
ORIGINAL ARTICLE

A heuristic approach based on time-indexed
modelling for scheduling and tool loading
in flexible manufacturing systems

Selin Özpeynirci

Received: 9 August 2014 /Accepted: 28 October 2014 /Published online: 7 November 2014
# Springer-Verlag London 2014

Abstract In this paper, we simultaneously consider the
scheduling and tool loading problems in flexible manufactur-
ing systems. There are various jobs that must be processed on
a number of parallel computer numerical control machines.
The processing of each job requires a set of machine tools.
However, the number of tool copies available in the system is
limited due to economic restrictions. The problem, therefore,
is to schedule the jobs and the required tools in such a way that
the makespan is minimized. We present a time-indexed math-
ematical model of the problem. A heuristic approach based on
the mathematical model is also developed and the computa-
tional results are presented. The goal of this study is to develop
a new approach for simultaneously scheduling the jobs and
loading the tools in flexible manufacturing systems and ben-
efit from the advantages of time-indexed modelling.

Keywords Time-indexedmodelling . Scheduling . Flexible
manufacturing systems

1 Introduction

Flexible manufacturing systems (FMSs) consist of computer
numerical control (CNC) machines connected to an automat-
edmaterial handling system. These provide flexibility in terms
of product type and the order of operations executed on a part
of a product, which also allow the same operation to be
performed on different machines. CNC machines are able to
apply different operations provided that the required tools are
loaded. Due to these advantages, but also the high level of

investments required, FMSs have attracted attention from both
industry and academia.

This study considers the scheduling of jobs on parallel
CNCmachines together with their required tools. The loading,
tooling, and scheduling problems in FMSs are generally stud-
ied separately in the literature due to their complex nature.

Among the studies that consider tooling and scheduling
problems separately, Agnetis et al. [1] show that, given a job
sequence for two machines, the tool scheduling problem can
be easily solved to optimality. They introduce several decom-
position strategies for the problem.

Kellerer and Strusevich [5] consider scheduling problems
on parallel dedicated machines under multiple resource con-
straints, introducing several cases and discussing the compu-
tational complexity of the problems. One case they discuss
corresponds to the problem currently addressed—a single
resource of arbitrary size, where available units of resource
may be one or more than one. However, unlike in the current
study, these researchers assume that the machine that process-
es each job is determined in advance. They propose a poly-
nomial time approximation scheme for the problem with a
fixed number of machines in which a job uses at most one
resource of unit size.

There are few studies that refer to loading and scheduling
of jobs and tools simultaneously. One such is Roh and Kim
[6], who study part loading, tool loading, and sequencing
problems simultaneously with the objective of minimizing
total tardiness. They propose three heuristic approaches: si-
multaneous, sequential, and iterative, respectively. Their sim-
ulation study found that the iterative approach performs best.

Ventura and Kim [11] consider a parallel machine sched-
uling problem where jobs may require resources in addition to
the machines. Assuming unit processing time for each job,
they consider two cases where there are multiple and single
additional resources, respectively. They use Lagrangean re-
laxation approach to find bounds.
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In another study, Özpeynirci and Gökgür [7] consider the
loading and scheduling problems simultaneously, using an
identical problem definition to the current study. They provide
a mixed integer mathematical model that fails to reach the
optimal solution in reasonable time. They develop a tabu
search algorithm and show that it performs well with compu-
tational experiments.

In this study, we model the problem of loading and sched-
uling of jobs with their required tools as a time-indexed
mathematical model. We also provide a heuristic approach
based on this model. Time-indexedmathematical models have
been used to formulate different types of problems, including
scheduling problems. They have attracted research interest
because of their many advantages, such as strong bounds
provided by linear programming relaxations, and approxima-
tion algorithms that can be developed based on these models.
However, time-indexed formulations also have a major disad-
vantage, their size. Due to time index, the number of variables
and constraints can be extremely large, even for relatively
minor problems. Van den Akker et al. [10] suggest the use
of Dantzig-Wolfe decomposition techniques to alleviate the
effects of the problem size.

Demir and İşleyen [3] compare five different mathematical
models for flexible job shop scheduling problem and observe
that the time-indexed model requires considerably more com-
putational time compared to others.

Baptiste and Sadykov [2] apply time-indexed formu-
lation to schedule tasks on airborne radars. In their
problem, radar corresponds to the single machine, and
tasks correspond to jobs to be scheduled including a
chain of operations with identical processing times. The
operations of a job should be scheduled according to a
given frequency. Their objective is to minimize the total
penalty of deviations from this frequency. They develop
three time-indexed models, two of which can be solved
by mixed integer programming solvers, while the other
relies on branch-and-price algorithm. Their computation-
al experiments show the superiority of branch-and-price
algorithm and one of the other models.

Thörnblad [9] compare different mathematical models for
scheduling a multitask production cell, which is a flexible job
shop environment. Two of these models are developed using
time-indexed variables: one using binary variables that take
the value of 1 if a job is processed during a specific time
interval (so-called plateau variables) and the other using bina-
ry variables equal to 1 if a job starts to be processed at a certain
time interval (so-called nail variables). Their computational
experiments show that the model with nail variables outper-
forms the others.

Thörnblad et al. [8] propose a time-indexed mathematical
model based on nail variables for flexible job shop problem
with preventive maintenance and fixture availability. Their
experiments show that time-indexed model can solve the

instances that could not be solved by the model with variables
most frequently used in scheduling problems.

In the literature, most studies consider the loading and
scheduling problems with tooling issues either sequentially
or with simplifying assumptions. In contrast, in this paper, we
provide an approachwith time-indexedmodelling to provide a
simultaneous solution to these problems, which to the best of
the author’s knowledge, is the first.

2 Problem definition

Consider n jobs to be processed onm parallel CNC machines.
There is no precedence relation between the jobs. Every
machine is eligible to process all jobs, but the processing
times of the jobs on different machines may vary due to the
speed or age of the machine. A jobmust be assigned to exactly
one machine, and preemption is not allowed. Job i requires a
set l(i) of tools to be processed, i.e., the tools in set l(i) must be
loaded on the machine to be able to process job i.

There are t types of tools, and rk copies of tool type k are
available in the system. Due to economic restrictions, the
number of tool copies may be smaller than the number of
machines. Therefore, if a tool is required to process a job on a
machine and is not loaded on the machine, it must be taken
from another machine or tool crib. If all copies are being used
on other machines, the process must be delayed until a copy is
available.

We make the following assumptions about the tool usage:

& Each tool requires one tool slot in the tool magazine.
& Tools do not break down during processing.
& The time required for tool switches between the machines

is negligible.
& The number of tools required by a job does not exceed the

tool magazine capacity of a machine.
& Tools cannot be removed from the machine during

processing.

The problem is to schedule the jobs and their required tools
on parallel CNC machines with the objective of minimizing
makespan, i.e., the completion time of the last job. If rk≥m for
all tool types, there will be no tooling restrictions and our
problem is reduced to the parallel machine scheduling prob-
lem, which is NP-hard in general [4]. Therefore, we can
conclude that our problem is also NP-hard.

3 Mathematical model

In this section, we first define the indices, parameters, and
decision variables used and then present the mathematical
time-indexed model (TIM). We assume that the planning
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horizon is divided into T time intervals each of 1 time unit.
The index u represents the time interval that starts at time u
and ends at time u+1.

Indices
i, q=Job index, i, q=1, 2,…, n
j=Machine index, j=1, 2,…, m
k=Tool type index, k=1, 2,…, t
hk=Replicate number of tool type k, hk=1, 2,…, rk
u=Time interval, u=1, 2,…, T
Parameters
pij=Processing time of job i on machine j
rk=Number of tools of type k
l(i)=Set of tools required to process job i
Decision variables
Cmax=Production makespan
Ci=Production completion time of job i

X i ju ¼
1 if job i is scheduled to start processing on

machine j at the beginning of time interval u
0 otherwise

(

Zihk ¼ 1 if replicate h of tool k is used to process job i
0 otherwise

�

The mathematical model TIM is given below:

MinCmax ð1Þ

subject to

Cmax≥Ci ∀i ð2Þ

Ci ¼
X
j¼1

m X
u¼0

T

uþ pi j

� �
X i ju

h i
∀i ð3Þ

X
j¼1

m X
u¼0

T

X i ju ¼ 1 ∀i ð4Þ

X i ju ¼ 0 ∀i; j; u ¼ T−pi j þ 1;…; T ð5Þ

X
i¼1

n X
μ¼u−pi jþ1

u

X i jμ ≤1 ∀ j; u ð6Þ

X
hk¼1

rk

Zihk ¼ 1 ∀i; k∈l ið Þ ð7Þ

X
j¼1

m X
μ¼u−pi jþ1

u

X i jμ þ
X
j¼1

m X
μ¼u−pq jþ1

u

X q jμ

≤1−M Zihk þ Zqhk−2
� �

∀i < q; h; k∈l ið Þ∩l qð Þ; u

ð8Þ

Cmax≥0 ð9Þ

Ci≥0 ∀i ð10Þ

X i ju∈ 0; 1f g ∀i; j; u ð11Þ

Zihk∈ 0; 1f g ∀i; k∈l ið Þ ð12Þ

The objective function (1) minimizes the production
makespan. Constraint (2) ensures that the completion time of
any job is less than or equal to the production makespan.
Constraint (3) defines the completion time of the jobs as the
summation of starting time and processing time. Constraint
(4) schedules a job to be processed exactly once. Constraint
(5) guarantees that a job is not scheduled to start at a time that
the job would not be completed at T. Constraint (6) ensures
that a machine processes only one job at a time. Constraint (7)
allows each job to use exactly one copy of the required tool.
Constraint (8) guarantees that a tool copy is used by one job at
a time. Constraints (9–12) are the set constraints.

The length of planning horizon, T, has a great impact on the
number of decision variables and constraints; hence, it can
significantly affect the solution time. The value of T should be
sufficiently long to create an optimal schedule for the planning
horizon but should be kept as short as possible in order to
reduce the computation times [9].

A convenient way to find an upper bound for Cmax is
summing up the minimum processing times of jobs among
the machines. In this way, we assume that each job is proc-
essed on the machine in the shortest possible processing time
and also that the processing times of jobs do not overlap;
hence, a feasible schedule can be obtained.

T ¼
X
i¼1

n

min j pi j
n o� �

Another way to find T is using a greedy heuristic that will
provide an upper bound on the optimal makespan value.
Özpeynirci and Gökgür [7] develop a heuristic algorithm to
find an initial feasible solution for their tabu search algorithm.
We use the same heuristic to determine T value. For the sake
of completeness, their heuristic algorithm is defined below:

Int J Adv Manuf Technol (2015) 77:1269–1274 1271



Let S0 be the set of jobs that are not assigned to a machine
yet and S1 be the set of jobs that are assigned to a machine.

Step 0 Set S0={1, 2,…, n} and S1={}. List the job-machine
pairs in a non-decreasing order of processing times.
Assign the jobs to the machines in the list if the jobs
are not yet assigned and the machine is empty. Con-
tinue until one job is assigned to each machine. If it is
impossible to start any job at time 0 due to unavail-
ability of the required tools, insert idle time until at
least one copy of all required tools are free, i.e., a
feasible solution is found. Update sets S0 and S1.

Step 1 Find the machine that becomes idle first. Let the
machine be j. Calculate the priority values for all
jobs in set S0 on machine j using the following
equation:

πi j ¼ pi j � ai j � b2i j

where
πij=Priority value of job i on machine j
aij=The number of tools needed additionally to
assign job i tomachine j that we have available copy
bij=The number of tools needed additionally to
assign job i to machine j that we do not have
available copy

By calculating the priorities of the jobs as above,
we give higher importance to jobs with shorter
processing times and therefore demand fewer addi-
tional tools. If a job requires an unavailable tool, we
need to insert idle time until the tool becomes free.
Hence, we take the square of bij to increase the πij
values of these jobs.

Select the job with minimum priority value. Let
the job be i.

Step 2 Remove the tools from machine j that are not ele-
ments of l(i).

Step 3 Load the tools that are elements of l(i) to machine j
and those that are not already loaded on machine j. If
a required tool is not free, then delay the starting time
of job i on machine j until the tool becomes free, i.e.,
the job that uses the tool is completed. Update sets S0
and S1. If S0={}, then stop. Otherwise, go to step 1.

We find upper bounds for Cmax by using the two
approaches defined above. Then we set the value of T
to the minimum of these two upper bounds.

4 Heuristic approach

Due to the difficulty of the problem and large T values, the
optimal solution of even very small-sized problems cannot be

found within a reasonable time limit. Therefore, there is a need
for an effective heuristic that finds good feasible solutions
within a short time. For this purpose, we design a heuristic
approach and suggest an improvement on this heuristic based
on the time-indexed model given above.

An important factor that affects the solution time is the T
value. When we assume that the length of each interval is 1
time unit, the total number of intervals is T. Reducing the total
number of intervals would reduce the computational burden.
Therefore, we may assume that the length of each time inter-
val is l where l≥1 and integer. Then we update the processing
times by dividing each pij by l and rounding up to guarantee
feasible solutions.

p
0
i j ¼

pi j
l

l m
Once we obtain the updated processing times, we find new

upper bounds for the T value and solve the time-indexed
model. Let us call this model TIM-H. The l value can be
increased until the T value is lowered enough to find optimal
solutions to the TIM-H.

Lastly, the optimal solution of TIM-H is multiplied by l to
find an upper bound on the original Cmax.

Solution of the above heuristic can be improved signifi-
cantly with a little additional effort. The sequence found by
TIM-H is taken, and Cmax is calculated using the original pij
values. This improvement can be applied if TIM-H gives an
optimal solution.

5 Computational experiments

In order to measure the performance of proposed heuristics, a
series of experiments are conducted using the procedure of
Özpeynirci and Gökgür [7]. In our experiments, we set the
number of jobs to 8, 10, and 15; the number of machines to 2
and 3; and the number of tool types to 5 and 8. The number of
tools in the set l(i) is generated from a discrete uniform
distribution in the interval [2, 5]. The tools in set l(i) are
generated randomly. The value of rk is randomly selected from
the set {1,2}. The pij values are generated from a discrete
uniform distribution in the interval [25, 150]. Ten problem
instances are generated under each parameter setting.

The models are solved by IBM ILOG CPLEX Optimiza-
tion Studio 12.4 using an Intel Xeon, 3.2 GHz (two proces-
sors) computer with 10 GB RAM. We set an upper time limit
of 1 h, and after which, the execution of the algorithm is
terminated if the optimal solution has not been found.

The results of computational experiments are reported in
Tables 1 and 2. In the first three columns of each table, the
number of jobs (n), the number of machines (m), and the
number of tool types (t) are given. Table 1 gives the average
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T values, the number of problems among ten instances solved
to optimality by the TIM-H, and the solution times of TIM-H
in seconds for l value set to 2, 4, and 8. The time required for
the improvement step is negligible and, therefore, not report-
ed. Table 2 shows the average percent deviations of heuristic
solution before and after improvement from the optimal solu-
tion for three levels of l. Optimal solutions are taken from
Özpeynirci and Gökgür [7]. If the TIM-H is unable to reach an
optimal solution, the deviation of upper bound from the opti-
mal is reported.

It can be seen from Table 1 that the complexity of the
problem is affected by the number of operations, the number
of machines, and the T value. As the values of these param-
eters increase, the solution time increases and the number of
instances solved by TIM-H decreases. The number of tool
types has no significant effect on the model performance. The
highest improvement in the performance is observed as l value
increases, which causes a decrease in T value.

The deviations of heuristic solution from optimal, given in
Table 2, increase as l value increases, due to increasing errors
caused by rounding up the processing times after dividing by
l. When we apply the improvement step, however, the devia-
tions decrease substantially, and in most instances, it is possi-
ble to find the optimal solution to the original model TIM.

As the problem size increases, l value can be increased to
the extent that it reduces the T value. Once an optimal solution

to TIM-H has been found, the improvement step leads us to
near-optimal solutions.

6 Conclusion

In this study, we consider the scheduling of jobs and
their required tools on parallel CNC machines. Job
assignment and tool loading and scheduling problems
are solved simultaneously, with the objective of mini-
mizing makespan.

We develop a time-indexed model and observe that even
small-sized instances cannot be solved by this model to opti-
mality. This is due to the time index that increases the problem
size substantially. The high value of T, which is affected by the
processing times, increases the number of variables and
constraints.

We suggest a heuristic approach, which involves modify-
ing the processing times, thus leading to a reduction in the
planning horizon and a decrease in the number of constraints
and variables. Assuming that the length of each time interval
is greater than 1 unit, we obtain reduced processing times and
hence reduced T. With the new processing times, we can solve
the model to optimality and find upper bounds on the
makespan.

We also improve these solutions by using the schedule
obtained by the heuristic approach and finding the makespan
with the real processing times. Our experiments show that the
improvement step enables the optimal solution to be found in
most instances. On average, the deviation from the optimal
solution is approximately 0.2 %, which is better than the
deviations from the tabu search solution developed by
Özpeynirci and Gökgür [7].

In this study, we assume that the tool switching times are
negligible. However, future studies can take into account tool
switching times in order to develop the relevant solution
approaches. Also, studies can be conducted that apply other
effective approaches to scheduling problems, such as con-
straint programming or Lagrangean relaxation.

Table 1 Solution time perfor-
mance of heuristic n m t Average T values Number of problems solved to

optimality
Solution times (s)

l=2 l=4 l=8 l=2 l=4 l=8 l=2 l=4 l=8

8 2 5 233.5 118.8 61.5 8 10 10 643.00 83.01 11.51

8 2 8 192.9 98.7 51.9 9 10 10 559.40 43.78 7.54

10 2 5 318.0 160.9 82.1 0 9 10 – 508.61 43.61

10 2 8 259.9 134.3 68.9 2 10 10 1117.00 582.81 53.27

10 3 5 258.5 134.7 69.5 0 10 10 – 670.91 26.66

10 3 8 237.1 120.1 59.7 3 10 10 911.76 324.45 18.83

15 2 8 406.9 206.9 103.9 0 0 7 – – 1081.13

Table 2 Average deviation of heuristic solutions from optimal

n m t Heuristic approach Improvement

l=2 l=4 l=8 l=2 l=4 l=8

8 2 5 0.82 2.41 6.47 0.00 0.00 0.27

8 2 8 0.72 2.24 5.99 0.00 0.20 0.41

10 2 5 3.24 2.05 4.92 – 0.00 0.20

10 2 8 0.76 2.10 4.99 0.00 0.00 0.07

10 3 5 1.60 2.22 6.07 – 0.06 0.28

10 3 8 0.38 1.92 5.61 0.00 0.05 0.20

15 2 8 – 7.20 4.39 – – 0.23
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