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Abstract To improve the precision of CNC machine tools, a
motorized spindle thermal error model based on least square
support vector machine (LS-SVM) was proposed. A thermal
error compensationmethodwas implemented, which takes the
length of cutting tools and thermal tilt angles into account. A
five-point method was applied to measure radial thermal
declinations and axial expansion of the spindle with eddy-
current sensors. This resolves a problem arising out of the
three-point thermal error measurement, where the radial
thermal-induced angle errors cannot be obtained. Variables
sensitive to thermal error were selected by grouping and
optimizing temperature variables using a combined fuzzy
cluster and correlation analysis. LS-SVM models were
established for axial elongation and radial thermal yaw and
pitch angle errors. Moreover, a method to test the goodness of
prediction for the results based on the model is discussed. The
results indicated that the LS-SVM has high predictive ability
based on fuzzy cluster grouping, and prediction accuracy
reached up to 90 %. In addition, the axial accuracy was
improved by 82.6 % after error compensation, and the axial
maximum error decreased from 39 to 8μm.Moreover, the X/Y
direction accuracy can reach up to 77.4 and 86 %, respective-
ly, which demonstrated that the proposed methodology of
measurement, modeling, and compensation was effective.
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1 Introduction

Precision CNC jig boring machines are typically used for
processing complex box-type components. Heat generated
during the fabrication of these components gives rise to ther-
mal errors. These thermal errors account for a larger propor-
tion of the total error as the machine tools become more
sophisticated. As a result, the accuracy of the tool decreases
and dimension deviates from the initial design value. This is
particularly an issue when the machine is used for longer time
periods. One of the factors resulting in the decreased accuracy
over time related to usage and machine age is inadequate
maintenance of the tool. The reduced accuracy due to the
thermal errors accounts for 70 % of the total errors arising
from various error sources [1]. Research presented in literature
related machine precision such as the one by Donmez et al.
also points to temperature variations resulting in manufactur-
ing errors, thereby reducing machine precision [2]. Non-
uniform temperature distribution in CNCmachine tools varies
with time, becoming non-linear and non-stationary. Moreover,
the motorized spindles have complex, dynamic, non-station-
ary, and speed-dependent thermal characteristics in compari-
son to conventional spindles [3].

In recent years, finite element method (FEM) has been used
to analyze temperature distribution and thermal deformation
for machine tools. Creighton et al. used FEM to analyze
temperature distribution characteristics for a high-speed mi-
cro-milling spindle. An exponential model for the axial ther-
mal error was constructed and correlated to spindle speed and
run time [4]. Zhao et al. proposed a method to calculate the
thermal conductivity coefficient for the spindle surface. Sim-
ulations were used to aid in the analysis of the temperature
field variation along with thermal deformation of the spindle
[5]. However, the tool error for the precision CNC machine
tool is a mutually coupled problem with many complex fac-
tors, which are in turn governed by numerous variables. This
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makes it extremely difficult to establish a theoretical equation
taking into account thermoelasticity and heat transfer. Yang
et al. [6] used artificial neural networks (ANNS) to establish a
relationship between temperature of the spindle and the
resulting thermal errors. Ouafi et al. constructed an artificial
neural network model for spindle thermal error with the tem-
perature drawing on statistical distribution, which effectively
improves the machining accuracy [7]. The grey neural net-
work was proposed to predict the thermal error, and experi-
ments on the axial thermal deformation of the spindle in a
five-axis machining center are conducted to build and validate
the proposed models [8]. Vissiere et al. measured thermal
drifts for a spindle with a new method, which allows mea-
surement accuracy with nanometer resolution [9]. Vyroubal
et al. focused on compensation methods for the thermal de-
formation in spindle axis direction, which was based on
decomposition analysis. Such a method was found to be low
cost in actuality and an effective strategy to reduce the thermal
error [10]. Hong et al. studied thermal characteristics of a
rotary axis on a five-axis machine and analyzed the relation
between thermal and motion error for the rotary axis [11].
Huang et al. proposed a combined thermal error model for the
high-speed spindle in a machine tool and used the five-point
method to measure the thermal drifts, and a genetic algorithm
(GA) was introduced to optimize the BP network’s initial
weights and thresholds, solving the global minimum
searching problem [12].

In addition, the temperature sensor selection for the thermal
error modeling of the machine tool is important. The fuzzy c-
means clustering method and the ISODATA method are used
to group the data of thermal sensors, which are effective for
thermal sensor selection [13]. The direct criterion method and
indirect grouping method based on the synthetic grey corre-
lation theory were presented to optimize the selection of a
minimum number of temperature sensors for thermal error
compensation on a machine tool. After optimization, the
number of thermal points reduced from 16 to 4 [14].

If thermal errors propagate through the measurement and
modeling stage, they can be alleviated by employing compen-
sation methods. Zhang et al. proposed one such compensation
technique to improve machine precision, which is based on
the use of the external machine zero point shift function.
Ethernet data communication protocol was used for the ma-
chine tools [15]. Fu and Miao et al. built the spindle axial
thermal error model using a multivariate linear regression
method [16, 17]. The use of axial thermal error compensation
method as a method for improving the machine precision has
also been reported in literature by other research groups [18,
19]. Pajor et al. presented a method for supervising the feed
screw thermal elongation. This method reduced ball screw
thermal errors [20]. Wu et al. has successfully achieved real-
time compensation for axial expansion on a vertical machine
tool by using a multiple regression model [18]. Liu et al.

compensated the thermal drift of milling and boring machines
along the Z direction [21]. Ouafi et al. presented an integrated
and comprehensive modeling approach for real-time thermal
error compensation based on multiple temperature measure-
ments. After the use of this compensation strategy, spindle
errors were reduced from 19 μm to less than 1 μm [7].
Gebhardt et al. described a high-precision grey box model
for compensating thermal errors for a five-axis machine.
Using this method, the thermal errors for rotation/swiveling
were reduced by a factor of 85 % [22]. Wang et al. proposed
another prediction model for axial thermal deformation and
applied the model to compensate the error for a CNCmachine
[23].

The methods reported in literature mainly discuss measure-
ment and modeling methods for spindle axial thermal elonga-
tion. However, the existing methods fail to take into account
errors resulting from the radial thermal angle error. Spindle
thermal deformation for a CNC machine tool is usually
expressed as deviation from the spatial position and gestures,
i.e., the drift in geometry and spatial phase, which affects
machining precision. Here, we consider the jig boring ma-
chine, particularly the thermal expansion of the spindle axial
of the tool, which affects the geometry of the bore. In addition,
errors due to the radial thermal angle could affect the geometry
and surface roughness of the bore. Due to this, it is critical to
measure both axial and radial thermal errors simultaneously.
To realize error compensation, the error due to the spindle
radial thermal angle must be translated to the linear coordinate
axis. The compensated components of the thermal errors are
closely related to spindle radial thermal inclination angle
errors and handle length. Using a three-point method, the
absolute thermal deformation along a radial direction can be
measured and it does not reflect the variations in radial thermal
deformation for the spindle. The thermal inclination angle
errors cannot be obtained using this method and results in a
thermal error compensation model with reduced accuracy.

To improve the accuracy and overcome the disadvantages
associated with the three-point method, a five-point method is
proposed. In comparison to other methods, the five-point
method has the advantage of allowing simultaneous measure-
ment of axial and radial thermal drifts for the motorized
spindle system. As a result, the variation in the spindle posi-
tion and orientation can be analyzed. This overcomes the
challenge in measurement of inclined angles for the spindle
radial thermal errors often associated with the three-point
method.Moreover, an integrated thermal error model provides
a more accurate mathematical model for the thermal error
compensation, which includes spindle thermal elongation,
radial thermal pitch angle error, and yaw angle errors based
on the five-point method.

The support vector machine is a new machine learning
theory, which has the advantage of using a simple and versa-
tile algorithm. It depends on using training data with good
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generalization and global optimization characteristics, which
can be used for parameters with non-linear relationships. Lin
and Zhao et al. [24, 25] established a spindle thermal error
model based on the least square support vector machine
theory. This model was found to have perfect robustness.
However, as in the previous cases, their model also ignored
radial declination angle errors.

To the best of our knowledge, a method based on the least
square support vector machine and fuzzy clustering to model
thermal elongation and declination angles has not been pre-
sented in current literature. The proposedmodel can be used to
predict axial and radial errors with high accuracy. Thermal
drifts using this method were translated into coordinate offsets
and were used to establish mathematical equations for final
compensation along three directions, allowing improvement
in the machine tool accuracy.

The current study focuses on a spindle system, which is
used in a box-type precision CNC jig boring machine. Ther-
mal balance experiments were performed using the five-point
method. Least square support vector machine (LS-SVM)
models are established for spindle axial thermal elongation
and radial thermal declinations, using the fuzzy clustering
regression analysis method to optimize the temperature vari-
ables. Subsequently, thermal error offset equations were de-
rived and the compensation was carried out.

2 Thermal error modeling

2.1 Hierarchical clustering method to group temperature
variables

A variety of fuzzy clustering analysis methods based on the
fuzzy graph theory have been proposed in literature. Among
them, the biggest tree method based on the fuzzy graph theory
is the most popular [26]. The fuzzy c-means clusteringmethod
is applied to identify the temperatures, and the representative
as an independent variable is selected; meanwhile, it elimi-
nates coupling among the variables [27]. In this paper, tem-
perature variables for 11 measuring points were grouped using
fuzzy clustering. Statistical correlation was then applied to
optimize the measurement points. The correlation coefficient
between each variable temperature and thermal error were
calculated. Finally, the measurement points with the largest
value for the correlation coefficient in each group were taken
as the typical temperature variables. The number of variables
for temperature is small, so system cluster analysis was used.
The variable packet flows are shown in Fig. 1.

Assume the temperature variable T={T1, T2,…, Tm} is the
object carried out using fuzzy clustering analysis. Each object
in T is denoted as Tk (k=1, 2,…, m), whose characteristics are
described by finite values. A corresponding vector P(Tk)=(-
Tk1, Tk2,…, Tks) is related to Tk. Tkj(j=1, 2,…, s) is the jth

characteristics value of Tk. P(Tk) is the eigenvector for Tk.
Fuzzy clustering analysis divides the sample T into c fuzzy

subsets eT1; eT2;… ; eTc , according to the similarity between
the feature vectors.

Cluster analysis, also known as hierarchical clustering
analysis, gradually clusters based on feature vector distance
criteria. The classification moves from more to less, until it
reaches the desired classification. The following are the gen-
eral steps used for system clustering:

1. Initialize data, assuming that the sample set T contains m
subsets T1

(0), T2
(0),…, Tm

(0), which form one class. Then,
distance is calculated between each subset to obtain a m×
m dimensional distance matrix D(b).

2. Next, the smallest element in the distance matrix D(b)

(except diagonal elements) is determined. If the minimum
element is the distance between Ti

(b) and Tj
(b), then the two

elements are merged into Tij
(b+1). Finally, a new classifi-

cation T1
(b+1), T2

(b+1),…, Tm−1
(b+1) is obtained.

3. After this, distances between the new categories after
obtaining merging cluster to get the distance matrix
D(b+1).

4. Step 2 is repeated until the classification meets the
requirements.

2.2 Least square support vector machine

The support vector machine (SVM) is an approach based on
statistical leaning and minimized structural risk. Vapnik [28]
suggested that it is dependent on training data to a small
degree with good generalization and global optimization char-
acteristic and can be used to handle parameters with non-
linear relationship. Suykens et al. proposed a modification
by using a sum of squared error terms in the standard SVM
objective function. This new sum was used as the loss func-
tion. The new method is referred to as the least square (LS)-
SVM [29].

The modeling process for LS-SVM, which is used to solve
the problem, is described as [29]

minJ ω; ξið Þ ¼ 1

2
ωk k2 þ γ

1

2

X
i¼1

l

ξ2i

s:t: yi ¼ ωTφ xið Þ þ bþ ξi i ¼ 1;…; l ð1Þ

where J is the function with structural minimized risk, and ω is
a weight vector, ω∈Rn. ξi is the error variable, and γ is an
adjustable parameter. xi is the input, xi∈Rn. yi is the target
volume. φ(⋅) is a mapping function, where a low-dimensional
space can be mapped to the n-dimensional kernel space. b is
the deviation, and l is the number of inputs.
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To build the Lagrange function using Eq. (1),

L ω; ξi; b;αið Þ ¼ 1

2
ωk k2 þ γ

1

2

X
i¼1

l

ξ2i −
X
i¼1

l

αi ω
Tφ xið Þ þ bþ ξi−yi

� �
ð2Þ

where the parameter αi(i=1,⋯,l) is a Lagrange multiplier.
Based on the necessary conditions for extreme value, the
following equations can be induced:

∂L
∂ω

¼ 0⇒ω ¼
X
i¼1

l

αiφ xið Þ

∂L
∂ξi

¼ 0⇒αi ¼ γξi

∂L
∂b

¼ 0⇒
X
i¼1

l

αi ¼ 0

∂L
∂αi

¼ 0⇒yi ¼ ωTφ xið Þ þ bþ ξi ð3Þ

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
and i=1,⋯,l; then, ω and ξi are eliminated from Eq. (3), and
the matrix equation can be obtained.

0 1 ⋯ 1
1 K x1; x1ð Þ þ 1

�
γ

⋯ K x1; xlð Þ
⋮ ⋮ ⋮
1 K xl; x1ð Þ ⋯ K xl; xlð Þ þ 1

�
γ

0BB@
1CCA

b
α1

⋮
αl

0BB@
1CCA ¼

0
y1
⋮
yl

0BB@
1CCA ð4Þ

According to Mercer conditions [22], the LS-SVM regres-
sion analytic formula can be induced by applying the kernel
function K(x,xi).

f xð Þ ¼
X
i¼1

l

αiK x; xið Þ þ b ð5Þ

In Eq. (5), αi and b are calculated using Eq. (4). The kernel
function K(xi,xj) is any symmetric function which satisfies the
Mercer conditions. Here, the radial basis function (RBF) is
chosen as the kernel function and is given by

K xi; x j
� � ¼ exp −

xi−x j
�� ��2

2σ2

 !
ð6Þ

3 Spindle thermal characterization experiment

3.1 Experimental setup

The experimental system is shown in Fig. 2, which shows the
spindle of a precision CNC jig boring machine. A synchro-
nous acquisition system was used for measurements and to
determine the temperature along with the associated thermal
deformation. This system uses Pt100 precision magnetic tem-
perature sensors to measure temperature for the spindle sys-
tem. High-precision eddy-current sensors were used to mea-
sure thermal drifts in the spindle. Temperature sensors were
located on front bearing (T6, T7), rear bearing (T1), motor (T8,
T11), ambient temperature (T5), spindle base (T2), the cooling
fluid inlet (T9), bearing cooling out (T3), front bearing coolant
out (T4), and the motor cooling out (T10).

3.2 Measurement principle

The spindle thermal drifts were measured using a five-point
method [30]. A displacement sensor measurement setup is
shown in Fig. 3. The spindle is parallel to the Z-axis, and the
axial thermal expansion can be obtained by S5. Radial thermal
yaw θx along the partial X direction was measured by sensors
S1 and S3, whereas radial thermal pitch θy along the partial Y
direction was measured using sensors S2 and S4.

After the spindle was run for long time periods, thermal
expansions occur along the axial direction and thermal angle
inclination occurs along the radial direction. This results from
the uneven temperature gradient distribution, which is shown
in Fig. 4, and the thermal yaw angle is

ΔL3 ¼ Li3−L
0
3 ð7Þ

ΔL1 ¼ Li1−L
0
1 ð8Þ

ΔL ¼ ΔL3−ΔL1 ð9Þ

tanθx ¼ ΔL

Ds
ð10Þ

where i denotes the number of measurements. The ther-
mal yaw angle is negligible for this experiment, that is

Training
normalization

Distance
between
samples

Similarity
samples

mergence

New class
distance

Clustering
algorithm
evaluation

Determine
the number
of groups

Y

N

Fig. 1 Fuzzy clustering grouping
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θx→0, so:

θxetan θx ð11Þ

As shown in Eq. (12), the thermal yaw can be obtained by
applying Eqs. (7)–(11).

θx ¼
Li3−L

i
1

� �
− L03−L

0
1

� �
Ds

ð12Þ

where L3
0 and L1

0 are the radial displacement between the
sensor probe and the spindle measured by S3 and S1, respec-
tively. L3

i and L1
i are the transient displacement during opera-

tion. Ds is the distance between S1 and S3 and S2 and S4, and
Ds=120 mm.

Similarly, the thermal pitch angle in the Y direction can be
obtained:

θy ¼
Li4−L

i
2

� �
− L04−L

0
2

� �
Ds

ð13Þ

3.3 Results and analysis

The spindle speed affects the temperature field distribution
and the magnitude of thermal drifts. In order to simulate actual
spindle speed during processing, the specific speed distribu-
tion is shown in Fig. 5.

The spindle system temperature variation is shown in
Fig. 6. The overall trend for the temperatures at all the

measuring points increases with time. In general, a cyclical
change in temperature was observed with time. This is be-
cause the temperature of the spindle system was controlled by
an intelligent cooling system, which sets a temperature thresh-
old value and starts to reduce the temperature when the
component temperature exceeds the threshold value. There-
fore, the increase in temperature exhibits fluctuations. The rear
bearing had the highest temperature at 30.4 °C. This occurs
due to its large capacity, heavy load, and severe friction, which
generates more heat. The next component with the highest
temperature was the motor with a temperature of 26.7 °C.

The measurements shown in Fig. 7 indicate that the dis-
placement trends gradually increase over time, eventually
reaching thermal equilibrium. Z-axis axial thermal elongation
increases with time. The elongation direction is negative,
which indicates spindle thermal expansion to the negative
direction on the Z-axis. It takes approximately 385 min to
reach thermal equilibrium, and the maximum elongation was
39.6 μm. Thermal error on X-axis direction is positive, which
indicates that during the heating process, the spindle is away
from the displacement sensors S1/S3. It deviates from the
Z-axis, and the spindle swings to the negative direction along
the X-axis on the XZ plane. Thermal yaw angle to the Z-axis in
this case is θx, and the maximum heat offset error was
35.8 μm. Thermal error in the Y direction is negative, which
indicates that during operation the spindle is closer to the
displacement sensors S2/S4. It deviates from the Z-axis, and
the spindle in the YZ plane pitches to the negative direction on
the Y-axis. The thermal pitch angle to the Z-axis in this case is
θy, and the maximum thermal offset was 20.2 μm.

Fig. 2 Experimental setup
showing the spindle of a precision
CNC jig boring machine

S1

S2

S3

S4

S5

X
Y

Z

Fig. 3 Spindle five-spot installation diagram
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Fig. 4 The spindle thermal inclination sketch
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4 Thermal error prediction and compensation

4.1 Parameter identification and model training

Optimization of thermal key points,m=11, sets the number of
packets C=4, after calculating, and the combination of
Euclidean-centroid clustering algorithm obtained the optimal
grouping; the cluster groupings shown in Fig. 8 divide the
temperature variables into groups {T1}, {T5}, {T2, T3, T4, T6,
T9, T10}, and {T7, T8, T11}.

Based on the results for the groups, correlation coefficients
between axial thermal error E and the temperature Ti can be
calculated as follows:

ρTiE ¼

X
j¼1

n

T i j−Ti

� �
E j−E j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼1

n

T i j−Ti

� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼1

n

E j−E j

� �2s ð14Þ

In the above equation, i=1, 2,…, m refers to the temperature
measurement points and j=1, 2,…, n refers to the number of
measurements. Tij is the temperature of the measuring point,Ej
is the thermal elongation, Ti is the average temperature of the
ith measurement point, and E j is the average thermal elonga-
tion. Correlation coefficients are listed in Table 1. The

temperature variable with the highest coefficient was selected
as a typical variable in each cluster. T10 is the outlet liquid
temperature of the motor coolant, and its temperature has a
significant influence on motor temperature. Thus, T10 is re-
served as a key variable. Finally, T1, T5, T6, T7, and T10 were
chosen as the typical temperature variables.

Using the five identified temperature variables as the input,
namely x=[T1, T5, T6, T7, T10], and xj=[T1

j , T5
j , T6

j , T7
j ,

T10
j ] as temperature vector of the jth measurement, j=1,⋯,l

and l=89. Lagrange coefficients of thermal elongation E,
thermal yaw angle θx, and thermal pitch angle θy are αi,βi,ηi,
respectively, and the corresponding deviations are b1,b2,b3.
Then, the ranges of values are:

γn ¼ 5n; n ¼ 1; 2;⋯; 20; and γ0 ¼ 1
σ2
k ¼ 1þ 0:5k; k ¼ 0; 1;⋯; 18

	
ð15Þ

Through the use of the cross-validation method (CV) for
solving γ and σ, Lagrange coefficients αi,βi,ηi and deviation
b1,b2,b3 were calculated byEqs. (4) and (6). Shown in Table 2,
the LS-SVM consists of 89 vector machines.

4.2 Model prediction

The sample size for the data is 89. LS-SVM is used to predict
thermal drifts for the spindle. The curve fitting and actual
measurements are compared in Figs. 9, 10, and 11.
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The evaluation criteria for fitting the model need to be
established, assuming the absolute value of the residual error
is |ei|, minimum as |ei|min, maximum as |ei|max, and mean

values as eij j . Root mean square error is RMSE, the determi-
nation coefficient is R2, and the predictive ability is η.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

n

yi−eyi� �2
n

vuuut
ð16Þ

R2 ¼ 1−

X
i¼1

n

yi−eyi� �2
X
i¼1

n

yi−yi
� �2 ð17Þ

η ¼ 1−

1

n

X
i¼1

n

yi−eyi


 



1

n

X
i¼1

n

yij j
¼ 1−

X
i¼1

n

yi−eyi


 



X
i¼1

n

yij j
ð18Þ

where yi is the measurement value, i is the predicted value by
the thermal error model, yi is the average value of the
measurement, i=1,⋯,n, and n is the number of data points.
The fitting performance parameters of the least square support
vector machine are shown in Table 3.

The absolute mean value of the residual error is small, the
RMSE are close to zero, and the coefficient of determination
R2 is close to 1. In addition, the predictive ability of the model
in the three different directions was more than 90 %, which
indicates that the LS-SVM model has higher prediction
accuracy.

4.3 Thermal error compensation

4.3.1 Compensation equation of thermal drifts

Figure 12 describes the spatial pose of the spindle thermal drift
on XOZ, and the point P is the deflexion center. Through axial
elongation E and radial inclination θx, the spindle declined

from PO
*

to PO0*

, so the thermal offset component in the X
direction can be written as

ΔOx ¼ D0x þ Dt þΔDð Þsinθx ð19Þ

where the offset in the X direction is ΔOx, D0x is the distance
between deflexion center and spindle nose, Dt is the length of
the tool, and ΔD is the axial elongation E.

The thermal offset in the Z direction is ΔOz:

ΔOz ¼ ΔD−ΔOD ¼ ΔD− D0x þ Dt þΔDð Þ 1−cosθxð Þ ð20Þ

Because the axial elongation is less than the length of the tool,
that is

ΔD << D0x þ D; and θx→0 ð21Þ

so

sinθx→θx
cosθx→1

ð22Þ

Equations (21) and (22) were substituted into Eqs. (19)–(20),
then thermal offsets in the X and Z directions can be obtained.

ΔOx ¼ D0x þ Dtð Þθx ð23Þ

ΔOz ¼ ΔD ð24Þ

This indicates that the thermal offset in the Z direction has no
relationship with the tool length, while the X directional
thermal offset is closely related to the tool length.

Table 1 Correlation coefficients between temperature and axial thermal error

Temperature T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Cluster T 4 2 2 2 3 2 1 1 2 2 1

ρ 0.9651 0.8593 0.9054 0.9242 0.9546 0.9706 0.9902 0.9739 0.8948 0.9344 0.9737

Table 2 The parameters
for LS-SVM Output γ σ2 b l

E 50 1 0.2390 89

θx 5 2 0.1930 89

θy 75 8 −0.1217 89

Int J Adv Manuf Technol (2015) 77:1005–1017 1011



Similarly, the thermal error offset ΔOy in the Y direction
can be obtained:

ΔOy ¼ D0y þ Dt

� �
θy ð25Þ

where D0y is the distance between the deflexion center and
spindle nose.

Assuming the distance between the deflexion center and
spindle nose isD0x,D0y in the X and Y directions, respectively,
as is shown in Fig. 12b, there is

D0x ¼ ΔL1
tanθx

−DL1 ¼ 548:659 mm ð26Þ

D0y ¼ ΔL2
tanθy

−DL2 ¼ 508:706 mm ð27Þ

In Eq. (26), ΔL1=L1
i −L10 and the value is measured by the

displacement sensor S1, which is shown in Fig. 7. tanθx∼θx,
the θx is shown in Fig. 10a calculated by Eq. (12).ΔL1 and θx
are dynamic changed state variables, and the ratio of them is
also dynamic changed, but the fluctuation is small and the
ratio is close to 791.817 mm, so treat ΔL1

tanθx
¼ 791:817 mm . In

a similar way, in Eq. (27), ΔL2=L2
i −L20 and the value is

acquired by the displacement sensor S2, which is also shown
in Fig. 7. The computed result of θy is shown in Fig. 11a, and
treat ΔL1

tanθx
¼ 751:864 mm .

The distance between displacement sensors S1, S2 and the
spindle nose is DL1,DL2, and DL1=DL2=243.158 mm.The
thermal offsets for the coordinate can be obtained by applying
Eqs. (5) and (23)–(27).

ΔOx ¼ Dt þ 548:66ð Þ b2 þ
X
i ¼ 1

l

βiK x; xið Þ
" #

ð28Þ

ΔOy ¼ Dt þ 508:71ð Þ b3 þ
X
i ¼ 1

l

ηiK x; xið Þ
" #

ð29Þ

ΔOz ¼ b1 þ
X
i¼1

l

αiK x; xið Þ ð30Þ

where x=[T1,T5,T6,T7,T10], αi,βi,ηi, and b1,b2,b3 are as
shown in Table 2.

4.3.2 The principle of thermal error compensation

The motorized spindle system of the precision jig boring
machine deflects its ideal position space because of the ther-
mal error, and it can be learned that the thermal offsets on the
three directions are all negative through experimental analysis,
as shown in Figs. 9a, 10a, and 11a. Define the thermal devi-

ation vector of the cutting tool as OO0*

:

OO0
*

¼ −ΔOx;−ΔOy;−ΔOz

� � ð31Þ

The accuracy of the machine tool is determined by the
relative displacement between the cutter and workpiece in
machining. Based on the analysis of Eq. (31), the thermal
error leads the spindle system to generate thermal offsets on
three coordinate directions and reduces the machining

0 100 200 300 400 500

-40

-30

-20

-10

0

E
lo

ng
at

io
n 

(µ
m

)

Time (min)

 Measurement
 LS-SVM

0 100 200 300 400 500

-1

0

1

2

R
es

id
ua

l (
µm

)

Time (min)

 Residual

(a) (b) 

Fig. 9 Axial thermal elongation:
a the prediction and
measurement; b residual error
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accuracy. In order to eliminate the impact of the thermal
offsets, the extra compensated amount must be added on the
coordinate of the workpiece, so the essence of the thermal
error compensation is to move the kinematic pair of the
machine tool to make the cutter and the workpiece generate
a relative motion in the opposite direction of the machine tool
thermal offset, and compensates the error resulting from the
thermal deformation. As shown in Fig. 13, the compensation
signal of the thermal error is inserted into the CNC system and
superimposed with the machining coordinate values and the
feedback signal of the encoder. Then, the new synthetic coor-
dinates are utilized to control the machine tool motion, thus
realizing the final compensation of the thermal errors.

In order to improve the machining accuracy, eliminating
the effect of thermal drifts on the spindle, the direction of the
thermal error compensation component is opposite to the tool
thermal offsets vector, and the amount of them should be
equal:

ΔHs ¼ − OO0
*

ð32Þ

where ΔHs is the final compensation vector of the spindle
system thermal errors.

Assuming thatOW(Px,Py,Pz) is the coordinate of a pointW
on the workpiece, after conducting the thermal error compen-
sation, the new coordinates of the pointW becomes OW ′(Px ′,
Py ′,Pz ′), and satisfies

OW 0 ¼ OW þΔHs ð33Þ

Substitute Eqs. (31) and (32) into Eq. (33):

Px
0 ¼ Px þ Dox þ Dtð Þθx

Py
0 ¼ Py þ D0y þ Dt

� �
θy

Pz
0 ¼ Pz þ E

8<: ð34Þ

The mathematical models of the axial thermal elongation
E, the radial thermal yaw angle error θx, and the thermal pitch
angle error θy have been established in Section 4.2, substitut-
ing these prediction models into Eq. (34) to get the final
coordinates of the workpiece, and the new coordinates being
compensated are as follows:

P
0
x ¼ Px þΔOx ¼ Px þ Dt þ 548:66ð Þ b2 þ

X
i¼1

l

βiK x; xið Þ
" #

P
0
y ¼ Py þΔOy ¼ Py þ Dt þ 508:71ð Þ b3 þ

X
i¼1

l

ηiK x; xið Þ
" #

P
0
z ¼ Pz þΔOz ¼ Pz þ b1 þ

X
i¼1

l

αi K x; xið Þ ð35Þ

8>>>>>>>>><>>>>>>>>>:
The compensation components of the thermal errors on three
coordinate axes are

ΔHs ¼
Δx
Δy
Δz

0@ 1A

¼

Dt þ 548:66ð Þ b2 þ
X
i¼1

l

βiK x; xið Þ
" #

Dt þ 508:71ð Þ b3 þ
X
i¼1

l

ηiK x; xið Þ
" #

b1 þ
X
i¼1

l

αi

K x; xið Þ

0BBBBBBBBB@

1CCCCCCCCCA
ð36Þ

where Dt is the length of the cutting tools, Δx,Δy,Δz are the
compensation values in the X, Y, and Z directions, respectively,
and they are compensated by the CNC controller.

Figure 13 is a schematic diagram of the setup for the
spindle thermal error compensation. The Siemens 840D
CNC system is used for the experiment. The temperature
module acquires signal from PT100 and sends them to the
CNC system using RS-232 communication. A thermal error
compensation module is embedded into CNC based on sec-
ondary development of 840D. It can receive error compensa-
tion parameters and then passes them on to the PLC. Finally,
thermal error offset was calculated and sent to the CNC to
achieve compensation using PLC. While the thermal yaw
error and pitch error were translated into the components of
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Fig. 11 Radial thermal pitch
angle: a the prediction and
measurement; b residual error

Table 3 The fitting performance parameters for LS-SVM

Output |ei|min |ei|max
eij j RMSE R2 η %

μm μm μm

E 0.002 1.556 0.313 0.427 0.999 98.7

θx 0.008 2.552 0.645 0.846 0.980 93.6

θy 0.002 1.489 0.447 0.565 0.992 95.6
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the coordinate axis, three components were compensated by
the principle described of this compensation system.

4.3.3 Results and comparison

In order to compare with the compensation effect of the five-
point method, the compensation algorithm based on the three-
point method is established. There are two displacement sen-
sors in the radial direction based on the three-point method,
but each of the radial planes has only one sensor. As shown in
Fig. 12b, it has only one sensor, S3 or S1, in the XOZ plane.
The end of the spindle is the point O and S3 is closer to it, and
the measured thermal yaw angle error is larger and the com-
pensation effect is better than S1, so the measured data of S3 is
chosen to build the compensated model and compared with
the five-point method. In the cool state, sign the measured
point of S3 on the spindle as N. When the spindle is at the
thermal state, the point isH. In order to verify the effect of the

thermal error compensation, it is needed to compare the mea-
sured values of S3 before/after compensation.

Before the compensation, the measured thermal yaw angle

error was NH
*

:

NH
*

¼ ΔL3 ¼ Li3−L
0
3 ð37Þ

For the motorized spindle system, the thermal offsets of the
end of the tool are compensated by the CNC system, that is,
the compensation values of the thermal errors are added to the
coordinates of the tool end pointO ′. Before compensation, the

thermal offset of S3 is the measured value NH
*

, and the three-

point method treats NH
*

as the compensation component in
the X direction, which means that the CNC system compen-

sates NH
*

at the point O ′. But the actual distribution value at
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Fig. 12 The geometric principle of the spindle thermal error compensation
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point H of the compensation value is NH3

*
. For ΔO ′MP

≅ΔHNP, so there is the following proportional:

NH3

*

O0M
* ¼ Dox þ DL1 þ Ds

Dox þ Dt þΔOz
ð38Þ

The actual compensated component of the thermal yaw

angle error at point O ′ is NH
*

based on the three-point
method, that is:

O0M
* e NH

*

ð39Þ

Applying the three-point method, the actual compensation

value of the measured pointH at the spindle isNH3

*
. It can be

obtained by applying Eqs. (38) and (39):

NH3

*

¼ Dox þ DL1 þ Ds

Dox þ Dt þΔOz
NH
*

ð40Þ

Equation (40) illustrates that, before compensation, the

measurement NH
*

decreases with the increase in the distance
between the measuring point N of S3 with the spindle end; the
compensated value could reduce and the compensation effect
may become bad.

While the actual compensated component of the thermal

yaw angle error at point O ′ is O0M
*

based on the five-point
method, that is:

O0M
*

¼ ΔOx ¼ Dox þ Dtð Þθx ð41Þ

The actual compensation value of the measured point H at

the spindle is NH5

*
. It can be induced by Eq. (41):

NH5

*

¼ Dox þ DL1 þ Ds

Dox þ Dt þΔOz
Dox þ Dtð Þθx ð42Þ

It is obvious that

NH3

*

< NH
*

≈ NH5

*
 !

ð43Þ

The compensation principle of the thermal pitch angle error
on the YOZ plane and the measured values of S4 before/after
compensation are compared.

The spindle system moves in the opposite directions of the
thermal offsets when the compensation is carried out. There-
fore, the measurement of the displacement sensor S3 will
decrease after compensation; the more it decreases, the more
the compensated amount is, and the better the compensation
effect is. Inequality (43) presents that the compensated amount
in the five-point method is larger than that of the three-point

method, which is closer to the measurement NH
*

before
compensation, and its compensation effect is better than that
of the three-point method.

After the compensation for thermal error, the errors in axial
and radial directions reduced significantly and are shown in
Figs. 14, 15, and 16. Applying the five-point method, the axial
maximum error decreased from 39 to 8 μm, and the average
error reduced from 24.6 to 4.3 μm, namely the average offset
is about 20 μm. Axial accuracy improved by 82.6 %, which
demonstrates that the method based on the proposed measure-
ment and modeling is effective. The absolute average value of
radial X direction thermal error S3 reduced from 14.6 to
4.9 μm, and accuracy improved by 66 %. Meanwhile, the
absolute maximum value of radial Y direction thermal error S4
reduced from 12.1 into 2.3 μm with accuracy improving by
90 %, while the axial and radial accuracy were improved by
82.6, 43, and 30.6 %, respectively, based on the three-point
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method. So the five-point method is better than three-point
method.

Characteristics of the CNC system determine that the spin-
dle thermal error compensation can only be conducted at the
end of its coordinates. And defects of the three-point method
to measure the thermal drifts are as follows:

1. Due to the installation problem and other factors, the
thermal deformation of the spindle terminal position is
not easy to be directly measured by the displacement
sensors. Generally speaking, the sensors are not assem-
bled at the end of the spindle. Therefore, the measurement
results do not accurately reflect thermal drifts of the end
on the spindle, making a rough compensation model.
While the distance between the end of the tool and the
displacement sensor increases, the effect of the compen-
sation based on the three-point method will be worse.
Although the five-point method cannot measure the end
thermal drifts also, the thermal error model proposed in
this paper can calculate the compensated amounts of
thermal offsets of the tool end, achieving a more accurate
compensation.

2. Based on the three-point method, if the length of the
cutting tool is changed, the thermal error model is no
longer applicable because the influence of the tool length
is ignored, and extra experiments are needed to establish a
new model, which needs for better cost. While the com-
pensation model of the thermal error does not need to be
modified and has a perfect generalization based on the
five-point method, considering the length of the cutting

tools. In summary, the five-point method is better than the
three-point method.

When the thermal offsets of the spindle are compensated on
three directions based on the five-point method, the thermal
inclination angle errors were reduced, and the result is shown
in Fig. 17. After compensation, the maximummeasurement of
the thermal yaw angle error is 5″, and the average of the
absolute value of the residuals is 1.2″. While the maximum
thermal pitch angle error is 4.5″, the average of the absolute
value of the residuals is 1.4″. In fact, the thermal inclination
angle errors of the spindle system are not reduced, but by
performing the thermal error compensation, the feed system
moves the extra distances in the opposite direction of the
thermal offsets. After compensation, the measured values of
the thermal offsets reduced. And the θx and θy decreased
calculated by Eqs. (12) and (13); therefore, the proposed
method of the thermal error compensation can improve the
terminal machining accuracy of the CNC machine tool.

5 Conclusions

Spindle thermal error modeling with axial elongation and
radial thermal angle errors are suitable for actual practical
conditions. This is due to the fact that it accurately describes
thermal deformation space-pose and can consequently be used
to improve machining accuracy. Radial thermal-induced angle
errors were ignored in methods discussed in literature as most
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Fig. 16 Radial thermal error
compensation in the Y direction
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methods are based on three-point measurement of the spindle
thermal errors. To solve this problem, a five-point method was
applied to measure the spindle thermal drifts. The use of a
least square support vector machine model to incorporate
thermal elongation and declination angles was proposed.
The methods were based on fuzzy cluster with a high predic-
tive accuracy. Moreover, the method combining fuzzy cluster
and correlation analysis was proposed to group and optimize
the temperature variables, reducing the multicollinearity of the
temperature variables and the improving stability of the mod-
el. In addition, equations for thermal error offset were derived,
which take into account the tilt angles and length of the cutting
tools. As a result a real-time compensation was implemented.
Experimental results demonstrate that the axial (in the X and Y
directions) and radial accuracy were improved by 82.6, 66,
and 90 %, respectively, which demonstrated that the proposed
method of measurement, modeling, and compensation was
effective.
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