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Abstract This paper deals with the problem of schedul-
ing operations in cellular manufacturing systems. A con-
current approach is proposed for job shop cell scheduling
while the objective is to minimize the makespan. An
integer linear programming model is developed by con-
sidering exceptional elements, intercellular moves, inter-
cellular transportation times, and sequence-dependent
family setup times. A modification of the model with
reduced number of functional constraints is then present-
ed to enhance the efficiency of the model in terms of
computational time. In order to efficiently solve real-size
problems in a reasonable amount of time, a heuristic
approach based on the genetic algorithm (GA) is also
developed. The proposed GA is enhanced with problem-
specific knowledge of the search space by using a spe-
cialized repair strategy, a decoding procedure based on
the concept of active schedules and a problem-specific
mutation operator which prevents the algorithm from
searching redundant solutions. Results reveal that the
modified mixed integer linear programming model sig-
nificantly reduces the computational time and the pro-
posed GA is capable of providing promising solutions to
large-scale problems.
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1 Introduction

Cellular manufacturing (CM), as an application of group
technology, is a production system which deals with the
formation of manufacturing cells in a way that parts requiring
similar production processes are assigned to samemanufactur-
ing cells [31]. There are several advantages associated with
cellular manufacturing system (CMS) including reduction in
inventory level, setup times, and cycle time as well as en-
hancement in quality control and flexibility Shankar and Vrat
[25]. Implementing effective scheduling system is an impor-
tant requisite for attaining the potential benefits of CMS [10].
The previous research devoted to cellular scheduling can be
categorized into two main groups: flow line cell scheduling
and job shop cell scheduling.

Most studies have been focused on the flow line cell
scheduling in CMS. Sridhar and Rajendran [28] have de-
veloped a hybrid simulated annealing (SA) algorithm to
deal with the problem of scheduling operations in a flow
line cell with the objective of minimizing total flow time.
Skorin-Kapov and Vakharia [26] have proposed a tabu
search (TS) algorithm to solve the flow line cell scheduling
while the objective is to minimize the makespan. They
have shown that the proposed algorithm outperforms SA-
based algorithm in terms of solution quality and computa-
tional time. Frazier [7] has investigated the performance of
14 different scheduling rules in flow line cell scheduling.
Results show that the simple rules have better perfor-
mances and the performance of the rules is dependent to
set up to runtime ratio. Sridhar and Rajendran [29] have
proposed a genetic algorithm (GA) for scheduling in flow
line cells with multiple objectives, namely, minimizing
makespan, total flow time, and machine idle time. They
have shown that the proposed algorithm outperforms other
multi-criterion heuristics available in the literature.
Schaller et al. [23] have proposed heuristic algorithms
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based on TS, GA, and two well-known heuristic algo-
rithms in flow shop scheduling, i.e., NEH and CDS to
solve the problem of scheduling in flow line-based CMS.
The objective is to minimize the makespan and the family
setup times are sequence independent. Reddy and
Narendran [19] have developed heuristic algorithms to
schedule jobs within a part family in a flow line
manufacturing cell with the objective of improving the
utilization of machines and to reduce the tardiness and
the number of tardy jobs. França et al. [6] have developed
evolutionary-based algorithms including GA and memetic
algorithm (MA) to solve the problem with the objective of
minimizing makespan considering sequence-dependent
family setup times. Hendizadeh et al. [8] have developed
metaheuristic algorithms based on TS to minimize
makespan in a flow line manufacturing cell. The proposed
algorithms exploit the concepts elitism and acceptance of
worse moves form SA-based algorithm. Lin et al. [12] have
studied the performance of non-permutation schedules in
flow line cells. They have proposed and evaluated the
effectiveness of three metaheuristic algorithms including
SA, GA, and TS. Zandieh et al. [32] have proposed two
metaheuristic algorithms based on GA and SA to solve the
problem of scheduling part families and jobs in flexible
flow line manufacturing cell in which one or more stages
have two or more units of the same machine type. Results
reveal that the proposed GA outperforms SA. Karimi et al.
[11] have investigated the problem of scheduling in flexi-
ble flow line cell with sequence-dependent family setup
times while the objectives are minimizing makespan and
total weighted tardiness. They have proposed a three-phase
algorithm based on GA to solve the problem. Celano et al.
[3] have studied the problem of scheduling in permutation
flow line cells with sequence-dependent family setup times
while the objective is to minimize makespan and the
interoperational buffer capacity is limited. They have pro-
posed a GA to solve the problem and compared its perfor-
mance with NEH and TS. Results show that the proposed
approach improves line productivity in a company produc-
ing electronic devices. Behnamian et al. [2] have devel-
oped a hybrid metaheuristic algorithm based on particle
swarm optimization (PSO), SA, and variable neighborhood
search (VNS) to solve the flexible flow line cell scheduling
problem. The objective is to minimize the sum of earliness
and tardiness. They have shown the superiority of the
proposed hybrid algorithm over GA and SA. Salmasi
et al. [22] have proposed a mathematical formulation of
flow line cell scheduling with sequence-dependent family
setup times while the objective is to minimize total flow
time. They have developed a TS algorithm and a hybrid ant
colony optimization (ACO) algorithm to solve the problem.
Results show that the proposed HACO algorithm outperforms
TS. Solimanpur and Elmi [27] have proposed a mixed integer

linear programming model for the flow line cellular
manufacturing system considering bottleneck machines and
intercellular moves with makespan criterion. They have de-
veloped a nested TS algorithm to solve the problem.

Some researchers have investigated the problem of
scheduling operations in job shop cells. Mahmoodi et al.
[15] have proposed dynamic scheduling heuristics for job
shop cells emphasizing good due date performance and
reducing overall setup times. Simulation results show that
the proposed heuristics improve the performance of the
CMS. Mahmoodi and Dooley [13] have proposed non-
exhaustive heuristics for scheduling operations in a job
shop cell. Simulation results show the superiority of the
exhaustive heuristics over the non-exhaustive ones. Ruben
et al. [21] have investigated the performance of single-
stage and two-stage group scheduling heuristics in a job
shop cell environment. They have also examined the im-
pacts of setup to runtime ratio and cell load combined with
the inter-arrival time variability factor. Simulation results
reveal that in many situations, the performances of single-
stage heuristics are similar to that of two-stage heuristics.
Mahmoodi and Martin [14] have proposed a subfamily
queue selection heuristic for the job shop cell scheduling
problem while the objective is to minimize total major
sequence-dependent setup times. The proposed heuristic
is based on dynamically assessing variations in a
subfamily’s arrival rate. The efficiency of the heuristic in
terms of flow time and due date performance has shown
through simulation. Chen and Lee [4] have developed an
exhaustive group scheduling algorithm based on bottle-
neck machines to improve load balance in job shop cells.
Results indicate the advantages of the proposed procedure
in a variety of experimental conditions. Tavakkoli-
Moghaddam et al. [30] have proposed a nonlinear mathe-
matical model for the problem of scheduling operations in
a CMS considering inter-cell moves. The objectives are to
minimize the makespan, intracellular moves, tardiness, and
setup costs. They have also developed a scatter search (SS)
algorithm to solve the problem. Elmi et al. [5] have pro-
posed an integer linear programming model for the prob-
lem of scheduling operations in job shop CMS considering
inter-cell moves with the objective of minimizing
makespan. They have developed an SA-based algorithm
with a block-based neighborhood structure to solve the
problem. Table 1 provides a summary of the research in
the area of cellular scheduling. Renna and Ambrico [20]
have proposed three different models to deal with the
design, reconfiguration, and scheduling of the CMS. They
have considered the turbulent market conditions by devel-
oping a scenario-based mathematical model for designing
the CMS. The proposed model is able to manage the
reconfiguration of the machines in the manufacturing sys-
tem at fixed time periods. Paydar et al. [17] have proposed
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a mathematical model for dynamic cellular manufacturing
systems considering alternate process routings, sequence
of operations, intra-cell layout, and duplicate machines.
The objective is to minimize the total costs of material
handling, cell reconfiguration, outsourcing, inventory
holding, machine operating, and maintenance.

As can be seen from Table 1, most of the researches
available in the literature have been devoted to flow line cell
scheduling. Furthermore, very few studies have investigated
job shop cell scheduling problem by considering exceptional
elements and intercellular moves. Family setup times are one
of the most important features of CMS which have great
effects on the operations planning. Furthermore, exceptional
elements are almost always inevitable in the CMS and pro-
foundly affect the cellular scheduling. Due to the fact that the

exceptional elements are transported among cells, the opera-
tions schedule of one cell is dependent to other cells. Thus,
solving the cellular scheduling problems independently results
in schedules which are not practically applicable to the
CMS. Additionally, in most scheduling problems, the trans-
portation times of parts are often considered to be negligi-
ble. In the CMS, although the intracellular transportation
times can be ignored, intercellular transportation times are
usually notable and significant. To the best of our knowl-
edge, no work has presented a linear programming model to
solve this problem regarding exceptional elements, inter-
cellular moves, intercellular transportation times, and
sequence-dependent family setup times. Considering these
factors necessitates concurrent scheduling of manufactur-
ing cells in CMS.

Table 1 Summary of the research in the area of cellular scheduling

No. Reference Problem Criterion Solution method Descriptions

1 Sridhar and Rajendran [28] Permutation flow line Total flow time Heuristic, SA

2 Skorin-Kapov and
Vakharia [28]

Permutation flow line Makespan TS Sequence-independent
setup times

3 Frazier [7] Permutation flow line Multi-criteria Dispatching rules

4 Sridhar and Logendran [29] Permutation flow line Makespan, flow time, idle
time

GA

5 Schaller [23] Permutation flow line Makespan Heuristic, GA, TS Sequence-independent
setup times

6 Redddy and Narendran [19] Permutation flow line Time in system, tardiness,
No. of tardy jobs

Non-exhaustive heuristics Poisson job arrival

7 Franca et al. [6] Permutation flow line Makespan GA, MA Sequence-dependent
setup times

8 Hendizadeh et al. [8] Permutation flow line Makespan TS Sequence-dependent
setup times

9 Lin et al. [12] Non-permutation flow line Makespan, tardiness SA, GA, TS Sequence-dependent
setup times

10 Zandieh et al. [32] Flexible flow line Makespan SA, GA Sequence-dependent
setup times

11 Karimi et al. [11] Flexible flow line Makespan, total weighted
tardiness

GA Sequence-dependent
setup times

12 Celano et al. [3] Permutation flow line Makespan GA Sequence-dependent
setup times

13 Behnamian et al. [2] Flexible flow line Sum of earliness and lateness PSO, SA, VNS Sequence-dependent
setup times

14 Salmasi et al. [22] Permutation flow line Total flow time TS, ACO, Branch & Price

15 Solimanpur and Elmi [27] Non-permutation flow line Makespan TS

16 Mahmoodi et al. [15] Job shop Due date, total setup times Heuristic Poisson job arrival

17 Mahmoodi and Dooly [13] Job shop Multi-criteria Heuristic Computer simulation

18 Ruben et al. [21] Job shop Multi-criteria Heuristic Computer simulation

19 Mahmoodi and Martin [14] Job shop Due date, flow time Heuristic Poisson job arrival

20 Chen and Lee [4] Job shop Makespan Heuristic Computer simulation

21 Tavakkoli-Moghaddam
et al. [30]

Job shop Makespan, intracellular
moves, tardiness, setup
costs

SS Non-linear model

22 Elmi et al. [5] Job shop Makespan SA
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In this paper, a concurrent approach is proposed for
scheduling operations in job shop cells with the objective
of minimizing makespan. First, an integer linear pro-
gramming model is developed in which exceptional ele-
ments, intercellular moves, intercellular transportation
times, and sequence-dependent family setup times are
considered. Then, an extension of the model with fewer
functional constraints is proposed to enhance the effi-
ciency of the model and reduce its computational time.
Furthermore, a GA-based heuristic is developed to effi-
ciently solve large-scale problems in a reasonable
amount of time. In the proposed GA, a specialized repair
strategy, a decoding procedure based on the concept of
active schedules, and a problem-specific mutation opera-
tor for omitting redundant solutions from the search
space are applied. Results reveal that the extended model
significantly reduces the computational time and the pro-
posed GA is able to provide promising solutions to real-
size problems.

2 Mathematical models

In this section, an integer linear programming model for
concurrent scheduling of job shop manufacturing cells is
proposed. In the proposed model, the effects of exceptional
elements, intercellular moves, intercellular transportation
times, and sequence-dependent family setup times are consid-
ered. The objective is to minimize the makespan. The follow-
ing definitions and notations are considered in the mathemat-
ical models.

i Index for machines i=1,…, m
j Index for jobs j=1,…, n
k Index for cells k=1,…, K
l Index for part families l=1,…, h
o Index for operations o=1,…, Oj

m Number of machines
n Number of jobs
K Number of cells
Oj Number of operations of part j
pij Processing time of part j on machine i
tkk′ Transportation time from cell k to cell k′
sll′ Setup time for part family l′ if processed immediately

after part family l
xik 1, if machine i is located in cell k and 0 otherwise
yjl 1, if job j belongs to part family l and 0 otherwise
rjoi 1, if operation o of job j is processed on machine i and

0 otherwise
Cji Completion time of job j on machine i
Cmax makespan
zjj′i 1, if job j precedes job j′ on machine i and 0 otherwise
wji 1, if job j is processed on machine i and 0 otherwise

The proposed model is as follows.

Minimize Cmax ð1Þ

Subject to:

X

i¼1

m

r joiC ji≥
X

i0¼1

m

r j;o−1;i0 C ji0 þ pji 0 þ
X

k¼1

K X

k
0 ¼1

K

xikxi0 k 0 tkk 0

 !
∀ j; o≥2

ð2Þ

C ji≥C j0 i þ
X

l¼1

h X

l 0¼1

h

y j0 l 0 y jlsl 0 l−M zj j0 i

þ pji−M 2−wji−wj0 i

� �
∀i; j; j 0

ð3Þ

C j0 i≥C ji þ
X

l¼1

h X

l 0¼1

h

y jl y j0 l 0 sll 0−M 1−z j j0 i
� �

þ pj0 i−M 2−wji−wj0 i

� �
∀i; j; j0

ð4Þ

C ji≥pji ∀i; j ð5Þ

Cmax≥C ji ∀i; j ð6Þ

z j j0 i; wji; wj0 i ¼ 0 or 1 ∀i; j; j0 ð7Þ

Equation (1) is the objective function which minimizes
makespan. Equation (2) ensures that each part is processed
based on the defined precedence of its operations and inter-
cellular transportation times. Equations (3) and (4) guarantee
that at most, one part is processed by each machine at a time
considering family setup times. Equation (4) imposes that
completion time of an operation is not less than its processing
time. Equation (6) calculates the makespan and Eq. (7) defines
binary variables.

By defining a new variable qj j 0 i as the surplus variable of

Eq. (3), it can be rewritten as follows.

M zj j 0 i þ C ji−C j 0 i

� �
−
X

l¼1

h X

l 0¼1

h

y j 0 l 0 y jlsl 0 l−pji

þM 2−wji−wj 0 i

� �
¼ qj j 0 i

ð8Þ
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Accordingly, Eq. (4) is rewritten as follows.

qj j 0 i≤5M−pji−pj 0 i−
X

l¼1

h X

l 0¼1

h

y j 0 l 0 y jlsl 0 l−
X

l¼1

h X

l 0 ¼1

h

y jly j 0 l 0 sll 0

−2Mwji−2Mwj 0 i ð9Þ

Now, by replacing Eqs. (3) and (4) with Eqs. (8) and (9), an
extension of the proposed model is obtained. In the extended
model, upper-bound constraints of type of Eq. (9) are added to
the model while functional constraints of type of Eq. (4) are
omitted by increasing the number of variables. Upper-bound
constraints are known to be handled efficiently by the bound-
ed simplex algorithm.

3 Proposed genetic algorithm

The problem of scheduling manufacturing cells involves a
complex shape of search space. Since job shop scheduling
problem (JSP) is a particular case of this problem, the com-
plexity of the problem under consideration is at least of the
same order of JSP. Recall that JSP is NP-hard when the
number of machines exceeds 2. Thus, the problem of sched-
uling manufacturing cells is NP-hard as well. Due to the
complexity of the problem, a GA is developed to efficiently
search the solution space and find optimal or near-optimal
solutions to the problem. GAs are known to be effective
search techniques that have been successfully applied to solve
different optimization problems. However, when the search
space is extremely large, as it is the case for the problem of
scheduling manufacturing cells, the efficiency of a common
search technique such as GA highly depends on the incorpo-
rating problem-specific knowledge to the search algorithm. In
the proposed GA, a specialized repair strategy, a decoding
procedure based on the concept of active schedules, and a
problem-specific mutation operator for omitting redundant
solutions from the search space are applied. The main con-
cepts of the proposed algorithm are discussed below.

3.1 Representation and feasibility

Representation is the first of GA implementation in which a
typical solution is transformed to the format of a chromosome
string. In the proposed algorithm, an operation-based repre-
sentation scheme is adopted. The chromosome is encoded as
permutation of integers from 1 to total number of operations to
be scheduled in a way that each gene stands for an operation.
Using permutation-based representation makes the chromo-
some adaptable to different operators and easily comprehen-
sible [16]. For example, consider the problem of scheduling
21 operations of seven parts to be processed on six machines

while the number of cells and the number of part families are
two. Process routings of parts are shown in Fig. 1 in which
rows and columns of the matrix stand for machines and parts,
respectively.

Figure 2 presents an instance chromosome for this problem
which is a permutation from 1 to 21.

The chromosome presented in Fig. 2 is a feasible chromo-
some because it does not violate the defined precedence of
operations. However, a not-all permutation-based chromo-
somes are feasible. It is possible that a permutation be incon-
sistent with the process routings of the parts; thus, the resulted
chromosome is infeasible. In the case of infeasibility, a
straightforward repair strategy is applied. The stepwise proce-
dure is as follows.

Step 1. Consider the first part and do

1–1) Determine all operations related to the part
1–2) Reorder the operations based on the process

routing of the part
1–3) Replace the determined operations in the chromo-

some with the ordered ones
Step 2. If all parts have been considered, stop; else, consider

the next operation and repeat 1–1 to 1–3

3.2 Initialization and fitness evaluation

Initialization is the process of generating an initial population
with a desired population size. In the proposed algorithm, the
initial population is a set of randomly generated solutions. If a
randomly generated solution is infeasible, the repair strategy
described in Section 3.1 is utilized to guarantee the feasibility
of solutions.

For individual x, fitness function is calculated as follows.

f xð Þ ¼ G−Cmax xð Þ ð10Þ

where Cmax(x) is the makespan calculated for individual x and
G is the maximum makespan in the current population. In
order to calculate the makespan, the sequence represented by
the chromosome must be decoded into a feasible schedule. A
simple way to obtain the schedule is to directly put the

P1 P2 P3 P4 P5 P6 P7

M1 0 0 3 1 3 0 0

M2 1 1 0 0 0 3 4

M3 0 0 1 0 2 0 0

M4 0 0 4 2 1 0 3

M5 2 3 2 0 0 2 1

M6 0 2 0 0 0 1 2

Fig. 1 Process routings of parts
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operations in the schedule according to their order in the
chromosome. The resulted schedule will then be a semi-
active schedule in which no operation can be processed
earlier unless the order of processing on machines is
changed. The set of semi-active schedules is very large
and low quality in terms of makespan. The performance
of the algorithm can be dramatically enhanced if the search
process is guided to explore a smaller set of schedules
without excluding the optimal solution. The set of active
schedules is a small subset of semi-active schedules which
includes the optimal solution. A schedule is active if no job
can be processed earlier without delaying the process of
any other job Pinedo [18]. In the proposed algorithm, a
decoding procedure is applied to obtain active schedules
from a chromosome. The procedure is a modified version
of the algorithm proposed by Arkat et al. [1]. The proce-
dure is based on finding the idle time intervals on machines
before putting an operation into the schedule. For each
machine, a set of gaps based on idle time intervals is
defined and then updated whenever an operation is
appended to the schedule.

Notation:

oij Operation of part j which is processed on machine i
pij Processing time of operation oij
rj Earliest possible time for processing part j
MGi Set of gaps on machine i

Algorithm:
Step 1 Set MGi=[0, +∞] and rj=0 for all parts
Step 2 for k=1 to total number of operations do

2–1) Consider operation oij at kth position of the
chromosome
2–2) Find [e, f]∈MGi such that min{f−rj, f−e}≥t[e,
f]+pijwhere, t[e, f] is family setup time needed for part
j if processed in gap [e, f]
2–3) Among gaps found in step 2–2 select [e*, f*]
with earliest e
2–4) Set e*+t[e*, f*] as the start time and e*+pi+t[e*, f*]
as the completion time of operation oij
2–5) Remove [e*, e*+pi+ t[e*, f*]] from MGi and
update rj for all parts considering intercellular trans-
portation times

3.3 Selection

The selection mechanism in the proposed algorithm is based
on the roulette wheel approach. In the roulette wheel selection

mechanism, as a fitness proportional approach, individuals
with better fitness have higher chances to be carried over to
the next generation. An elitist strategy is also adopted to keep
the best solution of each generation and directly transform it to
the next generation.

3.4 Crossover

Crossover is the main genetic operator which combines
two selected parents from the population to produce two
offspring. In the proposed algorithm, order crossover is
applied which is suited to genes that represent permu-
tation [9]. The main idea of order crossover is to
preserve the relative order of operations in the parents
and convey it to the offspring.

3.5 Mutation

Mutation operator keeps the diversity of the population
by making subtle changes in the chromosomes. Muta-
tion operator in the proposed algorithm is based on the
swap mutation while preventing from searching redun-
dant solutions. In swap mutation, two genes are selected
randomly and their corresponding operations are ex-
changed. According to the representation scheme of
the solutions in the proposed algorithm, simple swap
mutation may result in the same solution despite the
change in the chromosome. This fact, which two differ-
ent chromosomes may yield in same solutions, is called
redundancy. In order to increase the efficiency of the
proposed algorithm, a procedure is applied to prevent
searching redundant solutions. Redundancy can occur in
two cases. The first case of redundancy is when the two
selected operations belong to the same part. According
to the repair procedure described in Section 3.1, ex-
changing the position of these two operations does not
change the solution. The second case is when the pro-
cesses of the selected operations are on different ma-
chines and none of the operations located between those
operations in the chromosome string are processed on
one of the machines which process the selected opera-
tions. In other words, suppose that operations oij and
ouv are selected. Redundancy occurs if (1) j=v or (2) i≠
u and all operations located between oij and ouv in the
chromosome are not processed on machines i or u. The
procedure described below enhances the performance of
the algorithm by omitting redundant solutions from the
search area.

18 6 19 3 12 4 15 10 1 5 7 13 16 11 8 14 20 17 21 9 2

Fig. 2 An example of a feasible chromosome
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Step 1 Set R=1
Step 2 While R=1, repeat the following sub-steps

2–1) Select operations oij and ouv located in posi-
tions p1 and p2 at random

2–2) If j=v, go to 2–1
2–3) If i=u, set R=0; else

for k=p1+1 to p2−1
If the operation located in the kth position
of the chromosome is processed on ma-
chines i or u, set R =0

Step 3 Exchange the position of operations oij and ouv

4 Computational results

In this section, the results of two experiments are described.
The first experiment is conducted to compare the performance
of the two proposed mathematical models. The second exper-
iment deals with investigating the efficiency of the proposed
genetic algorithm.

4.1 Performance of the mathematical models

In this section, the performance of the first mathematical
model is compared to the modified model in terms of compu-
tational time. The modified model refers to the model incor-
porating the technique of reducing functional constraints de-
scribed in Section 2. Models have been solved using LINGO
8.0 software on 2.00-GHz PC with 2.00 GB of RAM. The
numerical examples have been generated using a random
generation procedure. The processing time of operations are
selected from [2, 65] randomly. The process routing of each

part is determined by randomly choosing machines and ar-
ranging them at random. Family setup times and intercellular
transportation times are selected randomly from [5, 50] to [5,
70], respectively. The problem instances have been generated
in a way to be consistent, as far as possible, with the real-world
situations. The intervals, from which the random numbers are
selected, have been considered wide enough to include differ-
ent possible settings for the problem. This yields to a wide
range of problem instances with different settings on which
the efficiency of the proposed algorithm is tested. It is note-
worthy that the real-world problems are usually more highly
structured than randomly generated problems, which provides
a computational advantage [24].

Fourteen small- and medium-sized problem instances have
been generated and then solved by the proposed mathematical
models. Table 2 shows the data related to the problem in-
stances and the results obtained by the first model (model 1)
and the model with reduced functional constraints (model 2).

As can be seen from Table 2, bothmathematical models are
capable of finding optimal solutions for the small- and
medium-sized problem instances. However, there is a signif-
icant difference between the computational times and model 2
performs much better than model 1. The average improve-
ment in computational time is 48 %. Thus, as expected, the

Table 2 Comparison between
the proposed mathematical
models

No. No. of
machines

No. of
parts

No. of
cells

No. of part
families

Model 1 Model 2

Solution Time (s) Solution Time (s)

1 6 7 2 2 111 1 111 1

2 5 7 2 3 187 1 187 1

3 6 8 3 2 175 12 175 5

4 7 8 2 3 146 4 146 2

5 6 8 2 3 133 3 133 1

6 6 8 3 3 157 2 157 1

7 6 10 3 2 142 17 142 5

8 5 10 2 3 218 265 218 142

9 6 10 2 2 146 18 146 4

10 6 12 2 2 188 71 188 39

11 6 12 3 2 174 25 174 13

12 10 12 4 4 103 28 103 8

13 10 15 3 3 119 31 119 15

14 15 15 4 4 114 33 114 19

Table 3 Initial levels for the parameters

Parameters Level (−) Center Level (+)

Population size 20 85 150

Crossover rate 0.75 0.85 0.95

Mutation rate 0.05 0.175 0.3

No. of generations 20 85 150
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model with reduced number of functional constraints has a
better performance in terms of computation time.

4.2 Performance of the proposed GA

The proposed GA has been coded in MATLAB and run on a
2.00-GHz PC with 2 GB of RAM. The parameters of the
algorithm, including population size, crossover rate, muta-
tion rate, and number of generations, have been set using
statistical methods. In order to examine the sensitivity of
the performance of the algorithm to the parameters, a 24

factorial design with five runs at the center point has been
conducted. The algorithm has been run on some randomly
generated problem instances with different sizes. The initial
values considered for the levels of the parameters are shown
in Table 3.

For each problem instance, the average solution over 10
runs of the proposed algorithm has been obtained for experi-
mental runs of the factorial design. According to the calculat-
ed standardized effects for different problem instances, the

parameters that have greater effects on the GA performance
have been identified. Then, these parameters have been ex-
amined more attentively in further experiments for setting the
parameters. The following results have then been obtained:
population size 50, crossover rate 0.9, mutation rate 0.2, and
number of generations 50.

The proposed algorithm has been run 10 replicates for each
small- and medium-sized problem instances. The best and the
average of the solutions have been reported in Table 4.

As can be seen from Table 4, the proposed algorithm is
able to find optimal solutions in all replicates in a very short
amount of time. The key point to achieve such remarkable
results is the use of a decoding procedure which reduces the
search space without excluding the optimal solution along
with a strategy that prevents the algorithm from searching
redundant solutions. In order to evaluate the performance of
the algorithm on real-sized problems, five large-scale prob-
lem instances have also been generated and solved by the
proposed algorithm. These problems have also been solved
using the model with reduced number of functional con-
straints (model 2) described in Section 2. Data related to
large-sized examples and the obtained results are shown in
Table 5. The LINGO software has been interrupted after
5 h. For the problems that the optimal solution has been
obtained in 5 h, the solution is depicted by an asterisk. For
other problem, the reported solution is an upper bound to
the optimal solution.

According to the results shown in Table 5, the pro-
posed algorithm is capable of finding the optimal solu-
tions for the first two problem instances in a very little
amount of time. Note that these problems have been
optimally solved using the proposed mixed integer linear
programming model with reduced number of functional
constraints. For problems 3 to 5, the proposed model is
not able to find the optimal solution in 5 h. The solution
obtained by the proposed algorithm is always better than
the upper bound found by the mathematical model. Fur-
thermore, the average of solutions obtained over 10 runs
of the algorithm is very close to the optimal solution.
Thus, the proposed GA is a fast and robust solution
method for the problem of concurrent scheduling of job
shop cells.

Table 5 Performance of the
proposed GA over large-sized
instances

No. No. of machines No. of parts No. of cells Model 2 Proposed GA

Solution Time (s) Best Average Time (s)

1 18 25 5 137* 12963 137 137 22

2 18 27 5 189* 10748 189 189 19

3 20 25 5 157 18000 147 147.2 38

4 20 27 5 192 18000 187 188.1 41

5 22 27 5 184 18000 177 177.6 34

Table 4 Performance of the proposed GA over small and medium-sized
instances

No. Model 2 Proposed GA

Solution Time (s) Best Average Time (s)

1 111 1 111 111 1

2 187 1 187 187 1

3 175 5 175 175 1

4 146 2 146 146 1

5 133 1 133 133 1

6 157 1 157 157 1

7 142 5 142 142 2

8 218 142 218 218 5

9 146 4 146 146 1

10 188 39 188 188 3

11 174 13 174 174 2

12 103 8 103 103 1

13 119 15 119 119 2

14 114 19 114 114 2
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5 Conclusion

In this paper, a concurrent approach is proposed for job shop
cell scheduling considering sequence-dependent family setup
times and intercellular transportation times. An integer linear
programming model with the objective of minimizing
makespan has been proposed to solve the problem. The pro-
posed model is able to consider the effects of exceptional
elements, intercellular moves, intercellular transportation
times, and sequence-dependent family setup times. A modifi-
cation of the model with reduced number of functional con-
straints has also been presented to enhance the efficiency of
the model in terms of computational time. A genetic algorithm
(GA) enriched with problem-specific knowledge of the search
space has then been proposed to deal with real-size problems.
The proposed algorithm uses a specialized repair strategy, a
decoding procedure based on the concept of active schedules,
and a problem-specific mutation operator which prevents the
algorithm from searching redundant solutions. Computational
results show the superiority of the modified model in terms of
computational time. Finally, the robustness and efficiency of
the proposed GA has been shown through computational
experiments on some large-scale problem instances.
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