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Abstract A novel micro-coordinate measurement machine
(micro-CMM) is introduced as a viable device to be used with
high precision and high accuracy measurement of part dimen-
sions in micron scale. This design considers eliminating Abbé
error, and is intended to achieve submicron accuracy for a work
envelope of at least (100×100×100)mm. In this study, a pro-
totype of the new micro-CMM was built; a mathematical mea-
suring model to explicitly define the coordinate of the probe in
x, y and z directions have been represented. An algorithm to find
the workspace was implemented. The error model of the ma-
chine was created and the effect of structural errors on probe
position was studied analytically. The significance of each
geometric parameter was studied in order to minimize the
measuring error and achieve the best machine design. Finally,
the results of the analytical error model were confirmed through
aMonte Carlo analysis. Moreover, the real measurements of the
micro-CMM were compared with the error model.
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Micro-measurement . Covariancematrix . Errormodel .
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1 Introduction

The machining, assembly inspection and quality control of
small objects such as micro-electromechanical systems
(MEMS) require high positioning accuracy. During the past
two decades, great attention has been given tomicrometrology
to fill the gap between the ultrahigh precision measurements
of nanometrology and macrometrology [1]. In this regard,

many micro-coordinate measuring machines (micro-CMM)
were introduced and intensively studied [2–4].

The fact that the errors are not cumulative and amplified is
one of the major advantages of parallel CMMs over the
traditional serial CMMs [5]. Nonetheless, the main disadvan-
tage of parallel CMMs is the limited workspace [6–8] and the
difficulty of their motion control due to singularity problems
[5, 8]. Tian studied the assembly errors [6]. The solution of the
forward kinematic for various configurations has attracted the
attention of many researchers [9–16].

The performance of micro-CMMs in terms of accuracy and
precision is influenced by numerous error parameters that require
effective error modelling methods [17, 18]. Moreover, the error
models are of great importance in order to evaluate the machine
and understand the effect of the different parameters. Forward
solution for error analysis was also covered [19–21].

However, The positioning accuracy of parallel mechanisms
is usually limited by many errors, some authors identified the
errors affecting the precision of parallel mechanisms as fol-
lows [5, 22–24]: manufacturing errors, assembly errors, errors
resulting from distortion by force and heat, control system
errors and actuators errors, calibration and even errors due to
mathematical models. These errors should be divided into two
main sources, static errors for those not dependent on the
dynamics and process forces, and dynamic errors for errors
due to the movement and measuring method [25].

1.1 Dynamic errors

These types of errors are dependent on the configuration of the
machine. Dynamic errors occur only during operating the
machine and depend on the velocity, the acceleration and the
forces applied on the end effector. The main sources are
friction, wear and backlash occurring in the joints and actua-
tors and deflection in the legs. Additionally, elastic deforma-
tions of the machine kinematics through process forces or
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inertial forces and natural vibrations of the machine can be
other sources of dynamic errors.

1.2 Static errors

A high static accuracy is a basic requirement for any
micromeasuring machine. Obviously, the actual geometry of
any machine does not match exactly its design. These differ-
ences may cause small positional changes of the probe. The
machine then must be properly calibrated to identify its geo-
metric parameters. Any manufacturing and assembly errors of
the machine components, especially the joints, will introduce
kinematic errors [26]. Sensor errors are caused by angular
errors of the actuator (Abbé’s effect) and bending load caused
by the weight of the actuator itself [27].

Abbé error is a major source of error in precision measure-
ments. The magnitude of angular error due to the effect of
Abbé error is dependent on the pitch and yaw angles on the
measuring axis and the offset from the measured object. Abbé
error is determined by multiplying the angle in radians by the
offset (Abbé error = angle × offset). McCarthy, in [28],
claimed that the Abbé error is roughly equal to 5 nm per
1 mm of offset and arc second of angular error.

The kinematic errors can be drastically reduced by proper
manufacturing and assembly of the machine parts and sensors.
Previous studies showed the influence of joint manufacturing
and assembly on the positioning error [5, 17]. Moreover,
Huang et al. [29] studied the assembly errors and used manual
adjustable mechanisms to control assembly errors. The elastic
deformations of the machine structure due to the flexibility of
machine components could lead to gravitational errors; a
numerical control unit can be used to compensation for the
gravitation errors [30]. Moreover, thermal errors should be
considered as another source that significantly affects the
accuracy due to the thermal deformations and expansion of
the legs [30]. Thermal errors can be reduced by compensating
for the resulting thermal deformation of the components using
a very complex thermal model [30]. Tsai [31], Raghavan [32]

and Abderrahim and Whittaker [33] have studied the limita-
tions of various modelling methods.

Static errors are claimed to have themost significant effect on
the machine accuracy [30]. Nevertheless, in high-precision mi-
cro-CMMs, the positional error of dynamic sources must be
considered. Pierre [34] showed that the operation and the per-
formance of the sensors significantly affect the precision of the
manipulator. Hassan analysed the tolerance of the joints [35].

This paper presents a micro-CMM based on parallel mech-
anism [36, 37]. Its workspace was analysed, and details of the
measuring model are reported. An error model of the mecha-
nism given the law of error propagation using covariance
matrix theory was established, and the effect of geometrical
errors on the position were analysed.

2 Machine design and structure

The micro-CMM designed in this research consists of a moving
tetrahedron frame with fixed angles between its legs, its main
vertex pointing downwards. The legs of this frame are carried by
three runner blocks where they can slide freely. The runner
blocks are connected to the actuated prismatic joints with spher-
ical joints. Moreover, laser distance sensors are installed on the
edges of the moving frame in order to acquire accurate measure-
ment of the length of the legs. The movement of the prismatic
joints are controlled by three linear motors. 3D view and top
view of the machine are shown in Fig. 1, and a schematic
drawing of the micro-CMM machine is showing in Fig. 2.

The arrangement of this micro-CMM provide movement in
3 ° of freedom (3-DOF), translation in z direction, rotation around
x-axis and rotation around y-axis. In other 3-DOF manipulators,
like Oiwa’s design [36], the workspace is very small because of
the limitation of using rotational joints. This arrangement provides
significant advantage by using spherical joints. The use of spher-
ical joints ensures that larger workspace is achieved. Any point
within the workspace can be reached by controlling the vertical
position of the three linear actuators. This design is also singular-
ity free within the whole workspace, which is beneficial to the

Fig. 1 Micro-CMM design. 3D
(left) and top view (right)
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motion control. Error due to joints is minimized because of the
reduced number of joints and connections, compared to other
conventional parallel manipulators. The design considers theoret-
ically eliminating Abbé error since the laser distance sensors are
located in the axes of movement and always pointing towards the
probe tip, where the resulting offset is virtually avoided. Figure 2
shows a schematic drawing of the micro-CMM machine.

3 Coordinate system

The coordinate system is shown in Fig. 3. The origin O(0, 0,
0) is placed at the centre of the base. The prismatic joints
intersect with the base at points a, b and c; x-axis equally
divides the angle at point a and the z-axis is perpendicular to
the base plane (a, b, c).

The geometrical parameters are as follows:
li is the distance between pivot point of the ball joint pi and

the probe tip po
lmin and lmax are the maximum and minimum extensions of

the legs, lmin=300 mm, lmax=550 mm
θi is the angle between the tetrahedron legs li, lin;

θa=θb=θc=68 °

4 Development of the kinematic model

Assume that the probe tip (x, y, z) is at the main vertex of the
moving tetrahedron, which is the point of intersecting of the three

legs. Because of spherical joints, the equation of movement of
the legs can be expressed by the following governing equations:

l2a ¼ x−xað Þ2 þ y−yað Þ2 þ z−zað Þ2 ð1Þ

l2b ¼ x−xbð Þ2 þ y−ybð Þ2 þ z−zbð Þ2 ð2Þ

l2c ¼ x−xcð Þ2 þ y−ycð Þ2 þ z−zcð Þ2 ð3Þ

From Fig. 4, it is clear that values of the z coordinate of the
movingmotors (zi+1 and zi-1) can be calculated relative to the z
component of the stationary motor (zi), where distances dzi,i+1
and dzi-1,i can be calculated provided that the legs la, lb and lc,
as well as angels (β) between them are known.

Let the subscript i and represent (a, b, c) when i rotates
around z-axes in clockwise direction when seen from above,
subscripts ip and in refer to the previous and next points,
respectively.

zin ¼ zi– dzin; zip¼:dzip– zi ð4Þ

dz2in ¼ dinð Þ2− binð Þ2; dz2ip ¼ dip
� �2− bip

� �2 ð5Þ

d2in ¼ l2i þ l2in−2 lilin cos βinð Þ; d2ip

¼ l2ip þ l2i −2 lipli cos βip

� � ð6Þ

Where:
i is the pivot point of the ith joint, i=[a, b, c]
in and ip are the pivot point of the next and previous pivot

points, respectively
dz is the height difference between the pivot point of the

joint on stationary motor and moving joints
din and dip are the distance between ith pivot point and the

next and previous pivots, respectively
bin and bip are the distance between p1 and p2 at z2=z1 and

z3=z1, respectively
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Fig. 2 Schematic drawing of the micro-CMM machine
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βin and βip is the angles between leg li and legs lin and lip,
respectively

At the start of the operation, z is assumed to be equal to zero,
or alternatively, the stationary point will have z=−zi, and zi=0.

The coordinate of the probe location can be found by
solving Eqs. (1), (2) and (3). and replacing the values of zin
and zip from Eq. (4). This yields explicit expressions for the x,
y and z coordinates of the centre point of the probe as follows:

y ¼ −v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−4uw

p

2u
ð7Þ

z ¼ F þ D y ð8Þ

x ¼ Aþ B y ð9Þ

Where:

A ¼
cin−ci
2 zin

−
ci−cip
2 zip

� �

xi−xip
zip

−
xin−xi
zin

� � ; B ¼
yi−yin
zip

−
yip−yi
zin

� �

xi−xip
zip

−
xin−xi
zin

� � ;

D ¼ yin−yi
zin

−B
xin−xi
zin

; F ¼ A
xin−xi
zin

−
cin−ci
2 zin

; ci ¼ l2i −x
2
i −y

2
i −z

2
i

u ¼ 1 þ B2 þ D2

v ¼ 2DF þ 2xiB−2ABþ 2yi
w ¼ A2 þ F2 − 2 xiA − ci

5 Modelling of the kinematic error

5.1 Analytical error model

Suggesting an error model for the proposed machine is of
great importance in order to evaluate the structure and under-
stand the effect of the different parameters on its accuracy.
This method uses first-order Tylor approximation and as-
sumes uncorrelated input noise. The derivation of the covari-
ance matrix is well known and can be found in refs. [38–40].
The covariance matrix (ΛF) can be written as:

ΛF ¼ J x
� �

Λx J x
� �T

ð10Þ

where: J(x) is the Jacobian matrix of F(x) and x is the average
of all x samples.

The last equation is very useful to determine the covariance
matrix using the input covariance and the Jacobian of the
process function.

In this study, the error of each stage (or leg) is a combina-
tion of errors in the leg length li and the position of the
spherical joint pi in the Cartesian coordinate system.

b
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dzip

lb

lip

zb= za

la c

lc

lin

dzin

zc= za

β

Fig. 4 Schematic drawing of the micro-CMM machine. Point b is
stationary, points a and c are moving

Motor reference m1

Pivot point p1

Holder reference s1
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Origin O

Fig. 5 Photograph of the machine Fig. 6 Shows the measurements taken by means of CMM
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These measurement errors are created mainly by the error
in the spherical joints esi, parallelism in the runner blocks ebi,
backlash in the motors emi, capability of the laser distance
sensor edi, angular errors of the actuator, cosine error ecos and
Abbé error eabi. Elastic deformations and deflection of the
moving structure is represented by the small change in the
angle between the legs of the tetrahedron eθi. Probe error ep

and effects of thermal expansions are considered minimal and
were not included in the error model.

Therefore, a total of 15 parameters will be investigated. A full-
size Jacobian matrix is used in carrying out error analysis, the
Jacobian consists of the first-order partial derivatives of x, y and z
in Eqs. (7), (8) and (9) with respect to the error sources. The
Jacobian needed is organized in a 3×15 matrix, as follows:

J ¼

∂x
∂xa

∂x
∂xb

∂x
∂xc

∂x
∂ya

∂x
∂yb

∂x
∂yc

∂x
∂za

∂x
∂zb

∂x
∂zc

∂x
∂la

∂x
∂lb

∂x
∂lc

∂x
∂ecos

∂x
∂eab

∂x
∂θ

∂y
∂xa

∂y
∂xb

∂y
∂xc

∂y
∂ya

∂y
∂yb

∂y
∂yc

∂y
∂za

∂y
∂zb

∂y
∂zc

∂y
∂la

∂y
∂lb

∂y
∂lc

∂y
∂ecos

∂y
∂eab

∂y
∂θ

∂z
∂xa

∂z
∂xb

∂z
∂xc

∂z
∂ya

∂z
∂yb

∂z
∂yc

∂z
∂za

∂z
∂zb

∂z
∂zc

∂z
∂la

∂z
∂lb

∂z
∂lc

∂z
∂ecos

∂z
∂eab

∂z
∂θ

2
6666664

3
7777775

ð11Þ

The related variances matrix is given by the following 15×
15 diagonal matrix:

Λp ¼
σ2
xa

0 ⋯ 0

0 σ2
xb

⋮ ⋱
0 0 ⋯ σ2

θ

2
664

3
775 ð12Þ

In the previous matrix, the variance along the diagonal is
given for, xa, xb, xc, ya, yb, yc, za, zb, zc, la, lb, lc.ecos, eab, eθ.
Precision error values are mostly considered as three times the
standard deviation value (ε=3σ). Thus, the variance can be
estimated by:

σp
2 ¼ εp

3

� �2
ð13Þ

where σp
2 and εp are the variance and the error of the

parameters, respectively.

5.2 Parameter identification and calibration

Calibration of this novel micro-CMM was performed by the
means of a conventional Mitutoyo CMM Bright Apex 710,
which is available at the metrology laboratory of the

University of Stellenbosch; the CMM has a volumetric accu-
racy of 5 μm according to the latest calibrated.

5.3 Coordinate setup

Before starting with the calibration process of the micro-
CMM, a permanent coordinate system was introduced. This
coordinate system is important for any future calibration or
parameter identification. Reference standard ball (O) was used
to represent the origin, ball O is attached to the middle of the
lower horizontal frame connecting points a and b, xz plane is
perpendicular to the base plane and xy is parallel to the base.

5.4 Geometry of the machine structure

The spherical joints are connected by brackets to the linear
actuated motors, this gives a translational movement in the
vertical direction. The linear path of movement is identified by
the following technique: reference ball (mi) is attached to each
bracket of the three motors. The master CMM is used to
measure mi at six different positions along the horizontal path
of the moving motors. At each position, the spherical joints’
pivot point pi were calculated using another standard ball (s);
ball si is attached to the runner block. The centre of si was
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Fig. 7 Calculation of points pi, xz plane (left) and yz plane (right)
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measured on at least eight different positions; the centre of a
sphere fitting of points si’s represent point pi.

In order to define the vertical movement of the linear
motors, pivot points pi were calculated at six different vertical
positions of point mi. Figure 5 shows a photograph of the
structure showing balls mi, pi, si and O, as well as the master
CMM that is used to determine their positions.

Consider the fact that the distance mi–pi is supposed to be
always fixed; therefore, position of point pi can be determined
with respect to the position of point mi. The CAD drawing for
these measurements is displayed in Fig. 6.

In Fig. 6, centre of the solid black spheres represent point
mi, small spheres represent ball si, and centre of the largest
spheres represent point pi. The figure shows the measurements
ofmi at six vertical positions, and for clarity sphere fitting and
measurements taken for si are shown at only two positions of
mi, namely position nos. 1 and 5. Figure 7 shows front view
(right) and side view (left) of the machine, the figure demon-
strate the path of movement of the three pivots of the spherical
joints: points pa, pb and pc. Each vertical path of movement of
pi at (a, b and c) was represented by five different vertical
positions. The coordinate components of x and y are calculat-
ed as a function of z component.

Error in pi was estimated as the difference between the
measurements taken by the master CMM and the calculated
values using equations given in Fig. 7. Standard deviations of
differences in x direction for points a, b and c are (0.015,
0.035, 0.010)mm, respectively. And in y direction are (0.013,
0.016, 0.041)mm, respectively

5.5 Geometry identification of the tetrahedron

In this step, the geometrical parameters of the tetrahedron
were measured; angle between the legs and distance between
the leg outer surface and the probe tip, were measured.
Figure 8 shows the tetrahedron taking measurements using
the master CMM.

5.6 Dead distance

The total length of the leg li is the total distance between the
spherical joint pivot point pi and the probe tip po. li is the sum
of the following distances:

li is the (distance between pi and laser source + distance
between the reflective surface and po) + laser reading

li ¼ di þ ri

where di is the dead distance and ri is the laser reading
The length di can be found if the positions pi and po are

known; where pi is calculated using reference pointmi, and po
is measured using the master CMM by measuring the centre

of the ball tip of the micro-CMM’s probe, as shown in Fig. 9,
then the inverse kinematics of the machine is solved to iden-
tify the length of the leg li. The dead distance di can then be
calculated.

For this step, the length was calculated at 10 positions and
diwas determined. Dead distance for the legs were found to be
da=294.047 mm, db=289.906 mm and dc=289.402 mm.
With the following standard deviations: σa=0.107 mm, σb=
0.126 mm and σc=0.113 mm.

5.7 Abbé error

The most important angular error affecting linear positioning
accuracy is the result of Abbé error. Abbé effect decreases as
the distance between the axes of measurement and the probe
tip decreases, this distance is known as offset. Since the laser
distance sensor is located in the axes of movement and
pointing towards the probe tip, the resulting offset is virtually
avoided.

Fig. 8 Parameter identification of the moving part, fixed tetrahedron

Fig. 9 Photograph of the parameter identification process
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Suppose that the arrangement can produce an estimated
angle of 50 arc seconds, and the offset of the laser distance
sensor is not more than 0.2 mm. Then, Abbé error can be
approximated as 0.2 mm×tan (50 arc seconds)=48 nm.

Table 1 lists the design values of the expected errors and the
actual values resulting from the devices and hardware used in
this machine.

Best possible configuration can be achieved as per
the information provided in Table 1 in order to reach
the ultimate goal of submicron accuracies, by attending
to the following recommendations: improving the rigid-
ity of the structure to reduce the dynamic errors
resulting from the effect of vibration and the weight
of the moving parts. Adding triple beam laser interfer-
ometer to replace the existing optoNCDT 1302 laser
distance sensor from micro-epsilon, virtual elimination
of Abbé error is achieved by using a triple beam laser
interferometer, which is capable to measures pitch and
yaw angles with 0.02 arc second angular resolution.
Moreover, reducing the legs’ length and mounting the
encoder at minimum possible dimensional offset be-
tween the probe tip and the measuring axes would be

effective. Using of super precision class spherical rolling
joints run-out less than 1 μm compared to the existing
2 μm for the standard precision class SRJ joints.
Runner blocks can be replaced by sliding contact bear-
ings to achieve nano meter accuracy as proposed by
Smith and Robbie [41]. Moreover, operating in a
temperature-controlled environment minimizes the ther-
mal effect.

6 Results

The micro-CMM is characterized to confirm the validity of
the proposed kinematic model and the analytical error model.
The measurements of the micro-CMM are compared to the
measurements done with the master CMM. Thirty points were
measured; the positions of these measured points in xy plane
are illustrated in Fig. 10. 3D view of the points is given in
Fig. 11.

The analytical error model (AM) is used to confirm that the
error in the measurements falls within the error budget

Table 1 Error sources on the
micro-CMM Error Source Affects Design values Actual values

esi Machining limitation xi, yi, zi 1 μm 1.5 μm

ebi Machining limitation xi, yi Nanometer 40 μm

edi Manufacturing limitation li 1 nm 50 μm

emi Backlash zi Nanometer 1 μm

ecos Assembly x, y, z 0 NA

eabbe Design/assembly x, y, z Angle 0.05 arc second

offset 10 μm

48 nm

ep Manufacturing limitation x, y, z 0.08 μm 0.5 μm

eβi Geometry zin, zip 0 70 μm
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Fig. 10 Measured points and the workspace of the micro-CMM Fig. 11 Measured points using micro-CMM
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estimated by the error model. Monte Carlo simulation (MC) is
also included in the comparison to confirm the validity of the
results. Monte Carlo simulation uses random values of the
error sources, and the standard deviation of the results (σ) is
calculated for 10,000 iterations.

A comparison of the error in the CMM reading
with the expected error, estimated as 3.σ, by MC
and AM, respectively, in 30 different positions is
given by Fig. 12. In the figure, the error comparison
is given by three bars for each point. Hatched bars
represent the error values between the micro-CMM
readings and the measured CMM (ecmm), solid bars
represent the estimated error using AM, and the un-
filled bars represent the expected error using MC
simulation. In the figure, all the results are presented
as a volumetric error value, estimated as 3σ by MC,

and 3
ffiffiffiffiffi
σ2

p
by AM.

From Fig. 12, it is clear that for most of the mea-
sured points, the error falls within an acceptable range
of the error budget estimated by the simulation and
analytically. Even though the graph shows some points
that have outliers such as on point numbers 6, 12 and
25, these errors are due to the difference between the
micro-CMM and the CMM used for the calibration,

which may be attributed to the effect of a lot of exter-
nal factors, such as human error in taking measurements
or mechanical vibration.

The results of the analytical error model AM match very
well with the simulation results MC on all points. The stan-
dard deviation results of AM and MC increases and decreases
in the same trend as shown in Fig. 13.

Previous results show that the proposed analytical
error model is valid and can be used as a robust tool
for an error estimation model for the micro-CMM ma-
chine under study. The best possible configuration of
the micro-CMM can be achieved as per the design
values listed in Table 1. The same error model is still
valid to estimate the error values for the machine. The
results show that the machine can achieve sub micron
accuracy with standard deviation of (x=70 nm, y=
60 nm, z=50 nm).

7 Conclusion

In this paper, a new micro-CMM was designed and the first
prototype of the machine was built; the kinematic model, as
well as the error model, was derived. Calibration of the new
micro machine was done by the means of coordinate measur-
ing machine.

It can be observed from the results that the kinematic
problem can be solved using the proposed direct kinematic
model.Moreover, the practical experiments confirmed that the
analytical error model is effective in estimating the error
budget for the machine; this was verified using Monte Carlo
simulation results.

Submicron measurements are achievable with this concept,
provided that the design values listed in Table 1 are
implemented.

Operating in a temperature-controlled environment, error
compensation and good calibration models will definitely
reflect on improved accuracy.
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