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Abstract Silicon nitride is a non-oxide ceramic that repre-
sents strong characteristics in high strength, abrasion resis-
tance, corrosion resistance, and thermal shock resistance at
high temperatures and that has been widely used in the indus-
try. However, it also exhibits high levels of hardness and
brittleness, and machining of silicon nitride is usually imple-
mented using a diamond grinding process. This presents dif-
ficulties in machining due to increased machining cost and
time, and a machining method to reduce these is needed.
Current studies on an alternative approach to the problem
have been focused on laser-assisted machining (LAM)
methods that facilitate machining by softening a workpiece
using a laser heat source. The advantages of a LAM process
are decreases in tool wear and cutting force and reductions in
catastrophic tool failures and the occurrence of chatter. In this
study, a high-power diode laser (HPDL) is used as a heat
source for machining of silicon nitride. Machining experi-
ments were carried out using cubic boron nitride (CBN) tools.
The proper laser power for the experiment was determined
through thermal analysis. A back-and-forth laser-path
preheating method was newly proposed to obtain sufficient
temperature for softening the silicon nitride. Machining ex-
periments were performed using back-and-forth method and
insulation material for protecting heat. The machining of
silicon nitride was performed successfully by a laser-assisted
milling (LAMill) process using a CBN ball end-mill tool,
which is stable at high temperatures. In the machining with
applying three times of a back-and-forth laser-path preheating
process, tool breakage and gas marks were not occurred at the
170W for processing a depth of cut of 0.15 mm. It is expected

that the results of machining experiments can be used to
process the various shape of silicon nitride material.
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1 Introduction

Due to their high strength, excellent abrasion resistance, and
chemical stability at high temperatures, ceramics have become
very popular and are widely used in various industrial fields
(for example, machines, architecture, medical applications) [1,
2]. However, as ceramics exhibit high levels of hardness and
brittleness, machining them has usually been performed using
a diamond grinding process that costs more than 60 % of the
entire machining cost [3–5]. There are also many problems
related to the long machining time. To solve such problems, a
number of studies have focused on laser-assisted machining
(LAM)methods that facilitate the machining of ceramic work-
pieces by softening them using a laser heat source [5–11].

Germain et al. [12] verified an increase in tool life and
decrease in cutting force in a LAM machining experiment of
Inconel 718, using carbide and ceramic inserts. Rozzi et al.
[13–15] analyzed the influence of conditions on machining
silicon nitride in a LAM experiment and also investigated
chips and the characteristics of machining surfaces. They also
predicted the temperatures of machining areas using a heat
transfer simulation. Lei et al. [16, 17] proposed constitutive
equations by performing a modeling of the behavior of silicon
nitride according to temperatures as a mathematical manner
and performed a study on tool life through experiments.

Studies on LAM have generally been performed in con-
nection with laser-assisted turning (LAT) processes [18, 19].
In practical products, however, milling requires complicated
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and precise machining processes. Although it is possible to
implement overall preheating by fixing a laser heat source at a
specific point and rotating a workpiece in LAT, there is some
difficulty performing this during a milling process due to the
need to move the laser heat source [20–23].

Thus, studies on laser-assisted milling (LAMill) are
required. The present authors also used thermal analysis
to predict the proper laser power and feed rate under
various conditions in LAMill, before processing ceramic
machining. These predictions were verified through a
preheating experiment. In addition, it has revealed that
cutting force and surface roughness are improved by
applying LAMill for AISI 1045, Inconel 718, and Nickel
201 [24–26]. Kang et al. [27] suggested a constitutive
equation for silicon nitride by experiments using flat-end
mill. The machining of silicon nitride was performed
successfully by a LAMill process using a CBN ball end-
mill tool, which is stable at high temperatures [28, 29].

In this study, a high-power diode laser (HPDL) was used as
a heat source for machining of silicon nitride. A machining
experiment was carried out using cubic boron nitride (CBN)
tools, and the proper laser power for the experiment was
determined through thermal analyses. A back-and-forth
laser-path preheating method was newly proposed to obtain
sufficient temperature for softening the silicon nitride. Prior
works about LAM have been carried out mainly using flat-end
mills for machining of flat workpieces, but ball end-mills are
used to apply for three-dimensional LAM by the present
method.

2 Finite element method

2.1 Analysis method

For LAM, it is very important to predict the preheating
temperature of a workpiece and to maintain proper ma-
chining temperature by controlling the laser power ac-
cording to changes in the feed rate. Before the machining
experiment, a finite element analysis was carried out,
using an ANSYS Workbench thermal analysis, in order
to predict the laser preheating temperature of a silicon
nitride workpiece. The thermal analysis was carried out
sequentially by input of the laser heat source, which is
overlapped by 1/2, according to time along to the path of
the laser heat source as shown in Fig. 1. That is, the step
movement was set at 1.5 mm because the diameter of the
laser heat source was 3 mm [24, 25].

The thermal conductivity and specific heat of the work-
piece change according to changes in temperature. As repre-
sented in Table 1, the thermal conductivity and specific heat
were used to perform the analysis.

2.2 Analysis conditions

The absorptance of the silicon nitride in a diode laser (70 %)
was applied to the analysis [30]. Because the temperature
decreases due to convection in air as the workpiece is
preheated by laser, the natural convection condition, 5 W/
m2 °C, was applied to the analysis.

To maintain a temperature sufficient for machining, a ther-
mal insulation material was attached between the workpiece,
and the jig and fixture. A back-and-forth laser-path preheating
method is suggested.

Fig. 1 Sequence of the analysis

Table 1 Properties of the silicon nitride according to temperature change

Temperature
(K)

Thermal conductivity
(W/mm K)

Specific heat
(J/kg K)

500 25 910

1,000 17.5 1,170

1,500 15 1,215

2,000 14 1,220
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3 Thermal analysis and preheating experiment

3.1 Back-and-forth laser-path preheating method

As described in Sect. 2, silicon nitride has a high
thermal conductivity, and this leads to a rapid drop in
temperature due to heat conduction into the jig and
fixture. To prevent this, a thermal insulation material
was set up between the workpiece, and the jig and
fixture. Then, a new back-and-forth laser-path
preheating method was used to heat a silicon nitride

workpiece to a specific temperature to facilitate effective
machining.

Figure 2 represents the results of a thermal analysis with
and without thermal insulation material for the workpiece that
was machined at 150Wafter three times back-and-forth laser-
path preheating. In a thermal analysis, the maximum temper-
atures of a laser heat source in machining with and without
thermal insulation material after applying the back-and-forth
laser-path preheating method were 1,870 °C, which was due
to the accumulation of heat in the workpiece, and 1,030 °C,
respectively. It was verified that the thermal insulation

Fig. 2 Results of thermal analysis a without thermal insulation material and b with thermal insulation material between the workpiece and the jig and
fixture

Fig. 3 Temperature distribution after back-and-forth laser-path preheating at 150 W: a thermal analysis and b preheating experiment
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material significantly reduces the thermal conductivity be-
tween the jig and fixture.

Figure 3 shows the comparison of the temperature data
obtained from the thermal analysis and from the experiment
carried out at 150 W. Figure 3a shows the temperature distri-
bution determined by thermal analysis, and Fig. 3b shows the
surface temperatures measured using a pyrometer. The analy-
sis results show good agreement with the experimental ones,
except for the temperature of the regions at both ends where
the laser preheating paths overlapped.

For applied laser power of 80, 100, 120, and 140 W (and
considering the absorption ratios of 56, 70, 84, and 98W), the
maximum surface temperature at each laser power level was
1,155, 1,352, 1,555, and 1,758 °C, respectively.

3.2 Experimental setup for preheating

In the machining experiment, a high-power diode laser with
maximum power of 1 kW that has a wavelength of 808–
980 nm by Laserline was set up to the machining center
spindle, Hyundai-Wia Hi-V560M 5 axes (3+2-axes-kinemat-
ic) as shown in Fig. 4. Also, a pyrometer was set up tomeasure
the surface temperature of the workpiece in real-time. A
dynamometer (9257B by Kistler) was used to measure the
cutting force, and a charge amplifier (5019 by Kistler) was
used to amplify the voltage measured by the dynamometer.

3.3 Thermal analysis

Table 2 shows the thermal analysis conditions. Analyses were
carried out for machining laser power at 150, 170, and 190W,
after applying three times of the back-and-forth laser-path
preheating process at 150 W. The distance between the center
of the laser heat source and the center of the machining target,
which is contacted by a tool, was set at 6 mm. Figure 5 shows
the maximum preheating temperature at the laser heat source
and at the machining point, according to laser power. The
maximum temperature was calculated to be 1,774, 2,026, and
2,277 °C according to increases in the power. Also, the tem-
perature at the machining point was calculated to be 895,
1,022, and 1,147 °C according to increases in the power.

4 Machining experiment

4.1 Experimental setup and machining conditions

Machining experiments are carried out using experimental
setup shown in Fig. 4. CBN is an artificial diamond formed

Fig. 4 Experimental setup for LAMill

Table 2 Conditions of the thermal analysis

Materials Silicon nitride

Block size 60×15×8 mm

Laser feed rate Preheating: 100 mm/min
Machining: 40 mm/min

Laser power 150, 170, 190 W

Laser heat source size 3 Ø

HPDL absorption ratio of silicon nitride 0.7

Convection heat 5 W/m2 °C

(a) 150 W (b) 170 W (c) 190 W

Fig. 5 Temperature distribution
by the thermal analysis of the
preheated zone and center of the
machining zone
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by bonding boron (B) and nitrogen (N) as a type of com-
pound. It does not well react with iron. In particular, it main-
tains hardness to more than 1,000 °C without any oxidation
and can be used to high hardened steel machining or for high-
speed machining of cast iron. A CBN ball end-mill with
exceptional stability at high temperature was used for the
experiment.

The machining conditions applied to the experiment are
presented in Table 3. As the same as the thermal analysis, the
machining laser power was applied at 150, 170, and 190 W
after applying three times of the back-and-forth laser-path
preheating process at 150 W.

4.2 Experimental results and discussion

Figures 6 and 7 represent the machined workpiece surface
according to the laser power level. They show white regions
around the machined area that increased according to in-
creases in the laser power. After 190-W laser power was
applied, gas marks were present on the surface. Glass transition temperature is 1,100∼1,200 °C. And, silicon is

precipitated from workpiece matrix at 1,300∼1,500 °C. When
the precipitation of silicon is initiated, cracks are generated on

Table 3 Conditions of the experiment

Materials Silicon nitride

Block size 60×15×8 mm

Laser feed rate Preheating: 100 mm/min
Machining: 40 mm/min

Laser power 150, 170, 190 W

Spindle rpm 4,000

Depth of cut 0.15 mm

Tool 2F 8 Ø
CBN ball end-mill

Laser heat source size 3 Ø

Fig. 6 Machined surfaces using the CBN ball end-mill

Fig. 7 Digital microscope pictures of the machined surface

Fig. 8 Digital microscope pictures of the CBN ball end-mill
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the workpiece after machining. So, the low laser power is
selected to maintain preheating temperature 1,100∼1,300 °C.

Figure 8 shows the images of the CBN ball end-mill
surface using an electron microscope. As shown in Figs. 6
and 7, tool breakage occurred at 150 W and that caused
abrasions due to the broken tool-end. However, when laser
powers of 170 and 190 W were applied, the tools were still in
good condition. Regarding the results at a laser power of
190 W, the gas marks should be removed by machining the
workpiece with a depth of cut more than 0.15 mm.

The principal cutting force (Fx) and axial cutting force (Fz)
for each level of laser power are presented in Table 4. In the
measurement at 150 W, the cutting force was about two times
higher than that of 170 and 190W. For 150W, it is considered
that the cutting force was high due to the low preheating
temperature and tool breakage.

5 Conclusion

In this study, a machining experiment was carried out using
ball end-mill tools, and the proper laser power for the exper-
iment was determined through thermal analyses. Ball end-
mills are used to apply for three-dimensional laser-assisted
machining by the present method. A back-and-forth laser-path
preheating method was newly proposed to obtain sufficient
temperature for softening the silicon nitride. The machining of
silicon nitride was performed successfully by a LAMill pro-
cess using CBN ball end-mill tools, which are stable at high
temperatures. Then, the results of this experiment are summa-
rized as follows:

1. Silicon nitride exhibits high thermal conductivity that
leads to a rapid drop in temperature due to heat conduc-
tion into the jig and fixture. Use of a thermal insulation
material significantly reduced heat conduction from the
workpiece into the jig and fixture during the back-and-
forth laser-path preheating. The use of thermal analyses
and experiments was helpful for successfully developing
the milling process for silicon nitride by LAMill.

2. It is shown that the machining of the silicon nitride can be
performed successfully using CBN tools, which are stable

at high temperature, in conjunction with the back-and-
forth laser-path preheating method.

3. In the machining with applying three times of a back-and-
forth laser-path preheating process, tool breakage oc-
curred at 150 W due to the low preheating temperature
and lack of workpiece softening. Gas marks occurred due
to surface oxidation because of excessive heat input in the
preheating process at 190 W. It is considered that the
proper laser power in the machining is 170 W for pro-
cessing a depth of cut of 0.15 mm.

The results obtained in this study can be used as data for
predicting the proper back-and-forth laser-path preheating and
machining laser powers according to different depths of cut in
the similar ceramic materials for the laser-assisted milling.
The preheating times will be increased, and then the depth
of cut could be increased in the future work.
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