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Abstract In this research, a bi-objective scheduling problem
with controllable processing times on identical parallel ma-
chines is investigated. The direction of this paper is mainly
motivated by the adoption of the just-in-time (JIT) philosophy
on identical parallel machines in terms of bi-objective ap-
proach, where the job processing times are controllable. The
aim of this study is to simultaneously minimize (1) total cost
of tardiness, earliness as well as compression and expansion
costs of job processing times and (2) maximum completion
time or makespan. Also, the best possible set amount of
compression/expansion of processing times on each machine
is acquired via the proposed “bi-objective parallel net benefit
compression-net benefit expansion” (BPNBC-NBE) heuris-
tic. Besides that, a sequence of jobs on each machine, with
capability of processing all jobs, is determined. In this area, no
inserted idle time is allowed after starting machine processing.
For solving such bi-objective problem, two multi-objective
meta-heuristic algorithms, i.e., non-dominated sorting genetic
algorithm II (NSGAII) and non-dominated ranking genetic
algorithm (NRGA) are applied. Also, three measurement fac-
tors are then employed to evaluate the algorithms’ perfor-
mance. Experimental results reveal that NRGA has better
convergence near the true Pareto-optimal front as compared
to NSGAII, while NSGAII finds a better spread in the entire
Pareto-optimal region.

Keywords Just-in-time .Makespan .Controllable processing
times .Multi-objective . Identical parallel machines

1 Introduction

Tardiness and earliness have been considered as two criteria
associated with completing a job at a time different from its
given due date in a large amount of researches since both
earliness and tardiness affect on the system efficiency and
must be taken into account. In other words, a major force of
researches in the scheduling field has been directed towards
minimizing both tardiness and earliness penalties of scheduled
jobs. Due to the extensive acceptance of just-in-time (JIT)
philosophy in recent years, the due date requirements have
been studied widely in scheduling problems, especially those
with earliness-tardiness (E/T) penalties. In fact, JIT philoso-
phy tries to recognize and remove waste elements as over
transportation, production environment, waiting time (either
in production or services), inventory/stock, faulty goods, pro-
cessing, and movement. Since earliness could represent man-
ufacturer concerns and tardiness could embrace both customer
and manufacturer concerns while none of them is desirable,
we are going to simultaneously minimize weighted tardiness
and earliness as well as makespan in terms of a practical bi-
objective problem on parallel machine environment. A job in
JIT scheduling environment that completes early must be held
in finished goods inventory until its due date and may result in
additional costs such as deterioration of perishable goods,
while a tardy job which completes after its due date causes a
tardiness penalty such as lost sales, backlogging cost, etc. So,
an ideal schedule is one in which all jobs finish exactly on
their assigned due dates [1]. Owing to their imposed addition-
al costs to production systems, both earliness and tardiness
must be minimized since neither of them is desirable. This
category of problems has been shown as non-deterministic
polynomial-time (NP)-hard ones [2, 3].

The greater part of the researches on E/T scheduling prob-
lems deals with the single machine; however, in the past years,
many researchers have investigated multi-criteria parallel
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machine scheduling problems with two or more criteria that
apply simultaneously or hierarchically in the objective func-
tion. The majority of earlier studies on parallel machine
scheduling have dealt with performance criteria such as mean
flow time, mean tardiness, makespan, and mean lateness. In
accordance with increasing current trends toward JIT policy,
the traditional measures of performance are no longer appli-
cable. In its place, the emphasis has shifted towards E/T
scheduling taking earliness in addition to tardiness into ac-
count [4]. Baker and Scudder [4] presented the first survey on
E/Tscheduling problems. Also, the E/T problem has proven to
be NP-hard [2, 5].

Most of the real-world scheduling problems are naturally
multi-objective. These objectives are often in conflict with
each other. In such cases, managers try to find the best solution
that satisfies all the considerations simultaneously. Multi-
objective optimization with such conflicting objective func-
tions gives rise to a set of optimal solutions, in place of one
optimal solution. The main reason for the optimality of many
solutions is that no solution could be alone considered to be
better than any other with respect to all objective functions.
These optimal solutions are called “Pareto-optimal solutions.”
There is a large range of industries with trade-offs in their
objectives such as building construction, aircraft, etc.

With respect to the real-life situation, most of the classical
scheduling models assume that job processing times are fixed,
while the processing times depend on amount of resources such
as budgets, capabilities of facilities, manpower, etc. Obviously,
this assumption neglects some realistic constraints. The con-
trollable processing timemeans that each job could process in a
shorter or longer time depending on its efficacy on objective
function by reducing or increasing the available resources such
as equipment, energy, financial budget, subcontracting, over-
time, fuel, or human resources. The chosen processing times
have an effect on both the scheduling performance and
manufacturing cost, whenever the job processing times are
controllable. As an applicable case, in chemical industry, the
processing time of a job is increased by an inhibitor or reduced
bymeans of a catalyzer. An inhibitor is any agent that interferes
with the activity of an enzyme. As a matter of fact, enzyme
inhibitors are molecules that bind to enzymes and decrease
their activity. More applications of such a substance could be
found in Wang et al. [6] and Sørensen et al. [7].

In this paper, in order to exhibit real-world situation, we
formulate a multi-objective scheduling problem as a bi-
objective one which simultaneously minimizes (1) total cost
of tardiness, earliness as well as compression and expansion
costs of job processing times and (2) maximum completion
time so-called makespan. In practice, the usage of both objec-
tives is well-justified, whereas the first objective actually
focuses on the make-to-order (MTO) philosophy in supply
chain management and production theory: an item should be
delivered exactly when it is required by the customer while

makespan minimization implies the maximization of the
throughput. In order to consider more complexity of real-
world situations, in this paper, we investigate the non-
preemptive scheduling problem with n jobs on m identical
parallel machines in a bi-objective approach in which job
processing times are controllable. The main contributions of
this research could be mentioned as follows:

& To the best of the authors’ knowledge, there exists no
accomplished research in which such criteria have been
investigated on identical parallel machine environment in
terms of bi-objective approach where the job processing
times are controllable and no preemption is allowed.

& In this research, “controllable processing times” mean the
jobs could be either compressed or expanded up to a
certain limit, while in almost all of the already done
researches, the controllable processing times signify only
reduction in processing time value. This matter, despite
simplicity in appearance, causes the essential differences
in calculations scheme and complexity. In better words,
the problem transforms to a more complex one with regard
to such a concept which has itself a considerable novelty.

& The best possible set amount of compression/expansion of
processing times on each machine is achieved via the
proposed “bi-objective parallel net benefit compression-
net benefit expansion” (BPNBC-NBE) heuristic for the
first time. Also, owing to the importance of assigning jobs
on parallel machines based on minimizing total tardiness
and earliness as well as makespan at once, a heuristic is
proposed in this study so as to allocate the jobs on parallel
machines considering such criteria which is noteworthy.

& Two well-known multi-objective meta-heuristic algo-
rithms, i.e., non-dominated sorting genetic algorithm II
(NSGAII) and non-dominated ranking genetic algorithm
(NRGA) are customized to the studied problem in this
research for solving such a bi-objective problem. A con-
siderable amount of efforts have been accomplished for
doing so.

The rest of the paper is organized as follows: Section 2
explains related literature. In Section 3, the problem formula-
tion including assumptions, notations, and mathematical model
are described. In Section 4, the proposed bi-objective parallel
net benefit compression/net benefit expansion (BPNBC-NBE)
is described. Section 5 explains the employed multi-objective
algorithms. Section 6 consists of computational results, and
finally, Section 7 includes conclusions and future works.

2 Literature review

There are several papers in which earliness and tardiness
criteria are simultaneously studied on parallel machines. Of
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them, Sivrikaya and Ulusoy [8] developed a genetic algorithm
(GA) approach to attack the scheduling problem of a set of
independent jobs on parallel machines with earliness and
tardiness penalties. Sun and Wang [2] studied the problem of
scheduling n jobs with a common due date and proportional
early and tardy penalties on m identical parallel machines.
They showed that this problem is NP-hard and proposed a
dynamic programming algorithm to solve it. Cheng et al. [9]
addressed the E/T scheduling problem in identical parallel
machine system with the objective of minimizing the maxi-
mum weighted absolute lateness. Kedad-Sidhoum et al. [10]
addressed the parallel machine scheduling problem in which
the jobs have distinct due dates with earliness and tardiness
costs. They proposed new lower bounds for the considered
problem. Su [11] addressed the identical parallel machine
scheduling problem in which the total earliness and tardiness
about a common due date are minimized subject to minimum
total flow time. Drobouchevitch and Sidney [12] considered a
scheduling problem of n identical non-preemptive jobs with a
common due date on m uniform parallel machines. Biskup
et al. [13] studied scheduling a given number of jobs on a
specified number of identical parallel machines so as to min-
imize total tardiness. Xi and Jang [14] considered the perfor-
mances of apparent tardiness cost-based (ATC-based)
dispatching rules with the goal of minimizing total weighted
tardiness on identical parallel machines with unequal future
ready time and sequence-dependent setup times.

In the last few decades, a large amount of researchers have
studiedmulti-objective parallel machine scheduling problems.
Of them, one could mention to Shmoys and Tardos [15] which
studied unrelated parallel machine scheduling to minimize the
makespan and total cost of the schedule. Coffman and Sethi
[16] proposed two heuristics for identical parallel machine
scheduling problem so as to minimize the makespan subject
to the minimum total flow time. Lin and Liao [17] considered
makespan minimization for identical parallel machines sub-
ject to minimum total flow time. Ruiz-Torres and Lopez [18]
proposed four heuristics for identical parallel machine sched-
uling problem so as to minimize the makespan as well as the
number of tardy jobs. Suresh and Chaudhuri [19] proposed a
tabu search (TS)method tominimize bothmaximum tardiness
and maximum completion time for unrelated parallel ma-
chines. Ruiz-Torres et al. [20] proposed heuristics based on a
simulated annealing (SA) and a neighborhood search to min-
imize the average flow time as well as the number of tardy
jobs on identical parallel machines. Chang et al. [21] proposed
a two-phase sub-population GA (TPSPGA) so as to minimize
the makespan in addition to total tardiness on parallel ma-
chines. Gao et al. [22] presented a multi-objective scheduling
model (MOSP) on non-identical parallel machines in order to
minimize the maximum completion time among all the ma-
chines (makespan) and the total earliness/tardiness penalty of
all the jobs. In another similar work, Gao [23] considered jobs

on non-identical parallel machines with processing constraints
and presented GAs to minimize the makespan and total
earliness/tardiness penalties. Tavakkoli-Moghaddam et al.
[24] presented a two-level mixed integer programming model
of scheduling N jobs on M parallel machines that minimize
two objectives, namely the number of tardy jobs and the total
completion time of all the jobs. Radhakrishnan and Ventura
[25] and Sivrikaya and Ulusoy [8] minimized total earliness
and tardiness cost in JIT production environments and solved
them via GA and mixed integer programming.

There is a significant relevance between early/tardy
(E/T) scheduling problems and concept of controllable
processing times since by controlling the job processing
times as far as possible, earliness and tardiness as well as
makespan could be decreased, i.e., by compressing/
expanding the job processing times, earliness, and tardiness
and also makespan may be reduced. Almost certainly,
Vickson [26] has studied one of the first researches on
controllable processing time in scheduling environment,
with the goal of minimizing the total processing cost in-
curred due to job processing time compression as well as
the total flow time. Researches on scheduling problem with
controllable processing times and linear cost functions up
to 1990 are surveyed by Nowicki and Zdrzalka [27]. Lee
[28] studied single machine scheduling problem regarding
controllable processing times with the goal of minimizing
total job processing cost plus the average flow cost. The
tolerance ranges of job processing times were determined in
this research so that the optimal sequence remains un-
changed. Liman et al. [29] considered a single machine
common due window scheduling problem in which the
job processing times could be reduced up to a certain limit.
Their objective was composed of costs associated with the
window location, its size, processing time reduction as well
as job earliness and tardiness. Shabtay and Steiner [30]
have accomplished a complete survey on scheduling with
controllable processing times. Gurel and Akturk [31] sur-
veyed the identical parallel CNC machines with controlla-
ble processing time in which a time/cost trade-off consid-
eration is conducted. In non-identical parallel machine en-
vironment, Alidaee and Ahmadian [32] surveyed this cate-
gory of scheduling area with linear compression cost func-
tions to minimize (1) the total compression cost plus the
total flow time and (2) the total compression cost and the
weighted sum of earliness and tardiness penalties. Wan [33]
studied a non-preemptive single machine common due
window scheduling problem where the job processing
times are controllable with linear costs and the due window
is movable. The objective of this research was to find a job
sequence, a processing time for each job as well as a
position of the common due window so as to minimize
the total cost of weighted earliness/tardiness and processing
time compression. Shakhlevich and Strusevich [34]
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proposed a unified approach so as to solve preemptive
uniform parallel machine scheduling problems in which
the job processing times are controllable. They also showed
that the total compression cost minimization problem in
which all due dates should be met could be formulated in
terms of maximizing a linear function over a generalized
polymatroid. Shabtay [35] studied a batch delivery single
machine scheduling problem in which the due dates are
controllable. His objective was to minimize holding, tardi-
ness, earliness, due date assignment as well as delivery
costs. Aktürk et al. [36] considered a non-identical parallel
machining where processing times of the jobs are only
compressible at a certain manufacturing cost, which is a
convex function of the compression on the processing time.
Leyvand et al. [37] studied the JIT scheduling problem on
parallel machine in which the job processing times are
controllable. Their goal was (1) maximizing the weighted
number of jobs which are exactly completed at their due
date and (2) minimizing the total resource allocation cost.
They considered four models for treating the two criteria.
Yin and Wang [38] investigated single machine scheduling
problem with learning effect where the jobs have control-
lable processing times. They focused on two objectives
separately: (1) minimizing a cost function comprising
makespan, total absolute differences in completion times,
total compression cost, and total completion time, (2) min-
imizing a cost function comprising total waiting time,
makespan, total compression cost, and total absolute differ-
ences in waiting times. Li et al. [39] considered the identical
parallel machine scheduling problem to minimize the
makespan with controllable processing times in which the
processing times are linear decreasing functions of the
consumed resource. Jansen and Mastrolilli [40] studied
the identical parallel machine makespan problem with con-
trollable processing time where each job is allowed to
compress its processing time in return for compression cost.

Niu et al. [41] studied two decompositions for bi-criteria
job shop scheduling problem with discrete controllable pro-
cessing times. To tackle the problem, they proposed
assignment-first decomposition (AFD) as well as
sequencing-first decomposition (SFD) procedures. Renna
[42] addressed the policy so as to manage job shop scheduling
area in which the jobs are controllable. His proposed policy
concerned the evaluation of resource workload. Also, he
applied two approaches so as to allocate the resources to the
machines. Low et al. [43] studied the unrelated parallel ma-
chine scheduling problem with eligibility constraints in which
the job processing times are controllable through the assign-
ment of a non-renewable common resource. Their goal was to
allocate the jobs onto the machines and to assign the resource
so as to minimize the makespan. Kayvanfar et al. [44] inves-
tigated a single machine with controllable processing times
where each job could be either compressed or expanded to a

given extent, while almost certainly in most of the other
researches, theretofore, compressing the jobs was only
regarded in the modeling. They tried to simultaneously min-
imize total earliness/tardiness as well as job compression/
expansion cost. Kayvanfar et al. [45] also proposed a drastic
hybrid heuristic algorithm besides two meta-heuristics so as to
tackle the single machine with controllable processing times.
In a more complete recently done research, Kayvanfar et al.
[46] addressed unrelated parallel machines with controllable
processing times with the single goal of minimizing total
weighted tardiness and earliness besides jobs compressing
and expanding costs, depending on the amount of
compression/expansion as well as maximum completion time
called makespan simultaneously.

3 Problem definition and modeling

A bi-objective non-linear mathematical model for identical
parallel machine scheduling problem is proposed in this sec-
tion to simultaneously minimize (1) the total tardiness and
earliness penalties as well as job compression/expansion costs
and (2) maximum completion time (makespan). All process-
ing times, due dates, and maximum amount of job
compression/expansion are assumed to be integer. The con-
sidered problem is formulated according to the following
assumptions.

3.1 Assumptions

• All jobs are available in time zero
and they could be processed only
by one machine eventually.

• The normal processing time could
be compressed by an amount of
xj or expanded by an amount of
x’j which necessitates a unit cost
of compression or expansion,
respectively.

• Processing a job at its normal
processing time will arise no
additional processing cost.

• All machines are capable of
processing all jobs and each
machine could work only on one
job at a time.

• The jobs are independent of each
other.

• After starting the process by
machine, no idle time could be
inserted into the schedule.

• All machines are identical and a
job could be processed by any
free machine.

• Jobs preemption is not allowed.

• Transportation time between
machines and machine setup
times are negligible.

• The process time of each job on
each machine is the same.

• Number of jobs and machines are
fixed.

• No breakdown is allowed, i.e., all
machines are available
throughout the scheduling
period.
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3.2 Notations

3.2.1 Subscripts

N Number of jobs

K Number of priorities

M Number of machines

j Index for job (j=1,2,…,N)

k Index for priorities (k=1, 2,…,K)

m Index for machine (m=1, 2,…,M)

3.2.2 Input parameters

pj Normal processing time of job j

p’j Crash (minimum allowable) processing time of job j

p”j Expansion (maximum allowable) processing time of job j

cj Compression unit cost of job j

c’j Expansion unit cost of job j

αj The earliness unit penalty of job j

βj The tardiness unit penalty of job j

dj Due date of job j

Lj Maximum amount of job j compression, Lj=pj−pj’
L’j Maximum amount of job j expansion, Lj’=pj”−pj

3.2.3 Decision variables

Cj Completion time of job j

Cmax Maximum completion time of all jobs (makespan)

yjkm 1 if job j is assigned onmachinem in priority k; otherwise, it is zero

Ej Earliness of job j; Ej=max{0, dj–Cj}

Tj Tardiness of job j; Tj=max{0, Cj–dj}

xj Amount of job j compression, 0≤xj≤Lj
x’j Amount of job j expansion, 0≤x’j≤L’j

A non-preemptive parallel machine scheduling problem
with N jobs on M (N>M) identical parallel machines is
simultaneously available at time zero. A compression or
expansion unit cost (cj or c’j) is occurred, if the processing
time is reduced or increased by one time unit, respective-
ly. It is evident that each job could only be compressed or
expanded. The goal is to determine the job sequence as
well as an optimal set amount of compression/expansion
of processing times on each machine simultaneously so
that both considered objectives, i.e., (1) total weighted

earliness and tardiness penalties as well as job
compression/expansion costs and (2) makespan are
minimized.

3.3 The mathematical model

MinZ1 ¼
X
j¼1

N

α jE j þ β jT j þ c jx j þ c
0
jx

0
j

� �
ð1Þ

MinZ2 ¼ Cmax ð2Þ

The first objective (Eq. (1)) includes earliness penalties,
tardiness penalties, and cost of jobs compressing and
expanding processing times, depending on the amount of
compression/expansion. Equation (2) minimizes the maxi-
mum completion time so-called makespan. Makespan is
equivalent to the completion time of the last job leaving
the system. Pinedo [47] showed that machine utilization
could be increased if the makespan be minimum. The
utilization for bottleneck or near bottleneck equipment is
closely related to the throughput rate of the system. Conse-
quently, reducing makespan should also lead to a higher
throughput rate. This problem is subjected to the following
constraints:

X
m¼1

M X
k¼1

K

y jkm ¼ 1 ∀ j ; ð3Þ

Equality (3) ensures that job j could be processed only in
one priority k and onto one machine.

X
j¼1

N

y jkm≤1 ∀k; m ; ð4Þ

Inequality (4) guarantees that only one job could be proc-
essed in priority k on machine m.

C j−d j ¼ T j−E j ∀ j ; ð5Þ

Equation (5) defines the earliness and tardiness of job j.
Since each job could only be tardy or early, if it could not be
delivered timely, so it is obvious that Tj and Ej cannot take
value simultaneously.
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y j1m pj−x j þ x
0
j

� �
≤C j ∀ j;m ; ð6Þ

X
m¼1

M X
k ≥2

K X
i≠ j

N

yik−1m yjkm Ci

 !
þ pj−x j þ x

0
j

¼ C j ∀ j ; ð7Þ

The first job on each machine is determined by means of
constraint (6). Also, constraint (7) is employed so as to iden-
tify the rest of job sequence on all machines. As a matter of
fact, constraints (6) and (7) jointly ensure that only after
starting the process by machine, no idle time could be inserted
into the schedule and no job preemption is also allowed.

Cmax≥C j∀ j ; ð8Þ

Eq. (8) ensures that the makespan is greater than any of job
completion times.

Lj ¼ pj−p
0
j ≥ x j ∀ j ; ð9Þ

L
0
j ¼ p

0 0
j−pj≥x

0
j ∀ j ; ð10Þ

Inequalities (9) and (10) limit the amount of compression
and expansion of each job.

y jkm∈ 0; 1f g ∀ j; k;m ; ð11Þ

T j; E j; x j; x
0
j≥0 ∀ j ; ð12Þ

Constraints (11) and (12) provide the logical binary and
non-negativity integer necessities for the decision variables,
respectively.

4 The proposed BPNBC-NBE

This section proposes a heuristic algorithm to calculate the
best possible set amount of compression/expansion of pro-
cessing times on each machine in a bi-objective approach

which is called “bi-objective parallel net benefit
compression/net benefit expansion (BPNBC-NBE)” and
its expanded version of PNBC-NBE algorithm for single-
objective parallel machines proposed by Kayvanfar et al.
[46]. The PNBC-NBE algorithm is also an expanded ver-
sion of NBC-NBE technique which is proposed by [44] for
a single machine. The concept of NBC-NBE algorithm is
close to the NBC one with a main idea similar to marginal
cost analysis used in PERT/CPM with time/cost trade-off
[48].

Since in this study earliness and tardiness as the first
objective besides makespan as the second objective should
be minimized, the proposed BPNBC-NBE heuristic should
minimize these objectives. Accordingly, a heuristic called
ISETMP is presented in the following subsection in order to
generate initial solution via allocating the jobs on the parallel
machines which is utilized within the BPNBC-NBE algo-
rithm. It is assumed that applying such heuristic for finding
the initial sequences (solutions) may enhance the final obtain-
ed solutions’ quality.

4.1 Initial sequence on parallel machines considering E/T
and makespan minimization

Presenting a heuristic technique to be able to minimize
earliness, tardiness as well as makespan simultaneously is
difficult on a given machine since earliness and tardiness
are two concepts which have reverse meaning. In better
words, by reducing each of them, the other one increases
and vice versa. In this context, owing to the importance of
assigning jobs on parallel machines based on minimizing
total tardiness and earliness as well as makespan at once, we
present such a heuristic method to allocate the jobs on
parallel machines considering such criteria. The proposed
heuristic called initial sequence based on earliness-
tardiness-makespan cri ter ia on paral le l machine
(ISETMP) is described as follows:

Procedure 1. ISETMP

1. Sort jobs according to earliest due date (EDD) criterion
and put them in unscheduled jobs category called “US.”

2. Assign the first job to the first machine and set it in
scheduled job category called “S.”

Do the following steps until no job is found in the US
category:

3. Assign next unscheduled job in EDD order to each ma-
chine separately and then calculate the Cmax of each
machine.

4. Compute the difference between due date of this job and
Cmax of such machine (Cmaxm ) and add the result with

Cmaxm , called Um ¼ Cmaxm−d j

�� �� þCmaxm . The term

Cmaxm−d j

�� �� tries to minimize the first objective and the
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second term (Cmaxm ) makes an effort to minimize the
second objective. If more than one job have the same due
dates, select one job randomly at first.

5. Select the assignment which has resulted in the minimum
Um and assign that job to such a machine. If two or more
Um values are equal, select one machine randomly.

6. Transfer this job from the US category into the scheduled
one, S.

7. Update Cmax of each machine and go to step 3.
An example is here solved to illustrate the ISETMP

performance.
Example 1. Consider the following problem with eight

jobs and three parallel machines (Table 1).

Iteration #1:

Step 2 Assign the first job to the first machine and set it in
the scheduled job category, S={J1}.

Step 3 Assign the second job (J2) to each machine separate-
ly,

Cmax1 ¼ 4þ 6 ¼ 10 ; Cmax2 ¼ Cmax3 ¼ 6

Step 4 Compute all Um as follows:

U 1 ¼ Cmax1−d2j j þ Cmax1 ¼ 10−5j j þ 10 ¼ 15
U 2 ¼ Cmax2−d2j j þ Cmax2 ¼ 6−5j j þ 6 ¼ 7
U 3 ¼ Cmax3−d2j j þ Cmax3 ¼ 6−5j j þ 6 ¼ 7

Step 5 Select the min Um and assign J2 to such a machine.
Since two values are equal, machine #2 is chosen
randomly.

Step 6 Transfer this job from the US category to the S one,
US={J4, J3, J7, J5, J6, J8} and S={J1, J2}.

Step 7 Update Cmax of each machine,
Cmax1 ¼ 4; Cmax2 ¼ 6; Cmax3 ¼ 0:

Iteration #2:

Step 3 Assign the third job (J4) to each machine separately,

Cmax1 ¼ 4þ 7 ¼ 11 ; Cmax2 ¼ 6þ 7 ¼ 13 ; Cmax3

¼ 7:

Step 4 Compute all Um as follows:

U 1 ¼ Cmax1−d4j j þ Cmax1 ¼ 11−6j j þ 11 ¼ 16
U 2 ¼ Cmax2−d4j j þ Cmax2 ¼ 13−6j j þ 13 ¼ 20
U 3 ¼ Cmax3−d4j j þ Cmax3 ¼ 7−6j j þ 7 ¼ 8

Step 5 Select the minUm and assign J4 to such machine, i.e.,
machine #3.

Step 6 Transfer this job from the US category to the S one,
US={J3, J7, J5, J6, J8} and S={J1, J2, J4}.

Step 7 Update Cmax of each machine,
Cmax1 ¼ 4;Cmax2 ¼ 6;Cmax3 ¼ 7:

Iteration #3:

Step 3 Assign the fourth job (J3) to each machine separately,

Cmax1 ¼ 4þ 5 ¼ 9 ;Cmax2 ¼ 6þ 5 ¼ 11 ;Cmax3

¼ 7þ 5 ¼ 12:

Step 4 Compute all Um as follows:

U 1 ¼ Cmax1−d3j j þ Cmax1 ¼ 9−11j j þ 9 ¼ 11
U 2 ¼ Cmax2−d3j j þ Cmax2 ¼ 11−11j j þ 11 ¼ 11
U 3 ¼ Cmax3−d3j j þ Cmax3 ¼ 12−11j j þ 12 ¼ 13

Step 5 Select the min Um. Since two values are equal,
machine #2 is selected by chance.

Step 6 Transfer this job from the US category to the S one,
US={J7, J5, J6, J8} and S={J1, J2, J4, J3}.

Step 7 Update Cmax of each machine,
Cmax1 ¼ 4;Cmax2 ¼ 11;Cmax3 ¼ 7:

Iteration #4:

Step 3 Assign the fifth job (J7) to each machine separately,

Cmax1 ¼ 4þ 4 ¼ 8 ; Cmax2 ¼ 11þ 4 ¼ 15 ; Cmax3

¼ 7þ 4 ¼ 11:

Table 1 Input data for an eight job problem with three machines

J 1 2 3 4 5 6 7 8

Pj 4 6 5 7 5 6 4 6

dj 5 5 11 6 13 13 11 20

αj 0.5 1 1 1.25 1.5 1 1.5 0.5

βj 0.5 0.5 1.25 0.5 0.5 1 3 0.5
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Step 1 Sort jobs according EDD rule and set them in US
={J1, J2, J4, J3, J7, J5, J6, J8}.



Step 4 Compute all Um as follows:

U 1 ¼ Cmax1−d7j j þ Cmax1 ¼ 8−11j j þ 8 ¼ 11
U 2 ¼ Cmax2−d7j j þ Cmax2 ¼ 15−11j j þ 15 ¼ 16
U 3 ¼ Cmax3−d7j j þ Cmax3 ¼ 11−11j j þ 11 ¼ 11

Step 5 Select the min Um. Since two values are equal,
machine #3 is selected randomly.

Step 6 Transfer this job from the US category to the S one,
US={J5, J6, J8} and S={J1, J2, J4, J3, J7}.

Step 7 Update Cmax of each machine,
Cmax1 ¼ 4; Cmax2 ¼ 11; Cmax3 ¼ 11:

Iteration #5:

Step 3 Assign the sixth job (J5) to each machine separately,

Cmax1 ¼ 4þ 5 ¼ 9 ; Cmax2 ¼ 11þ 5

¼ 16 ; Cmax3 ¼ 11þ 5 ¼ 16:

Step 4 Compute all Um as follows:

U 1 ¼ Cmax1−d5j j þ Cmax1 ¼ 9−13j j þ 9 ¼ 13
U 2 ¼ Cmax2−d5j j þ Cmax2 ¼ 16−13j j þ 16 ¼ 19
U 3 ¼ Cmax3−d5j j þ Cmax3 ¼ 16−13j j þ 16 ¼ 19

Step 5 Select the minUm and assign J5 to such machine, i.e.,
machine #1.

Step 6 Transfer this job from the US category to the S one,
US={J6, J8} and S={J1, J2, J4, J3, J7, J5}.

Step 7 Update Cmax of each machine,
Cmax1 ¼ 9; Cmax2 ¼ 11; Cmax3 ¼ 11:

Iteration #6:

Step 3 Assign the seventh job (J6) to each machine separate-
ly,

Cmax1 ¼ 9þ 6 ¼ 15 ; Cmax2 ¼ 11þ 6

¼ 17 ; Cmax3 ¼ 11þ 6 ¼ 17:

Step 4 Compute all Um as follows:

U 1 ¼ Cmax1−d6j j þ Cmax1 ¼ 15−13j j þ 15 ¼ 17
U 2 ¼ Cmax2−d6j j þ Cmax2 ¼ 17−13j j þ 17 ¼ 21
U 3 ¼ Cmax3−d6j j þ Cmax3 ¼ 17−13j j þ 17 ¼ 21

Step 5 Select the min Um and assign J6 to this machine, i.e.,
machine #1.

Step 6 Transfer this job from the US category to the S one,
US={J8} and S={J1, J2, J4, J3, J7, J5, J6}.

Step 7 Update Cmax of each machine,
Cmax1 ¼ 15; Cmax2 ¼ 11; Cmax3 ¼ 11:

Iteration #7:

Step 3 Finally, assign the last job in the EDD order (J8) to
each machine separately,

Cmax1 ¼ 15þ 6 ¼ 21 ; Cmax2 ¼ 11þ 6

¼ 17 ; Cmax3 ¼ 11þ 6 ¼ 17:

Step 4 Compute all Um as follows:

U 1 ¼ Cmax1−d8j j þ Cmax1 ¼ 21−20j j þ 21 ¼ 22
U 2 ¼ Cmax2−d8j j þ Cmax2 ¼ 17−20j j þ 17 ¼ 20
U 3 ¼ Cmax3−d8j j þ Cmax3 ¼ 17−20j j þ 17 ¼ 20

Step 5 Select the min Um and assign J8 to this machine, i.e.,
machine #2.

Step 6 Transfer this job from the US category to the S one,
US={} and S={J1, J2, J4, J3, J7, J5, J6, J8}.

Step 7 Update Cmax of each machine, Cmax1 ¼ 15; Cmax2

¼ 17; Cmax3 ¼ 11:

As could be seen, there is no job in the US
category and therefore the algorithm is terminated.
Also, the Cmax of system equals to 17 (Fig. 1).

Now, we introduce the proposed BPNBC-NBE
which takes advantage from the net benefit
compression/expansion concept on parallel ma-
chines in a bi-objective approach which is described
as follows:

Procedure 2. BPNBC-NBE

1. Assign the jobs on parallel machines using ISETMP
heuristic, as initial sequence.

2. Apply NBC-NBE so as to determine the amount of
reduction/expansion of job processing times on each ma-
chine.

Do the two following steps (3–4) until stop criterion is
met:

3. Swap jobs and their corresponding machines randomly in
order to reduce the sum of total “earliness and tardiness as
well as makespan” values.

1. Accept the new sequence, if both objective values
reduce. Go to step 4.
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2. Reject the new sequence, if both objective values
increase. Go to step 3.
3. If one objective reduces and the other one in-
creases, accept the new sequence if total reduction
is more than total increase and go to step 4, or else
keep the previous sequence. Go to step 3.

4. Apply NBC-NBE to determine whether a given job could
be further compressed or expanded. Go to step 3.

5. Determine the final sequence and calculate the final
amount of compression/expansion of job processing
times.

In the aforementioned procedure, the stop criterion is de-
fined as maximum number of non-improvement iterations
which is set at 30.

5 Resolution methods

A mono-objective optimization algorithm will be stopped
upon finding an optimal solution; however, it would be an
ideal case to find only a single solution for a multi-objective
problem in terms of non-dominance criterion and most often
the process of optimization causes more than one solution.
Evolutionary algorithms (EAs) are potent stochastic search
methods which mimic the Darwinian principles of natural
selection (survival of the fittest) and are well suited for solving
optimization problems with difficult search landscapes (e.g.,
multimodal search spaces, multiple objectives, large solution
spaces, constraints, and non-linear and non-differentiable
functions) [49]. To date, a large number of different multi-
objective evolutionary algorithms (MOEAs) have been sug-
gested. Of them are strength Pareto evolutionary algorithm II
(SPEAII) [50], niched Pareto genetic algorithm (NPGA) [51],
non-dominated sorting genetic algorithm II (NSGAII) [52],
and non-dominated ranking genetic algorithm (NRGA) [53].
Comprehensive information about other MOEA algorithms
could be found in Coello et al. [54] and Deb [55]. These
MOEAs employ Pareto dominance notion to guide the search

and afterward return the Pareto-optimal set as the best result.
These algorithms have two objectives: (1) convergence to the
Pareto-optimal set and (2) maintenance of diversity in solu-
tions of the Pareto-optimal set [52]. In better words, two
common features on all operators were at first allocating
fitness to population members based on non-dominated
sorting and afterward preserving diversity among solutions
of the same non-dominated front. In order to solve the sample
generated instances, two well-known MOEAs, i.e., NSGAII
and NRGA are employed in this study which are of elite
multi-objective EAs and execute based on the non-
dominance concept. The NRGA takes advantage of the
sorting algorithm in NSGAII. Moreover, for the rank-based
roulette wheel selection, Al Jadaan et al. [53] utilized a revised
roulette wheel selection algorithm where each member of
population is assigned a fitness value equal to its rank in the
population; the highest rank has the highest probability to be
selected. The probability is calculated as follows [53]:

Pi ¼ 2� Rank

N � N þ 1ð Þ ð13Þ

Where N is the number of individuals in the population.
Producing a set of Pareto-optimal solutions, besides being
capacitated decision-maker to select one of them in order to
optimize the model, is the main advantage of these techniques.

5.1 Solution representation

In this research, an encoding scheme proposed by Cheng et al.
[9] is employed so as to represent a solution (chromosome) for
the considered problem. In this encoding scheme, integers are
applied to represent all job sequences while / is used to
represent the jobs partitioning on parallel machines. As an
instance, supposing there are ten jobs and three machines, so
the chromosome could be presented as [3 9 2/4 6 8/5 1 7 10].
This schedulemeans that jobs 3, 9, and 2 onmachine 1; jobs 4,
6, and 8 on machine 2; and jobs 5, 1, 7, and 10 on machine 3
will be processed. Also, an initial set of solutions are generat-
ed so as to make up the initial population.

J7

J6

2015105

J4

J8J3J2

J5J1

M

M

M

Cmax = 17

Fig. 1 Gantt chart of assigned
jobs on parallel machines
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5.2 Fitness ranking (non-dominated sorting algorithm)

In order to sort a population of sizeN’ according to the level of
non-domination, each solution (chromosome) must be com-
pared with every other solution in the population to realize if it
is dominated. In fact, the thought behind the non-dominated
sorting process is that a ranking selection scheme is employed
to give emphasis to good points and a niche method is utilized
to keep steady sub-populations of good points. All individuals
in the first non-dominated front are found in this step. In order
to find the individuals in the second and higher non-
dominated levels, the solutions of the first front are discounted
temporarily and the above procedure is repeated [52]. In fact,
all solutions which are non-dominated with respect to each
other are assigned as rank 1 and then removed from compe-
tition. For the remaining individuals, the next set of non-
dominated solutions are assigned as rank 2 and then removed
from competition. This procedure continues until no chromo-
some is found. It is obvious that solutions in the lower rank
dominate the ones in the higher ranks.

5.3 Diversity mechanism

Along with convergence to the Pareto-optimal set, it is pre-
ferred in which an EA preserves good solutions spread in the
obtained set of solutions. To get an estimate of the density of
solutions surrounding a particular solution in the population,
the average distance of two points on either side of this point
along with each of the objectives are calculated. This quantity
i’distance which is named crowding distance serves as an ap-
proximation of the size of the largest cuboid including the
point i’ without any other point in the population. Actually,
overall crowding distance value is calculated as the sum of
individual distance values corresponding to each objective. A
solution located in a less dense cuboid is allowed to have a
higher probability to survive in the next generation. By
assigning a crowding distance to all population members,
the crowded -comparison operator (≺n) must be used in order
to compare two solutions for their extent of proximity with
other solutions which guides the selection process at the
various stages of the algorithm toward a uniformly spread-
out Pareto-optimal front [52].

In Fig. 2, crowding distance computation procedure is
shown where LL [i’] m’ refers to the m’th objective value of

the i’th individual in the non-dominated set LL. The complex-
ity of this procedure is governed by the sorting algorithm.
When all solutions are in only one front, i.e., in the worst case,
the sorting requires O (M’N’ log N’) computations [52]
(Fig. 3).

5.4 Selection mechanism

Selection is a major operator in GA, which itself does not
produce new solutions, instead, it selects better solutions to be
transferred to the next generation and also chooses individuals
on which genetic operator would operate. Consider a popula-
tion P0 (parent population) which is produced randomly at
first. This population P0 is sorted based on the non-domina-
tion. Also, each solution is assigned a rank (or fitness) equals
to its non-domination level. Obviously, minimization of fit-
ness is assumed. Selection operator selects a set P′⊆P0 of the
chromosomes (better members of the population with lower
fitness) that will be given the chance to be mated and mutated.
The usual binary tournament selection operator based on the
crowded-comparison operator ≺n is used in NSGAII while the
usual rank-based roulette wheel selection operator is
employed in NRGA. As crowded-comparison operator needs
both the rank and crowded distance of each solution in the
population, we compute these quantities as the same time as
forming the population Pt+1. The crossover and mutation
operators besides explained selection mechanisms are used
to create a child populationQ0’ of sizeN’ in both NSGAII and
NRGA. Both crossover and mutation operator are explained
in the following subsections. Consequently, a combined pop-
ulation Rt’=Pt∪Qt’Rt’ is formed and is then sorted according

Crowding-distance-assignment (LL)

l = |LL| number of solutions in LL
For each i’ , set LL[i’]distance = 0 initialize distance

For each objective m’
= 1 to M’

LL = sort (LL, m’
) sort using each objective value

LL[1]distance = LL[l]distance = ∞ so that boundary points are always selected 

For i’ = 2 to (l -1) for all other points

LL[i’]distance = LL[i’]distance + (LL[i’ + 1]m’ – LL[i’ − 1]m’)

Fig. 2 Pseudo-code of the
crowding distance method in a
non-dominated set

i’

i’+1

i’-1

f1

f2

Cuboid

Fig. 3 Crowding distance calculation
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to non-domination. Also, since all previous and current pop-
ulation members are included in Rt’, elitism is ensured. The
diversity among non-dominated solutions is introduced by
using the crowding comparison procedure, which is used
during the population reduction phase [52].

5.4.1 Crossover operator

Crossover is the process of taking two parent chromosomes
from the mating pool and producing offspring by combining
them, aiming to find better solutions. The crossover operator
is applied according to a probability pc by selected individuals
that are obtained by roulette wheel technique. Among several
common crossover operators for scheduling problems such as
one-point, two-point, uniform, etc., a standard two-point
crossover is employed in this research so as to produce two
offspring from two parent solutions. Having randomly chosen
two points in a string, the sub-strings between the crossover
points are interchanged. Figure 4 depicts applying the cross-
over operator on the two selected parents.

5.4.2 Mutation operator

Mutation operator is generally applied with the intention of
diversifying the population in order that it does not prema-
turely converge to multiple copies of one solution. Similar to
the used crossover operator, mutation operator is also carried
out on two parts of chromosomes. A mutation operator ac-
cording to a probability pm could be applied, once the off-
spring are obtained. Among different tested mutation opera-
tors, the swap mutation yielded the best performance. This
operator is worked by swapping two genes in the selected

chromosomes and also keeping away from getting stuck in
local suboptimal solutions and is very helpful to maintain the
wealth of the population in dealing with large-scale problems.
Figure 5 shows the mutation operator.

6 Tests and results

In this section, some experiments are conducted for the pur-
pose of assessment of effectiveness and competitiveness of
applied algorithms. All test problems are implemented in

Core™ i7-2600 processor and 4-GB RAM memory.

6.1 Data generation and settings

To demonstrate the employed algorithms’ performance, two
categories of test examples in terms of small and medium-to-
large-sized instances are generated in this study. Table 2
shows how these sample instances are generated.

Where in due date calculation dmin=max (0, P (υ−ρ/2)) and
P=1/m∑i=1

n pj. The expression of P aims at satisfying the
criteria of scale invariance and regularity described by Hall
and Posner [5] for generating experimental scheduling in-
stances. The two parameters υ and ρ are the tardiness and
range parameters, respectively, which are regarded as υ ∈
{0.2, 0.5, 0.8} and ρ ∈ {0.2, 0.5, 0.8}. In order to ensure
constancy of employed algorithms, five instances are gener-
ated for each quadruple (N, M, υ, ρ) where each instance has
run five times in all methods. Consequently, 2025, i.e., 34×5×
5 sample instances are generated for each algorithm.

3 2 4 6 8 5 1 7

7 1 8 4 6 2 5 3

3 2 8 4 6 5 1 7

7 1 4 6 8 2 5 3

Parent A

Parent B

Offspring A

Offspring B

Fig. 4 Applied two-point
crossover operator

1 5 8 2 4 3 6 7

1 5 3 2 4 8 6 7

Parent 

Offspring

Fig. 5 Applied mutation operator
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6.2 Performance measures

In multi-objective problems, since a solution could be the best
for some objectives however not for the others, it is not
rational to arrange a set of solutions. Most of the multi-
objective optimization methods estimate the Pareto-optimal
front by a set of non-dominated solutions. Because of the
incommensurable and conflicting nature of Pareto archive’s
solutions which make this process more complex, how to
evaluate the quality of these solutions is a significant decision.
Frankly speaking, comparing the solutions of two different
Pareto approximations coming from two algorithms is not
straightforward. To do so, unfortunately, different features of
non-dominated fronts cannot be taken into consideration by
one numerical value.

Table 2 Data set distribution

Input variables Distribution

Number of jobs (n) 10, 20, 50

Number of machines (m) 2, 3, 5

Normal processing time (pj) ~DU (10, 40)

Crash processing time (p’j) ~DU (0.5×pi, pi)

Expansion processing time (p”j) ~DU (pi, 1.5×pi)

Due dates (dj) ~DU [dmin, dmin+ρP]

Unit cost of compression (cj) ~U (0.5, 4.5)

Unit cost of expansion (c’j) ~U (0.5, 4.5)

Earliness penalty (αj) ~U (1.5, 5.0)

Tardiness penalty (βj) ~U (2.5, 5.0)

Table 3 Evaluation of non-dom-
inated solutions for small
problems

M N υ ρ Δ ds sp

NSGAII NRGA NSGAII NRGA NSGAII NRGA

2 10 0.2 0.2 0.1048 0.1348 623.04 590.01 0.0123 0.0166

0.5 0.2215 0.2579 112.90 100.47 0.2422 0.2829

0.8 0.0905 0.1663 298.13 306.54 0.0266 0.0146

0.5 0.2 0.1327 0.1204 151.34 135.11 0.0419 0.0536

0.5 0.2383 0.2232 112.11 112.15 0.1157 0.1195

0.8 0.1382 0.1887 287.74 232.04 0.0924 0.0765

0.8 0.2 0.1067 0.1282 465.49 416.38 0.2008 0.3031

0.5 0.1627 0.1712 529.30 595.02 0.1268 0.1410

0.8 0.3695 0.3088 175.00 120.80 0.0922 0.0999

Mean 0.1739 0.1888 306.12 289.84 0.1056 0.1231

3 10 0.2 0.2 0.1093 0.1395 309.35 301.45 0.3038 0.3062

0.5 0.1522 0.1698 882.99 856.38 0.0494 0.0716

0.8 0.0578 0.0320 769.09 703.72 0.0986 0.1172

0.5 0.2 0.1286 0.1213 419.36 370.81 0.1558 0.1663

0.5 0.0162 0.0092 642.00 608.54 0.0198 0.0180

0.8 0.1268 0.1005 835.06 657.23 0.0715 0.0770

0.8 0.2 0.0925 0.1157 100.54 111.67 0.4043 0.4112

0.5 0.0725 0.0844 144.63 131.11 0.0304 0.0287

0.8 0.1095 0.1109 192.25 192.58 0.0903 0.1005

Mean 0.0961 0.0981 477.25 437.05 0.1360 0.1441

5 10 0.2 0.2 0.1967 0.2808 159.76 146.73 0.1454 0.1597

0.5 0.1418 0.1780 181.15 155.11 0.0231 0.0287

0.8 0.1084 0.1426 965.76 734.73 0.0922 0.1168

0.5 0.2 0.2742 0.3573 168.30 171.09 0.4489 0.4016

0.5 0.2117 0.2056 378.58 419.95 0.0698 0.0178

0.8 0.0413 0.0207 284.57 240.99 0.1842 0.1706

0.8 0.2 0.1274 0.1316 1195.08 982.78 0.0236 0.0252

0.5 0.3205 0.3070 876.98 710.14 0.0997 0.1088

0.8 0.2822 0.2362 1596.84 1016.14 0.0897 0.0918

Mean 0.1893 0.2067 645.22 508.63 0.1307 0.1245

Mean of all 0.1531 0.1645 476.20 411.84 0.1241 0.1306
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Table 4 Evaluation of non-dominated solutions for medium-to-large problems

M N υ ρ Δ ds sp

NSGAII NRGA NSGAII NRGA NSGAII NRGA

2 20 0.2 0.2 0.2192 0.12795 1139.03 904.24 0.0848 0.1017

0.5 0.2869 0.34112 882.41 766.14 0.1131 0.1355

0.8 0.1752 0.21255 1652.20 1306.11 0.0167 0.0109

0.5 0.2 0.2119 0.2015 804.58 717.46 0.0995 0.1219

0.5 0.1163 0.1430 597.80 573.67 0.1485 0.1777

0.8 0.2414 0.2437 307.56 314.06 0.0613 0.0589

0.8 0.2 0.2611 0.2516 1131.32 913.77 0.0841 0.0874

0.5 0.2514 0.3699 585.35 417.27 0.0795 0.1109

0.8 0.1445 0.3445 902.14 821.89 0.1023 0.1231

50 0.2 0.2 0.1451 0.3268 1344.53 1303.69 0.1231 0.1308

0.5 0.2041 0.2059 1875.01 1571.11 0.2305 0.1405

0.8 0.2241 0.3240 1442.72 1075.62 0.1394 0.1508

0.5 0.2 0.2756 0.2731 1422.91 1028.44 0.0903 0.1135

0.5 0.2450 0.3303 374.37 326.20 0.1386 0.1759

0.8 0.2827 0.2733 2530.12 2124.50 0.0692 0.0697

0.8 0.2 0.3577 0.4360 1565.49 1442.68 0.1660 0.1992

0.5 0.3232 0.5480 2893.01 2920.62 0.0812 0.1166

0.8 0.2398 0.1895 1592.28 1581.46 0.1049 0.1174

Mean 0.2336 0.2857 1280.16 1117.16 0.1074 0.1190

3 20 0.2 0.2 0.2613 0.2789 589.61 517.20 0.0848 0.0888

0.5 0.2676 0.3186 735.15 601.07 0.1055 0.1161

0.8 0.3577 0.4486 1572.20 1239.54 0.0305 0.0329

0.5 0.2 0.2520 0.2900 1758.08 1484.94 0.0526 0.1109

0.5 0.2136 0.1840 514.65 443.24 0.1294 0.1616

0.8 0.1328 0.1236 1367.89 1161.45 0.0197 0.0381

0.8 0.2 0.2606 0.1669 2018.11 2111.77 0.0287 0.0199

0.5 0.2159 0.1645 900.08 638.24 0.1131 0.1551

0.8 0.2327 0.1886 1082.63 1148.59 0.2143 0.3059

50 0.2 0.2 0.3550 0.3927 1759.47 1643.69 0.0985 0.1265

0.5 0.4305 0.4173 2240.59 2077.74 0.1523 0.1721

0.8 0.2252 0.2566 2460.15 2148.05 0.0731 0.0836

0.5 0.2 0.3374 0.2880 1007.88 1058.49 0.1237 0.2257

0.5 0.4175 0.6219 2929.52 2461.73 0.0617 0.0766

0.8 0.3747 0.3927 1442.28 1225.02 0.0098 0.1217

0.8 0.2 0.1027 0.1079 3565.12 3280.52 0.1446 0.2051

0.5 0.2218 0.2287 1904.96 1687.83 0.1669 0.1205

0.8 0.0839 0.1203 3049.77 2856.54 0.0536 0.0555

Mean 0.2635 0.2772 1716.56 1543.65 0.0924 0.1231

5 20 0.2 0.2 0.2247 0.2627 680.28 487.81 0.1129 0.1201

0.5 0.1539 0.1494 1030.12 854.48 0.0522 0.0991

0.8 0.4710 0.4566 589.20 409.99 0.2687 0.2135

0.5 0.2 0.5159 0.5881 810.48 771.99 0.0834 0.0751

0.5 0.3286 0.2763 1654.02 1629.17 0.1677 0.1415

0.8 0.3962 0.3576 712.45 622.78 0.0445 0.0724

0.8 0.2 0.2120 0.1500 811.44 608.34 0.0813 0.0553

0.5 0.3037 0.3229 775.45 560.57 0.1277 0.1469

0.8 0.2829 0.2792 159.97 128.34 0.0781 0.1026
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There are two objectives in a multi-objective optimization,
not like in a single-objective one: (1) convergence to the
Pareto-optimal set and (2) preservation of diversity among
solutions of the Pareto-optimal set. As pointed out earlier,
these instances cannot be measured satisfactorily with one
performance metric. Many performance metrics have been
suggested by Coello et al. [54], Deb and Sachin [56], Deb
[55], and Zitzler [57].

The performance of our proposed algorithms is analyzed
on a set of generated sample instances. Notwithstanding the
existence of a number of metrics to find the diversity among
obtained non-dominated solutions, two measurement factors
are applied in this study so as to assess the algorithms’
performance, i.e., spacing (sp) and spread (Δ). One more
metric is proposed in this research which calculates the dis-
tance from origin coordinates (ds). Diversity is simply mea-
sured by the number of disjoint solutions in the locally non-
dominated frontier and distance is measured by Euclidean
distance rule.

6.2.1 Spacing

The first employed metric is called spacing which has been
introduced by Schott [58] and is calculated with a relative
distance measure between consecutive solutions in the obtain-
ed non-dominated set as follows:

sp ¼
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E
0 . The distance measure is the minimum value

of the sum of the absolute difference in objective func-
tion values between the i’th solution and any other
solution in the obtained non-dominated set. It is notice-
able that this distance measure is different from the
minimum Euclidean distance between two solutions. A
zero value for this metric signifies all members of the
Pareto front currently available are equidistantly spaced.

This metric measures the standard deviation of different
disti0 values. When the solutions are near uniformly spread,
the corresponding distance disti0 measure will be small.
Accordingly, the algorithm finding a set of non-dominated
solutions having a smaller sp is preferable. In addition, the
above-mentioned metric offers helpful information about the
spread of the attained non-dominated solutions, but does not
take into consideration the extent of the spread. As long as the
spread is uniform within the range of obtained solutions, the
metric sp produces a small value.

6.2.2 Spread

The second metric used in this research is spread which was
suggested by Deb et al. [59] so as to conquer the aforemen-
tioned difficulty. This metric measures the extent of spread
achieved among the obtained solutions as follows:

Δ ¼
XM

0

m0 ¼1
diste

0

m0 þ
X E

0j j
i
0¼1

disti0−dist
��� ���

XM
0

m0 ¼1
diste

0

m0 þ E
0�� ��dist ð15Þ

Where any distance measure between neighboring solu-

tions and dist could be the mean value of these distance

Table 4 (continued)

M N υ ρ Δ ds sp

NSGAII NRGA NSGAII NRGA NSGAII NRGA

50 0.2 0.2 0.3014 0.4748 1798.36 1478.58 0.1012 0.1485

0.5 0.0890 0.1554 2401.21 2130.35 0.0634 0.0736

0.8 0.3601 0.3699 4287.57 3626.02 0.1100 0.1537

0.5 0.2 0.2613 0.3717 1676.26 1212.05 0.0932 0.1470

0.5 0.4894 0.5143 2924.31 2200.70 0.0310 0.0316

0.8 0.3590 0.2982 4737.59 5018.90 0.0764 0.0685

0.8 0.2 0.1857 0.1494 1201.55 937.26 0.0886 0.0896

0.5 0.2680 0.2763 1962.15 1816.57 0.0294 0.0306

0.8 0.1397 0.1377 3185.80 2932.16 0.1268 0.1265

Mean 0.2968 0.3106 1744.34 1523.67 0.0965 0.1053

Mean of all 0.2646 0.2912 1580.35 1394.83 0.0987 0.1158
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measures. The sum of the absolute differences in objective
values, the crowding distance, or Euclidean distance could be

used to calculate disti0 . The parameter diste
0

m0 is the distance

between the extreme solutions of P* and E’ corresponding to
m’th objective function. For an ideal distribution of solutions,
Δ=0. Generally, it could be said that the smaller the value of
Δ, the higher the algorithm capability in finding non-
dominated solutions with good diversity.

6.2.3 Distance

The last metric is employed with the intention of measur-
ing the solutions’ convergence to the origin coordinates
(point [0,0]) which is desirable in a bi-objective space (in
minimization case). “Euclidean distance” metric is used for

doing so.

ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i
0¼1

XM
0

m0¼1
f i

0

m0

2
s

ð16Þ

The lower ds values are obviously preferable. Those Pareto
fronts which are closer to the origin coordinates have better
convergence.

Each problem in all categories has run five times on each
algorithm in order to ensure constancy of the employed algo-
rithms. Also, all aforementionedmetrics are calculated in each
run.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

ds
(small)

NSGAII NRGA

Fig. 7 Comparing ds metric for
small-sized problems

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Δ 
(small)

NSGAII NRGA

Fig. 6 Comparing Δ metric for
small-sized problems

Int J Adv Manuf Technol (2015) 77:545–563 559



6.3 Computational results

The performance of the employed algorithms is studied in this
subsection through different measures on two categories of
sample instances, i.e., small- and medium-to-large-sized ones.
Tables 3 and 4 present the results of employed measures,
including sp, Δ, and ds where the average results of perfor-
mance indexes for these cases are calculated.

As pointed out earlier, a smaller value of the employed
performance measure is preferable. According to Table 3, in
small-sized problems, NSGAII yields better results inΔ and sp
criteria, but NRGA outperforms NSGAII in ds criterion in
“mean of all.” However, in both Δ and sp, there is no signif-
icant difference between consequences of employed NSGAII
and NRGA. Based on the obtained results, as it could be seen,
in few instances, NRGA outperforms NSGAII in Δ and sp,
while NSGAII surpasses NRGA in ds.

The mean performance of applied metrics for both NSGAII
and NRGA in 27 small set instances is depicted in Figs. 6, 7,
and 8.

As it could be seen in Table 4, the similar consequence is
obtained, i.e., NSGAII outperforms NRGA in Δ and sp met-
rics in “mean of all.” However, NRGA surpasses NSGAII in
ds criterion.

The attained outcomes in the considered problem reveal the
ability of NRGA in converging to the true front and capabil-
ities of NSGAII in finding diverse solutions in the front. As a
matter of fact, NRGA gets closer to the true Pareto-optimal
front than NSGAII, while NSGAII finds a better spread in the
entire Pareto-optimal region than NRGA.

In Figs. 9, 10, and 11, the obtained results of
NSGAII and NRGA in the three employed measurement
factors are demonstrated in 54 medium-to-large set
instances.
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7 Conclusions and future studies

In the main, according to multi-objective nature of real-world
problems, it is more realistic to investigate optimization prob-
lems within a multi-objective environment. In this study, we
have successfully solved a bi-objective identical parallel ma-
chine problem considering just-in-time (JIT) philosophy
where job processing times are controllable. Each job has a
distinct due date and no job preemption is allowed. The aim of
this study was to simultaneously minimize (1) total cost of
tardiness, earliness as well as compression and expansion
costs of job processing times and (2) maximum completion
time so-called makespan. Besides determining a sequence of
jobs on each machine with capability of processing all jobs,
the best possible set amount of compression/expansion of
processing times on each machine was also acquired via the
proposed “bi-objective parallel net benefit compression-net
benefit expansion” (BPNBC-NBE) heuristic.

Two well-known multi-objective evolutionary algorithms,
i.e., non-dominated sorting genetic algorithm II (NSGAII) and
non-dominated ranking genetic algorithm (NRGA) were
employed so as to solve such bi-objective problem. In order
to compare these methods, three measurement factors were
also applied to assess the algorithms’ performance. Computa-
tional results demonstrated that NSGAII outperforms NRGA
in terms of diversity while NRGA surpasses NSGAII in
converging to the true front in all small- and medium-to-
large-sized problems.

As a direction for future research, it would be interesting
to develop such a bi-objective problem on other multi-
machine environment, such as flowshop or different types
of parallel machines. Employing different performance
measures could also be tested so as to consider different
aspects of comparison. For the sake of enhancing the
goodness-of-fit of the proposed techniques, further analysis
could be made through advanced statistical analysis such as
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design of experiments, factorial design, and Taguchi meth-
od for parameters’ tuning. Another improvement could also
be the hybridization of the proposed algorithms in order to
increase the quality of the obtained results. Also, regarding
multi-resource manufacturing system in order to compare
with the proposed methodology in this paper is another
interesting future research.
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