceleration
starting time in this paper. Then, the modified quintic feedrate
scheduling scheme equipped with the FSCC is improved for
the tool path containing several sharp corners. The FSCC and
the deceleration starting times corresponding to all sharp
corners are evaluated using an optimization method such that
the total machining time to be minimized. In this paper, the
pattern search algorithm equipped with the nonlinear con-
straint function including the acceleration and jerk limitations
Matlab code is used for obtaining the optimized parameters to
accomplish the acc-jerk-limited feedrate scheduling scheme
along the tool path. The proposed interpolation method is
performed for several case studies and compared with the
previously published methods to evaluate the effectiveness
of the designed adaptive acc-jerk-limited feedrate scheduling
scheme. The simulation results demonstrate that the proposed
interpolation algorithm is capable for providing a smooth
feedrate transition for all stages of motion along the tool path
and yields satisfactory performances such as total machining
time and the interpolation steps.

Keywords Adaptive NURBS interpolation . Confined chord
error . Acc-jerk limited .Modified S-shaped C2 quintic
feedrate . Pattern search algorithm

1 Introduction

Developments of parametric interpolators and feedrate sched-
uling techniques along a tool path are among the most impor-
tant issues in CAD/CAM systems. Since nonuniform rational
B-spline (NURBS) curves including minimum parameters
have a special feature in designing complicated open and
closed shapes, their interpolation methods have been devel-
oped in CAD/CAM applications rather than the other standard
parametric curves such as B-spline and Bezier curves.

Most of interpolation algorithms for parametric curves rely
on numerical integration to compute the arc length [1–12]. In
particular, use of the first- and second-order approximations of
Taylor series expansion are among the most representative
methods in NURBS curve interpolation techniques [5–12].
But, due to their accumulation and truncation errors, it is not
possible to obtain the exact arc length information using these
approaches, which makes interpolation inherently a rough ap-
proximation (even at fixed feedrates) [13]. The inaccurate arc
length calculation results in undesired fluctuations in feedrate.

To cope with this problem, various NURBS interpolation
methods have been presented instead of Taylor’s expansion
method [14–20]. For instance, Tsai and Cheng [14] proposed a
predictor–corrector interpolator (PCI) to control feedrate fluc-
tuations through setting tolerance of feedrate error for either
given constant or variable feedrate commands. Zhang and Song
[15] advised an iterative feedrate optimization algorithm for
real-time NURBS interpolation. In their work, the parametric
curve is firstly approximated with the Adams–Bashforth meth-
od (ABM) and then a feedback scheme is used to maintain the
feedrate fluctuations in a specified tolerance limit.

The chord error limit can be imposed on feedrate profile
generation in NURBS interpolation algorithms [21–32]. For
instance, Yeh and Hsu [21] suggested an adaptive NURBS
interpolation algorithm, in which the feedrate was adaptively
changed along the path to keep the chord error within a
specified tolerance range. Zhiming et al. [22] suggested a
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variable feedrate strategy based on geometric properties of
tool path. Baek et al. [23] proposed a simple and fast NURBS
interpolation algorithm and compared to the Taylor series
interpolators. In their work, the constant chord lengths were
obtained by recursive characteristics of NURBS curve. This
method aims to achieve constant chord length for the circular
interpolation to reduce the feedrate fluctuations.

Although the destined precision of the chord error can
be satisfied by the aforementioned algorithms, sudden
changes in curve ’s curvature would cause the
acceleration/deceleration (acc/dec) and jerk to be beyond
the limits. Several methods have considered acc/dec as
well as chord error in their interpolation procedure
[25–32]. For instance, Yong and Narayanswami [25] in-
vestigated off-line NURBS interpolation method to simul-
taneously keep the both chord error within a specified
tolerance and the acc/dec of corner machining. Du et al.
[26] presented an adaptive NURBS interpolator with real-
time look-ahead function used for corner machining to
meet chord error and acc/dec constraints. Sun et al. [27]
recommended a NURBS interpolator method with simul-
taneous constraints of chord error and acc/dec for curvi-
linear path machining. Feng et al. [28] proposed a real-
time adaptive NURBS interpolator considering axis accel-
eration limit to confine both the chord error and the axis
acceleration.

Adaptive NURBS interpolation methods have been
recently improved by the feedrate scheduling algorithms
considering confined chord error and machining dynamic
characteristics, i.e., acc/dec and jerk [33–47]. The main
difference of the referred methods is applying different
feedrate scheduling schemes during re-interpolation stage
around sharp corners, crucial points with large curvature,
or sensitive areas along the tool path. Tsai et al. [35]
proposed a look-ahead NURBS interpolation approach
including corner detection module, a jerk-limited module,
and a dynamics module to take into account chord errors,
feedrate fluctuations, jerks, and servo-errors simulta-
neously. In their work, bell-shape acc/dec planning has
been adopted in the integrated look-ahead dynamics-based
(ILD) interpolation algorithm to generate the feedrate
profile of each divided small segments around a sharp
corner. However, their method has high computational
complexity [36]. In addition, their results are presented
only for a quite simple geometrical path, consisting of a
few splines. Nevertheless, that iterative technique
achieves better accuracy while requiring less machining
time compared to the adaptive-feedrate method of Tikhon
et al. [9] and the curvature-feedrate interpolation proposed
by Yeh and Hsu [8]. Liu et al. [37] utilized an adaptive-
feedrate NURBS interpolation scheme, which meets the
requirements of constant feedrate, chord accuracy, and
machining dynamic constraints. In their method,

throughout the re-interpolation stage, the velocity profile
at the sharp corner to satisfy the specified chord error,
acc/dec, and jerk limits was accommodated by a B-spline
fitting method and idea of fast Fourier transform (FFT)
filtering. That method gains good performance in experi-
ments; however, complex computation is its big flaw [38].
Xu et al. [39] proposed an adaptive NURBS interpolator
with real-time look-ahead function to meet the demand of
machining accuracy requirement along with limited acc/
dec and jerk values. In [39], the velocity profile around a
corner in the acc/dec stage is generated according to the
trapezoidal or triangular acc/dec profile. But, the total
time of acceleration or deceleration was not considered
and the recalculation of acceleration rate or jerk was
based on the requirement of interpolation curve length
only [40]. Du et al. [41] developed an adaptive NURBS
curve interpolator with real-time and flexible acc/dec con-
trol scheme by considering preset jerk range. In that work,
the feedrate sensitive was consisted of three increasing
and three decreasing stages connected by a turning point
with minimum feedrate. Nevertheless, the method pre-
sented in [41] used special trace back to any feedrate
sensitive area, which results in a large number of total
interpolation steps. Wang et al. [42] introduced the
adaptive acc/dec and jerk-limited module to smooth
the velocity sharp corner. In their method, the S-
shaped velocity profile around the sharp corner was
smoothened by digital convolution method to ensure
the acceleration and jerk within a specified tolerance.
However, the digital convolution approach is unable to
generate various velocity profiles which are useful for
CNC machine tools [43]. In addition to the above
discussed feedrate scheduling approaches, the velocity
profiles for the sensitive areas used in [44] and [45]
have been planned based on cubic polynomial and cubic
spline methods, respectively. Also, in [46], the sine-
curve velocity profile was employed for each NURBS
block around a sharp corner according to the block
length and the given limits of acceleration and jerk.
Furthermore, a combination of acc/dec control before
interpolation (ADBI) and acc/dec control after interpo-
lation (ADAI) methods along with a digital convolution
technique has been performed for scheduling the
feedrate in the multi-block NURBS interpolation in
[47].

Based on the different theoretical/computational aspects
and various constraints used in the aforementioned NURBS
interpolation techniques, the most previous relevant works are
summarized in Table 1.

In this paper, a novel adaptive NURBS curve interpolation
with the confined chord error, acceleration, and jerk modules
is proposed. At first, using exponential functions, a new
strategy to construct the modified S-shaped quintic feedrate
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profile around a sharp corner on the NURBS curve is present-
ed rather than the trapezoidal- or triangular acc/dec feedrate
profile used in [39]. To this end, the feedrate slope correction
coefficients (FSCC) are introduced for each sharp corner
during the acc/dec stage. Also, in contrast to the method
presented in [39], in which the total time of acceleration or
deceleration was not considered; in this paper, the a new
algorithm is recommended to compute the acc/dec stage tra-
verse time with respect to the deceleration starting time. Then,
to accomplish the acc-jerk limited S-shaped feedrate schedul-
ing scheme along the path containing several sharp corners,
the slope correction coefficients along with the starting times
for acc/dec stages corresponding to all sharp corners are
evaluated using the pattern search algorithm to achieve the
minimum total machining time.

Henceforth, the paper is organized as follows. In Sect. 2,
the principle of NURBS curves and their interpolation based
on the ABM are briefly reviewed. In Sect. 3, adaptive
feederate with chord error limit module is presented. In Sect. 4,
the acc-jerk-limited S-shaped feedrate scheduling scheme is
advised for the NURBS curve as a tool path containing several
sharp corners. To evaluate the performance of the proposed
acc-jerk-limited NURBS interpolation method, the simulation

results are discussed and compared with previous research
works in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Principle of NURBS curves interpolation

2.1 Review on NURBS curves

The NURBS curve of degree p, defined by given n+1 control
points P0,P1,…,Pn with corresponding weights w0,w1,…,wn

and the knot vector U={U0,U1,…,Um} is

C uð Þ ¼

X
k¼0

n

Nk;p uð ÞwkPk

X
i¼0

n

N i;p uð Þwi

¼
X
k¼0

n

Rk;p uð ÞPk ð1Þ

where u is the curve parameter. Also, Rk,p(u) and Nk,p(u) are
the rational B-spline and basis functions of degree p, respec-
tively, which are described as follows [48]:

Table 1 The summarized previ-
ous works on the NURBS inter-
polation techniques

Authors/
Reference

Used theoretical/computational algorithms Considering constraint(s)

Tsai and Cheng [14] The predictor–corrector interpolator (PCI) for either
given constant or variable feedrate commands

Confined feedrate
fluctuation

Zhang and Song [15] The Adams–Bashforth method (ABM) along with a
feedback scheme

Confined feedrate
fluctuation

Yeh and Hsu [21] Adaptive feedrate method along with the first-order
Taylor’s expansion

Confined chord error

Baek et al. [23] Recursive method to achieve constant chord length
for the circular interpolation

Constant chord length
and confined feedrate
fluctuation

Yong and
Narayanswami [25]

Off-line NURBS interpolation along with the
first-order Taylor’s expansion

Chord error and acc/
dec limited

Du et al. [26] Adaptive NURBS interpolator with real-time
look-ahead function and the second-order Taylor’s
expansion

Chord error and acc/
dec limited

Sun et al. [27] Feedrate scheduling method along with the
second-order Taylor’s expansion

Chord error and acc/
dec limited

Feng et al. [28] Real-time adaptive NURBS interpolator along with
the second-order Taylor’s expansion

Chord error and acc/
dec limited

Tsai et al. [35] Integrated look-ahead dynamics (ILD) interpolator using
bell-shape acc/dec planning

Chord error, acc/dec,
and jerk limited

Liu et al. [37] Look-ahead feedrate scheduling method around a sharp
corner using B-spline fitting and FFT filtering

Chord error, acc/dec,
and jerk limited

Xu et al. [39] Adaptive feedrate scheduling method around a sharp
corner using trapezoidal or triangular acc/dec profile

Chord error, acc/dec,
and jerk limited

Du et al. [41] Adaptive NURBS curve interpolator with real-time
acc/dec control along with the second-order Taylor’s
expansion

Chord error, acc/dec,
and jerk limited

Wang et al. [42] Feedrate scheduling scheme around a sharp corner
using digital convolution method

Chord error, acc/dec,
and jerk limited
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Rk;p uð Þ ¼ Nk;p uð ÞwkX n

j¼0
N j;p uð Þwj

ð2Þ

Nk;0 uð Þ ¼ 1 if Uk ≤u < Ukþ1

0 otherwise

�

Nk;p uð Þ ¼ u−Uk

Ukþp−Uk
Nk;p−1 uð Þ

þ Ukþpþ1−u
Ukþpþ1−Ukþ1

Nkþ1;p−1 uð Þ

ð3Þ

Differentiating Eq. 1 versus u will yield [49]

C
0
uð Þ ¼ dC uð Þ

du
¼
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k¼0

n
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and
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2.2 NURBS curves interpolation based on the ABM

Based on the feedrate along a tool path, the interpolated points
on the tool path are found using the interpolation procedure.
For this purpose, at first, the feedrate along the NURBS curve
as the tool path is expressed as follows:

V tð Þ ¼ ds

dt
¼ ds

du

du

dt
ð6Þ

where s is the arc length. Thus, we have

du

dt
¼ V tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dCx uð Þ
du

� �2
þ dCy uð Þ

du

� �2
þ dCz uð Þ

du

� �2r ð7Þ

where Cx(u),Cy(u), andCz(u) are the x, y, and z components of
a point on the NURBS curve corresponding to the parameter
u.

The closed form solution of Eq. 7 for the NURBS param-
eter u does not exist in general. In this paper, the NURBS
interpolator is executed as follows using the ABM around the
instant of tk=kTs, rather than the first- or second-order Taylor’s
expansion method.

ukþ1 ¼ uk þ Ts

24
55

du

dt

����
u¼uk

−59
du

dt

����
u¼uk−1

þ 37
du

dt

����
u¼uk−2

−9
du

dt

����
u¼uk−3

 !
; k ¼ 3; 4;:::

ð8Þ
where Ts is the sampling period.

According to Eq. 8, the values of u0,u1,u2 and u3 are
required to compute uk+1. The amount of u0=U0 is often
selected as zero, and the other parameters are determined by
the fourth-order Runge–Kutta method by the following equa-
tion [50]:

ukþ1 ¼ uk þ Ts

6
f k1 þ 2 f k2 þ 2 f k3 þ f k4ð Þ; k ¼ 0; 1; 2 ð9Þ

In which

f k1 ¼ f tk ; ukð Þ
f k2 ¼ f tk þ Ts

2
; uk þ Ts f k1

2

� �

f k3 ¼ f tk þ Ts

2
; uk þ Ts f k2

2

� �
f k4 ¼ f tk þ Ts; uk þ Ts f k3ð Þ

ð10Þ

After computing the curve parameter values u0,u1,u2,…
from Eqs. 8–10, the NURBS curve segments between the
contiguous interpolated points corresponding to these com-
puted curve parameter values are obtained by Eq. 1.
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3 Adaptive feedrate with chord error limit module

As shown in Fig. 1a, the maximum distance between a curve
segment related to two consequently interpolated points and
its corresponding chord is defined as the chord error.

The interpolated points of a NURBS curve, obtained from
the interpolation method presented in Sect. 2, may result in a
large chord error. Due to the fact that the chord error is
considered as a major error source for interpolation [4, 28],
thus, in order to achieve high-machining accuracy, the chord
error must be controlled under the prescribed tolerance during
interpolation. The feedrate has a significant influence on the
chord error. On the other hand, the chord length is closely
related to the radius of curvature as well as feedrate. Thus, the
relation among chord error, feedrate, and radius of curvature
should be specified in the interpolation algorithms [21].

According to Fig. 1b, the chord error can be derived by the
following equation [21].

δk ¼ ρk−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρk2−

Lk
2

� �2
s

ð11Þ

where ρk is the radius of curvature corresponding to uk, and Lk
represents the distance between the interpolated points R(uk)
and R(uk+1) on the arc. These parameters are calculated as
follows.

ρk ¼
C

0
ukð Þ	 
3

C
0
ukð Þ � C″ ukð Þ�� �� ð12Þ

Lk ¼ c ukþ1ð Þ−c ukð Þ ¼ Ts � V ukð Þ ð13Þ

Substituting Eq. 13 into Eq. 11 yields:

V ukð Þ ¼ 2

Ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρk2− ρk−δkð Þ2

q
ð14Þ

According to Eq. 14, V(uk) is evaluated as the acceptable
feedrate by setting ERk=δk as the tolerance value of the chord
error. Nevertheless, in the vicinity of the sharp corner with
high curvature, the chord error generated by the interpolation
process may exceed the prescribed tolerance. Therefore, the
feedrate should be adjusted adaptively based on the curvature
radius regarding the specified tolerance value of the chord
error. That is

V ukð Þ ¼
F; i f

2

Ts
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρk2− ρk−ERkð Þ2

q
> F

2

Ts
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρk2− ρk−ERkð Þ2

q
; otherwise

8><
>: ð15Þ

where F is the namely feedrate along the tool path.
The sensitive feedrate area corresponding to the large cur-

vature points of the path is divided to two typical stages as
deceleration and acceleration, which are connected by a turn-
ing point with the minimum feedrate ofVmin obtained from the
adaptive feedrate with chord error limit module. The feedrate
profile in the vicinity of a sharp corner can be represented as
follows:

V ukð Þ ¼ F;V ukþ1ð Þ;…;V ukþmð Þ ¼ Vmin;…;f
V ukþmþnð Þ;V ukþmþnþ1ð Þ ¼ Fg

where uk+m refers to the parameter value of the velocity sharp
corner point with minimum feedrate of Vmin.

a The chord error

b Near-arc approximation

Fig. 1 The chord error calculation
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4 The proposed feedrate scheduling scheme enhanced
with the confined acceleration and jerk modules

During the interpolation process, the feedrate is adjusted based
on the adaptive feedrate with chord error limit module. How-
ever, the adaptive feederate based on the chord error limit for
the crucial points with large curvaturesmay lead to the amount
of acc/dec and jerk along the path exceeds their allowable
tolerance range. This work causes some problems such as
heavy shock to machine tool and subsequently deteriorates
surface quality and machining accuracy as well [41]. In addi-
tion to considering the adaptive feederate based on the chord
error limit, in the following, a new confined acc-jerk feedrate
scheduling scheme is proposed to improve the NURBS curve
interpolation procedure. In the proposed algorithm, the name-
ly feedrate is maintained at most of the time and adaptively
reduced in large curvature areas to meet the demand of the
confined acceleration and jerk as well as the chord error.

The advised feedrate scheduling scheme for each stage of
acc/dec around a sharp corner consists of the following
modules:

– The modified S-shaped quintic feedrate construction
module

– The acc/dec stage traverse time calculation module
– The optimized acc-jerk-limited S-shaped quintic feedrate

scheduling scheme module

In the following, at first, a brief review on the time-
dependent acc/dec feedrate profiles is presented. Then, a
new strategy to construct the modified S-shaped quintic
feedrate profile around a sharp corner for each stage of acc/
dec is introduced. Finally, the optimized acc-jerk-limited S-
shaped quintic feedrate scheduling scheme is elaborated.

4.1 Time-dependent acc/dec feedrate profiles

Consider a time-dependent feedrate function V(t) defined on
the acc/dec stage around a sharp corner. Note that t∈[0,T],
where T is the traverse time. A specific simple form of variable
federate V is a polynomial of t, and it is very useful to achieve
smooth feed acceleration (deceleration). Using the normalized
time variable τ=t/T and expressing V(t) in the Bernstein basis
form on the unit interval τ∈[0,1], we have [51]

V τð Þ ¼
X
k¼0

n

V kb
n
k τð Þ ð16Þ

where bnk τð Þ ¼ nð kÞ 1−τð Þn−kτk and Vk are the Bernstein
basis functions and coefficients, respectively.

Given a polynomial V(t) of odd degree n in Eq. 16, one can
define a feedrate profile that matches V=Vi for t≤0 and V=Vf

for t≥T with C
n−1ð Þ= 2 continuity. In order to obtain smooth

motion transition between different phases along the path and
also ensure continuity of both the feed acceleration
(deceleration) and feed jerk, the S-curve C2 quintic profiles
are preferred rather than the C0 linear and C1 cubic ones [51,
52].

For the C2 quintic time-dependent feedrate profile, the
Bernstein coefficients Vk in Eq. 16 are determined by applying
the conditions of speed, acceleration, and jerk at the beginning
of acc/dec stage, i.e., V i;V̇ i and V̈ i , and the end of acc/dec
stage, i.e., V f ;V̇ f and V̈ f [51]. Those are

V 0 ¼ V i

V 1 ¼ V i þ 1

5
TV̇ i

V 2 ¼ V i þ 2

5
TV̇ i þ 1

20
T2V̈ i

V 3 ¼ V f −
2

5
TV̇ f þ 1

20
T 2V̈ f

V 4 ¼ V f −
1

5
TV̇ f

V 5 ¼ V f

ð17Þ

Figure 2 shows the C2 quintic variable feedrate decelera-
tion profile defined by Eqs. 16 and 17 when V0=V|τ=0=Vi,
V5=V|τ=1=Vf, andV̇ i ¼ V̇ f ¼ V̈ i ¼ V̈ f ¼ 0 .

4.2 The modified quintic feedrate profile around a sharp
corner using exponential functions

Although the Bernstein coefficients in Eq. 17 yields a unique
smooth feedrate profile in acc/dec stage via Eq. 16, which
meets the requirements of initial and final values of feedrate,
acceleration, and jerk, there is no control on the ace/dec and
jerk values during the traverse time. These coefficients can be
modified to achieve an S-shaped quintic feedrate profile
around a sharp corner, which affect the acceleration and jerk
during the specified traverse time.

In this paper, a new strategy to construct the S-shaped quintic
feedrate profile around a sharp corner for each stage of acceler-
ation or deceleration is introduced. This strategy is based on zero
end point acceleration and jerk conception in each acc/dec stage.
In fact, the sharp corner along the path is passed through such
that the acceleration and jerk values at the start and end points of

acc/dec stage during the traverse time to be zero, i.e.,V̇ ijτ¼0 ¼ 0

; V̇ f

��
τ¼1

¼ 0; V̈ ijτ¼0 ¼ 0 ; V̈ f

��
τ¼1

¼ 0 .

To satisfy the above acceleration and jerk conditions by the
S-shaped quintic feedrate profile, the following time-
dependent end-acc/dec and end-jerk conditions are proposed:

V i ¼ 1−e naτð Þ

V f ¼ 1−ena 1−τð Þ

V̈ i ¼ 1−e n jτð Þ
V̈ f ¼ 1−en j 1−τð Þ

ð18Þ
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where na and nj are the FSCC for a sharp corner during the
acc/dec stage.

Using the end-acc/dec and end-jerk conditions via Eq. 18
in Eq. 17 and substituting the newly Bernstein coefficients
into Eq. 16 yields the modified quintic feedrate profile as V(τ,
na,nj) around a sharp corner during the traverse time period.

In order to investigate the effect of the FSCC, i.e., the set of
na and nj, on the C

2 quintic feedrate profile, Fig. 3 is illustrated.
Figure 3 shows the modified quintic feedrate profiles within the
traverse time of T=0.1 s from Vi=0.25 m/s to Vf=0.2 m/s for
several different values of na and nj. As can be seen in Fig. 3,
the feedrate at the end points of a sharp corner in the deceler-
ation stage are kept as Vi=Vi|τ=0=0.25 m/s and Vf=Vf|τ=1=
0.2 m/s, while the feedrate slope during the specified traverse
time is varied. Subsequently, the acceleration and the jerk
during the traverse time T=0.1 s are changed. Therefore, the
FSCC defined for a sharp corner has the significant effect on
the slope of the feedrate profile within a certain traverse time. In
the other words, the acceleration and the jerk values during the
traverse time depends on the FSCC utilized in the proposed
modified quintic feedrate profile around the sharp corner.

4.3 Acc/dec stage traverse time calculation for a sharp corner

The acc/dec stage traverse time, i.e., T, has the important role
to construct the acc-jerk-limited S-shaped quintic feedrate
profile around a sharp corner. Because the acceleration and
deceleration stage traverse time calculation has the same pro-
cedure, in the following, the deceleration stage traverse time
calculation process is explained.

According to Fig. 4a, point B has namely velocity of F and
denotes to the start point of the adaptive feedrate. This point is
evaluated using the adaptive feedrate with chord error limit
module Eq. 15. Besides, point C refers to the end point of the
adaptive feedrate with chord error limit module, i.e., the
minimum feedrate of Vmin related to the sharp corner. The
adaptive feedrate time tclm is determined having points B and
C. Figure 4a also shows the specifications of the modified
quintic feedrate profile including a specified set of na and nj
around a sharp corner in the deceleration stage. In fact, the
proposed modified quintic feedrate profile with the confined
chord error, acceleration and jerk modules is constructed
between the points A and D as shown in Fig. 4a. For a given
starting time tA, the trace back time t1 and consequently point
A can be easily determined by indexing of the interpolated
points on the constant namely feedrate of Fwith respect to the
point B.

As shown in Fig. 4b, A′, B′, C′, and D′ are points on the path
via the NURBS curve corresponds to the points A, B, C, and D
on the feedrate profile, respectively. As it is observed, for a
given starting time tA, all points A,B, C, and D on the adaptive
feedrate profile equipped with the chord error limit module are

obtained. Thus, the distance from A′ to C′, i.e., A
0
C

0
, is

calculated using the adaptive feedrate profile with chord error
limit module. According to Fig. 4b, the trace back distance
from A′ to D′ employing the proposed modified quintic
feedrate profile must be equal to the distance from A′ to C′
using the adaptive feedrate profile with chord error limit mod-
ule. Therefore, the area under their corresponding points on the
aforementioned feedrate profiles should be equal. That is

SADEG ¼ SABCFG ¼ A
0
C

0 ð19Þ

It is noted that SADEG ¼ ∫
τ¼t=T

0
V τ ; na; nj

	 

dτ , in which

V(τ,na,nj) is the modified quintic feedrate profile via Eq. 16
along with the time-dependent end-acc/dec and end-jerk con-
ditions of Eq. 18.

Fig. 2 Feed deceleration from Vi to Vf using the C2 quintic feedrate
defined by Eqs. 16 and 17
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Fig. 3 The effect of FSCC on the deceleration feedrate profile during a
specified traverse time
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After obtaining the adaptive feedrate profile with chord
error limit module, for a given starting time tA, na and nj
corresponding to a sharp corner, the deceleration stage tra-
verse time T is computed from Eq. 19. Also, the trace forward
time t2 is evaluated as t2=T−t1−tclm.

4.4 The optimized acc-jerk-limited S-shaped feedrate
scheduling scheme

In general, as shown in Fig. 5, the tool path contains several
sharp corners, which should be passed through with the mod-
ified quintic acc/dec feedrate profiles. According to Fig. 5,
three independent parameters as nai,nji and tAi are employed to

construct the modified quintic feedrate profile around the
sharp corner #i in each acc/dec stage. Therefore, to accomplish
the S-shaped quintic feedrate scheduling scheme along the
path, the FSCC and the starting acc/dec times corresponding
to all sharp corners, i.e., nai,nji and tAi for i=1,…n, should be
specified. As a result, 3n parameters must be used for con-
structing all modified quintic acc/dec feedrate profiles on the
path containing n sharp corners. These parameters can be
determined using an optimization algorithm such that the total
machining time be minimized while the acc/dec and jerk limit
constraints are satisfied.

The total machining time as the objective function (O.F.)
throughout use of the S-shaped quintic feedrate scheduling

Specifications of the modified quintic feedrate profile

Typical sharp corner with trace back distance

a

b

Fig. 4 The modified quintic
feedrate profile around a sharp
corner in the deceleration stage
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scheme along the path does not have the implicit function, and
it is computed numerically. Besides, the derivative of the
objective function is not available and also it is impossible
to obtain explicit estimation of any derivatives of the objective
function as well as the objective function. Therefore, the direct
search methods can be used for solving the aforementioned
optimization problems in which does not require any infor-
mation about the gradient of the objective function.

There are three direct searchmethods called the generalized
pattern search (GPS), the generating set search (GSS), and the
mesh adaptive search (MADS). All are pattern search algo-
rithms that compute a sequence of points at each step, which is
called a mesh, that approach an optimal point. The mesh is
formed by adding the current point to a scalar multiple of a set
of vectors called a pattern. With GPS, the collections of
vectors that form the pattern are fixed-direction vectors. With
GSS, the pattern is identical to the GPS pattern, except when
there are linear constraints and the current point is near a
constraint boundary. Also, with MADS, the collection of
vectors that form the pattern are randomly selected by the
algorithm. Further details on the pattern search algorithm can
be found in [53, 54].

The GPS method as the pattern search algorithm is
employed in this paper to achieve the optimized total machin-
ing time. The Matlab code: pattern search(@O.F.,X0,LB,UB,
NonlCon) minimizes the O.F. using the starting point X0
subjected to a set of lower and upper bounds on the design
variables (LB and UB) under the nonlinear constraints defined
in NonlCon function. The solution X is found in the range
LB≤X≤UB.

The following nonlinear constraints for the acc/dec and jerk
values must be used in our optimization algorithm. Thus,

acc=dec&jerkf gactual‐ acc=dec&jerkf gallowable≤0 ð20Þ

In this work, NonlCon is the nonlinear constraint function
presented by Eq. 20. A Matlab function NonlCon is written to
keep the maximum acc/dec and jerk within the specified
allowable physical limits throughout the Matlab’s pattern
search algorithm in our optimization problem. The selected
options for the pattern search algorithm are chosen according
to [55, 56]. The outputs of the pattern search algorithm are the
optimum variables and the minimized total machining time. In
fact, the proposed interpolation method profits from the opti-
mization algorithm equipped with the nonlinear constraint
function, in which the requirements of the machining dynamic
are satisfied via Eq. 20. Thus, the machining dynamic con-
straints have been taken into account in the advised acc-jerk-
limited interpolation method.

According to the flowchart depicted in Fig. 6, the optimi-
zation variables are nai,nji and tAi. The pattern search algo-
rithm starts with an initial point for nai,nji and tAi. In stage 1,
based on initial amounts of nai,nji and tAi, the deceleration
stage traverse time for the first sharp corner, i.e., T1, is com-
puted using Eq. 19. In stage 2, the modified quintic feedrate
profile around the first sharp corner in the deceleration stage
with the traverse time T1 is constructed. In this stage, the
modified quintic feedrate profile around the first sharp corner
in the acceleration stage is also constructed. This work is done

Fig. 5 The S-shaped quintic
feedrate scheduling scheme along
the path containing several sharp
corners
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for all sharp corners along the NURBS curve as the tool path
to complete the modified quintic feedrate scheme. In the next
stage, the total machining time, which is the sum of the acc/
dec stage times around all sharp corners and the time related to
the all constant feedrate stages of motion, are computed for a
set of nai,nji and tAi. At each successful iteration, the pattern
search algorithm changes the variable via the nonlinear con-
straint function Eq. 20. Finally, the minimized total machining
time and the optimum variables are computed by the pattern
search algorithm equipped with the nonlinear constraint func-
tion Eq. 20.

In this paper, the distance between adjacent sharp corners
along the tool path is considered long enough such that they do
not overlap. It should be noted that there are different types of
overlapping corners called “ripple effect” of adjacent corners/
sensitive points [57]. For instance, the feedrate profile in the
acceleration phase around a corner may intersect with the
feedrate profile in the deceleration phase around the adjacent
corner, or in another type, the whole feedrate profile around a
corner may be replaced with the adjacent corner’s feedrate
profile, and so on. Thus, based on the different relationship of
the adjacent sharp corners, the proposed acc-jerk-limited inter-
polationmethod should be improved to update the start point of
deceleration, the end point of acceleration phase, and the
feedrate profiles around two consecutive corners.

Due to the fact that the machining dynamic constraints in
this work have been included in the optimization algorithm
equipped with the nonlinear constraint function, the proposed
acc-jerk-limited interpolation method has much lower com-
plexity than the other methods in which the dynamic con-
straints are directly considered in the interpolation algorithms.
Nevertheless, cause of utilizing an optimization algorithm
which is inherently time consuming, for the case of very long
tool path in practical applications, calculation load may be

large. For that case; an off-line carrying out of the algorithm
leads to state the feedrate profiles around sharp corners on the
tool path and subsequently, for real-time interpolation, the
parametric curve information can be augmented with the
detected feedrate profiles.

5 Performance analysis and simulation results

5.1 Case studies

Two NURBS curves as case studies are used to evaluate the
performance of the proposed feedrate scheduling scheme with
the confined chord error, acceleration and jerk modules. One
is the “diamond”-shaped curve and the other is “infinity”-
shaped curve. The degree, knot vector, control points, and
the weights for constructing the diamond curve are chosen
according to [39], while these parameters to generate the
infinity-shaped curve are selected according to [41]. Those
are as follows:

Diamond curve,

p ¼ 2
U ¼ 0; 0; 0; 0:25; 0:25; 0:5; 0:5; 0:75; 0:75; 1; 1; 1f g
P0 ¼ 0:15; 0:3; 0ð Þ;P1 ¼ 0:3; 0:4; 0ð Þ;P2 ¼ 0:45; 0:3; 0ð Þ;
P3 ¼ 0:6; 0:2; 0ð Þ;P4 ¼ 0:45; 0:1; 0ð Þ;P5 ¼ 0:3; 0; 0ð Þ;
P6 ¼ 0:15; 0:1; 0ð Þ; P7 ¼ 0; 0:2; 0ð Þ; P8 ¼ 0:15; 0:3; 0ð Þ
w0 ¼ 1;w1 ¼ 10;w2 ¼ 1;w3 ¼ 10;w4 ¼ 1;
w5 ¼ 10;w6 ¼ 1;w7 ¼ 10;w8 ¼ 1

Infinity curve,

p ¼ 2
U ¼ 0; 0; 0; 0:25; 0:5; 0:5; 0:75; 1; 1; 1f g
P0 ¼ 0:15; 0:15; 0ð Þ;P1 ¼ 0; 0; 0ð Þ;P2 ¼ 0; 0:3; 0ð Þ;
P3 ¼ 0:15; 0:15; 0ð Þ;P4 ¼ 0:3; 0; 0ð Þ;P5 ¼ 0:3; 0:3; 0ð Þ;
P6 ¼ 0:15; 0:15; 0ð Þ
w0 ¼ 1;w1 ¼ 100;w2 ¼ 100;w3 ¼ 1;w4 ¼ 100;
w5 ¼ 100;w6 ¼ 1

As can be seen in Fig. 7a, the diamond-shaped curve
contains four large curvature corners marked as 1, 2, 3, and
4, and the directional change in corners 2 and 4 is sharper than
that of 1 and 3, while the infinity has four sharp corners with
the same curvatures (see Fig. 7b). The curvature of two above
NURBS curves are also depicted in Fig. 7c. The starting point
for the interpolating the diamond- and Infinity-shaped curves
are also shown in Fig. 7a, b. The simulation conditions for
interpolating the above curves are given in Table 2 based on
[39, 41].

Fig. 6 The pattern search algorithm implemented for minimization of the
total machining time
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5.2 Interpolation results

5.2.1 Diamond interpolation

The diamond curve has the same curvature in corners 1 and 3
as well as corners 2 and 4. Therefore, the same na and nj are

considered for the sharp corners with same curvatures. For this
case, eight independent optimization variables as tA1,tA2,tA3,
tA4, na1=na3,na2=na4, nj1=nj3, and nj2=nj4 are computed by
the pattern search algorithm. The start point, lower bounds,
and upper bounds of these parameters used in the pattern
search algorithm are given in Table 3. As reported in Table 3,
for this case, the start point, lower bounds, and upper bounds
of the parameters in the pattern search algorithm for minimiz-
ing the total machining time are as follows:

X 0 ¼ 0:65; 2:0; 3:75; 5:2; 0:05; 0:9; 0:1; 0:4; 0:05; 0:9; 0:1; 0:4½ �
LB ¼ 0:6; 1:8; 3:3; 4:5; 0:01; 0:01; 0:01; 0:01; 0:01; 0:01; 0:01; 0:01½ �
U B ¼ 0:9; 2:3; 3:9; 5:4; 1; 1; 1; 1; 1; 1; 1; 1½ �

For the diamond interpolation, the parameters of the opti-
mized acc-jerk-limited S-shaped feedrate have been computed
by the pattern search algorithm as presented in Table 4. Those
are as follows:

tA1 ¼ 0:746; tA2 ¼ 2:08359; tA3 ¼ 3:6776; tA4 ¼ 5:0141
na1 ¼ na3 ¼ 0:09 ; na2 ¼ na4 ¼ 0:19
nj1 ¼ nj3 ¼ 0:69 ; nj2 ¼ nj4 ¼ 0:59

The results of the pattern search algorithm for this case are
shown in Fig. 8. As can be seen, the total machining time
using the above initial point is equal to 6.3 s, which converges
and reduces to 6.19 s after 105 iterations. The total number of
function evaluations is equal to 1596.

The simulation results for the diamond interpolation using
the proposed acc-jerk-limited feedrate scheduling scheme are
illustrated in Fig. 9. Figure 9a shows the optimized acc-jerk-
limited S-shaped feedrate along the path. The adaptive
feedrate profile obtained from the chord error limit module
is also depicted in Fig. 9a. It is observed that the chord error
calculated by the optimized acc-jerk-limited S-shaped feedrate
is less than its allowable tolerance limit, i.e., 1 μm (see
Fig. 9b). The resulting feedrate and the chord error profiles
from the acc-jerk-limited NURBS interpolation enhanced
with the optimized S-shaped C2 quintic feedrate planning

a

b

c

Fig. 7 The diamond- and infinity-shaped as the NURBS curves used in
the simulation tasks

Table 2 The interpolation conditions for the diamond- and infinity-
shaped curves

Diamond [39] Infinity [41]

Namely feedrate F=0.25 m/s F=0.2 m/s

Maximum acceleration Amax=1 m/s2 Amax=1 m/s2

Maximum jerk Jmax=10 m/s3 Jmax=10 m/s3

Maximum chord error δmax=1 μm δmax=1 μm

Sampling period Ts=2 ms Ts=2 ms
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scheme show that the feedrate automatically reduces at large
curvature areas to confine the dynamic characteristics (see
inset of Fig. 9a). Also, it is found that the minimum feedrate
at the first (third) corner is Vmin1 ¼ Vmin3 ¼ 0:2121 m

s , while
this value for the second (fourth) corner is Vmin2 ¼ Vmin4 ¼ 0

:1155 m
s . That is, the larger the curvature results in the lower

the feedrate.
Figure 9c, d presents the acceleration and jerk profile along

the diamond-shaped curve obtained from the proposed inter-
polation algorithm. Figure 9c, d describes three main phases
of motion as the first acceleration phase from start to reach the
namely feedrate, middle region of motion and the last decel-
eration phase from the namely feedrate to stop. The maximum
amounts of the acceleration and jerk in the middle region of
the motion have been computed as 0:9039 m

s2 and 9:986 m
s3 .

These maximum values of the acceleration and jerk do not
exceed their maximum allowable limits of 1 m

s2 and 10 m
s3 . The

marked points in Fig. 9c (Fig. 9d) refer to the zero acceleration
(zero jerk) points along the path. These points are due to the
proposed zero end point acceleration and jerk strategy and are
related to the start and end of the acceleration and the decel-
eration stages around each sharp corner.

The interpolation results for the diamond obtained from the
proposed interpolation algorithm including the total machin-
ing time and the interpolation steps are presented in Table 5.
These results are also compared with the acc-jerk-limited
adaptive interpolation method given in [39]. According to
Table 5, for the diamond-shaped interpolation, the total ma-
chining time using the proposed acc-jerk-limited interpolation
algorithm is 6.19 s, which is comparable to the total machin-
ing time obtained from the acc-jerk-limited adaptive interpo-
lation method proposed by [39]. In addition, the interpolation
steps using the proposed acc-jerk-limited interpolation algo-
rithm is 3098, that is closed to the corresponding result pre-
sented in [39].

5.2.2 Infinity interpolation

The infinity curve has the same curvature in all corners.
Therefore, the same na and nj are considered for all sharp
corners. For this case, six independent optimization variables

Table 3 Start point, lower bounds, and upper bounds of the parameters in
the pattern search algorithm

Diamond Infinity

Lower Start Upper Lower Start Upper

tA1 0.6 0.65 0.9 0.5 0.75 0.9

tA2 1.8 2.0 2.3 1.95 2.2 2.5

tA3 3.3 3.75 3.9 3.9 4.1 4.6

tA4 4.5 5.2 5.4 5.7 6 6.2

na1 0.01 0.05 1 0.01 0.5 1

nj1 0.01 0.9 1 0.1 0.5 1

na2 0.01 0.1 1 0.01 0.5 1

nj2 0.01 0.4 1 0.1 0.5 1

na3 0.01 0.05 1 0.01 0.5 1

nj3 0.01 0.9 1 0.1 0.5 1

na4 0.01 0.1 1 0.01 0.5 1

nj4 0.01 0.4 1 0.1 0.5 1

Table 4 The optimized
parameters of the acc-
jerk-limited S-shaped
feedrate computed by the
pattern search algorithm

Diamond Infinity

tA1 0.746 0.8137

tA2 2.08359 2.3416

tA3 3.6776 4.4974

tA4 5.0141 6.0306

na1 0.09 0.1155

nj1 0.69 0.4058

na2 0.19 0.1155

nj2 0.59 0.4058

na3 0.09 0.1155

nj3 0.69 0.4058

na4 0.19 0.1155

nj4 0.59 0.4058
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Fig. 8 The pattern search algorithm results for the diamond-shaped
interpolation
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as tA1,tA2,tA3,tA4, na1=na2=na3=na4, and nj1=nj2=nj3=nj4 are
computed by the pattern search algorithm. The start point,
lower bounds, and upper bounds of these parameters used in
the pattern search algorithm are also given in Table 3.

For the infinity interpolation, according to Table 4, the
parameters of the optimized acc-jerk-limited S-shaped
feedrate have been computed by the pattern search algorithm
as follows:

tA1 ¼ 0:8137; tA2 ¼ 2:3416; tA3 ¼ 4:4974; tA4 ¼ 6:0306
na1 ¼ na2 ¼ na3 ¼ na4 ¼ 0:1155
nj1 ¼ nj2 ¼ nj3 ¼ nj4 ¼ 0:4058

It is found that the total machining time using the initial
point given in Table 3 converges to 7.3682 s after 132 itera-
tions and 1038 function evaluations.

The simulation results for the infinity interpolation using
the proposed acc-jerk-limited feedrate scheduling scheme are
illustrated in Fig. 10. Figure 10a shows the optimized acc-
jerk-limited S-shaped feedrate along the path. The adaptive
feedrate profile is also depicted in this figure. It is observed

that the chord error obtained by the optimized acc-jerk-limited
S-shaped feedrate is less than its allowable tolerance limit of
1 μm (see Fig. 10b). The minimum feedrate at all sharp
corners as shown in Fig. 10a is Vmin1 ¼ Vmin2 ¼ Vmin3 ¼
Vmin4 ¼ 0:0752 m

s .
Figure 10c, d presents the acceleration and jerk profile

along the infinity-shaped curve obtained from the proposed
interpolation algorithm. As can be seen in Fig. 10c, d, the
maximum amounts of the acceleration and jerk are obtained as
−0:8649 m

s2 and −9:916 m
s3 , respectively, which are less than

their corresponding maximum allowable limits of 1 m
s2 and 10

m
s3 . For the case of infinity-shaped curve, the total machining
time and the interpolation steps have also been presented in
Table 5. These results are also compared with the acc-jerk-
limited adaptive interpolation method proposed by [41]. Ac-
cording to Table 5, for the infinity-shaped curve, the obtained
total machining time using the proposed acc-jerk-limited in-
terpolation algorithm is 7.368 s, which is better compared to
the total machining time obtained from the acc-jerk-limited
adaptive interpolation method given in [41]. In addition, the

a

c d

b

Fig. 9 The interpolation results for the diamond-shaped curve obtained from the proposed acc-jerk-limited method
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interpolation steps using the proposed acc-jerk-limited inter-
polation algorithm with the optimized S-shaped C2 quintic
feedrate planning scheme is 2980, that is lower than its
amount using the three increasing/three decreasing stages
feedrate sensitive profile presented in [41]. The lower number
of interpolation steps has significant practical advantages. In
particular; for some practical applications such as real-time
contour following tasks with a high performance controller,
the lower interpolation steps decreases the complexity of
implementation algorithm as well as the contour following
time.

In the following, further advantages of the developed algo-
rithm over the previously existing methods are presented.

In contrast with the method presented in [39, 41], in which
the deceleration starting point and re-plan the feedrate around
each sharp corner were evaluated based on several complex
preconditions for employed trapezoidal or triangular profile;
in this paper, the starting point and the feedrate profile around
corners are optimized by the optimization algorithm. On the
other hand, as it is observed in Figs. 9d and 10d, the jerk
profiles obtained from the proposed acc-jerk-limited interpo-
lation method are extremely smoother than the jerk profiles

Table 5 Total machining time and interpolation steps using different adaptive interpolator algorithms

Acc-jerk-limited adaptive
method presented in [39]

Acc-jerk-limited adaptive
method presented in [41]

The proposed adaptive
acc-jerk-limited method

Diamond Machining time 6.194 s – 6.190 s

Interpolation steps 3097 – 3098

Infinity Machining time – 7.414 s 7.368 s

Interpolation steps – 3707 2980

a b

dc

Fig. 10 The interpolation results for the infinity-shaped curve obtained from the proposed acc-jerk-limited method
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found by the methods presented in [39, 41]. In addition, as can
be seen in Figs. 9d and 10d, the jerk profiles are close to the
specified maximum values just for a number of points along
the tool path, while the trapezoidal and triangular feedrate
profiles used in [39, 41] cause the maximum jerk value is

obtained in most of the time along the tool path. Therefore, in
contrast with the method given in [39, 41], due to a low
number of points in achieving the maximum allowable jerk
value in the proposed algorithm, the advised method substan-
tially reduces the mechanical shock to the machine tool and
improves the machining quality as well.

In order to compare the advised interpolation method with
the C2 PH B-spline curve interpolator adopted in [52], the
“heart”-shaped curve is illustrated. The conditions for the
heart curve interpolation are selected according to [52] as
F=100 mm/s and Ts=1 ms. Also, the parameters to generate
the heart-shaped curve are as follows:

p ¼ 3

U ¼ 0; 0; 0; 0; 1
.
6; 2
.
6; 3
.
6; 4
.
6; 5
.
6; 1; 1; 1; 1

n o
P0 ¼ 0; 0; 0ð Þ;P1 ¼ 10; 0; 0ð Þ;P2 ¼ −20; 50; 0ð Þ;
P3 ¼ 40; 50; 0ð Þ;P4 ¼ 90; 0; 0ð Þ;P5 ¼ 40;−50; 0ð Þ;
P6 ¼ −20;−50; 0ð Þ;P7 ¼ 0;−10; 0ð Þ;P8 ¼ 0; 0; 0ð Þ
w0 ¼ 1;w1 ¼ 1;w2 ¼ 1:7;w3 ¼ 1;w4 ¼ 4;
w5 ¼ 1;w6 ¼ 1:7;w7 ¼ 1;w8 ¼ 1

Fig. 11 The heart-shaped as the NURBS curve

a

c

b

d

Fig. 12 Comparison the interpolation results for the heart-shaped curve obtained from the proposed acc-jerk-limited method with the algorithm
presented in [52]

Int J Adv Manuf Technol (2015) 77:1889–1905 1903



As can be seen in Fig. 11, the heart-shaped curve contains
three large curvature corners marked as 1, 2, and 3. The
curvature profile for the heart curve was given in [52]. Using
the above parameters and the C2 PH B-spline curve interpola-
tor, the feedrate, acc/dec, jerk, and chord error profiles along the
heart-shaped curve are obtained. These profiles are shown as
the dashed curves in Fig. 12. Based on the C2 PH B-spline
curve interpolation algorithm, the above large curvature corners
on the tool path passed through with the constant namely
feedrate of F=100mm/s (see dashed profile in Fig. 12a). Thus,
the interpolation procedure in [52] yields a large amount of
chord error in these corners. As it shown in Fig. 12d, the
maximum chord error using the C2 PH B-spline curve interpo-
lator is 2.28×10−4 mm.Moreover, the motion planning scheme
in [52] was provided such that the acceleration and jerk were
zero during the constant feedrate phase of motion, and the
maximum acceleration and jerk occurred in the acc/dec phase
of motion. In fact, the method presented in [52] yields the
confined acc/dec and jerk values along the tool path; however,
there is no control on chord error during the interpolation. For
the case of heart-shaped curve, the maximum amounts of
acceleration and jerk are 675 mm/s2 and 20,000 mm/s3, respec-
tively (see dashed profiles in Fig. 12b, c).

The heart-shaped curve is also interpolated by the proposed
acc-jerk-limited interpolation method with the same con-
straints of Amax=675 mm/s2, Jmax=20,000 mm/s3, and addi-
tional constraint for the chord error as δmax=1×10

−4 mm. As it
can be seen in Fig. 12, the proposed acc-jerk-limited interpo-
lation method supplies the confined chord error, acceleration,
and jerk, simultaneously. Furthermore, as it is observed in
Fig. 12b, c, the newly advised interpolation algorithm profits
from the allowable tolerance limits of the acceleration and jerk
in the constant feedrate phase of motion compared to the
motion planning scheme given in [52]. As shown in
Fig. 12a, although the total machining time using the acc-
jerk-limited interpolation method is increased by a small
amount of 4.4 % with respect to the interpolation method
presented in [52], the requirements of chord error and machin-
ing dynamic constraints have been met.

6 Conclusions

This paper has introduced a new acc-jerk-limited NURBS
interpolation method enhanced with the optimized feedrate
scheduling scheme. At first, employing the FSCC, the S-
shaped C2 quintic feedrate profile was constructed under zero
end point acceleration and jerk conditions for each sharp
corner during the acc/dec stage. For this aim, a new algorithm
was also advised for computing the acc/dec stage traverse.
Then, the proposed feedrate scheduling scheme was improved
for the tool path containing several sharp corners. In this

paper, the feedrate slope correction coefficients and the decel-
eration starting times corresponding to all sharp corners have
been evaluated using the pattern search algorithm equipped
with the nonlinear constraints of acceleration and jerk to
minimize the total machining time. Therefore, the proposed
acc-jerk-limited NURBS interpolation method effectively re-
duces the machining shocks. The proposed acc-jerk-limited
NURBS interpolation method was performed for the
diamond- and infinity-shaped curves as case studies. The
interpolation results demonstrated that the feedrate automati-
cally reduces at large curvature areas to confine the dynamic
characteristics as well as chord error within their specified
limits. Besides, the simulation results for the diamond- and
infinity-shaped curves confirm that the optimized S-shaped C2

quintic feedrate planning scheme is significantly capable for
providing a smooth feedrate transition for all stages of motion
along the tool path. Moreover, the proposed acc-jerk-limited
feedrate scheduling scheme not only feasible for adaptive
NURBS curve interpolation but also yields satisfactory per-
formance such as the total machining time and the interpola-
tion steps compared to the previously published methods.
Future work will mainly focus on the acc-jerk-limited
NURBS interpolation method considering the ripple effect
in the tool path.
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