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Abstract Anti-rust aluminum is widely used in aviation,
aerospace, communications, as well as weapons with
non-corrosion, light, and other fine characteristics. In
this study, in order to improve the machined surface
quality and find the functional relation between cutting
parameters and surface roughness, a series of cutting
experiments for AlMn1Cu were conducted, and the sur-
face roughness values in high-speed milling were ob-
tained. Firstly, according to the analysis of variance
(ANOVA) of factorial experiments, the cutting parame-
ters significantly influencing the surface roughness were
presented. Secondly, the mathematical prediction models
of surface roughness based on the cutting parameters
were established by using the partial least squares re-
gression. Finally, experiments are further designed and
carried out to validate the accuracy of the proposed
prediction model.
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1 Introduction

The functional parts made by anti-rust aluminum alloy
have been widely used in aviation, aerospace, commu-
nications, as well as weapons with non-corrosion, light,
and other fine characteristics in recent years. In general,
the functional parts need higher surface quality in order

to achieve certain functional behavior. For the anti-rust
aluminum alloy, the machined cavity’s surface has a lot
of defects such as burr, furrow, etc. And the machined
surface quality is difficult to meet the technical specifi-
cations due to its low strength and high softness. So,
the problem on how to improve the machined cavity’s
surface quality for anti-rust aluminum alloy is necessary
to be solved.

Surface roughness is an important indicator to reflect the
surface quality. The surface roughness formation mechanism
along with the numerous uncontrollable factors that influence
pertinent phenomena makes it almost impossible with a sim-
ple solution to reveal the nature of cutting surface. The com-
mon strategy involves the selection of conservative process
parameters, which neither guarantees the achievement of the
desired surface roughness nor attains high metal removal rate
[1].

In the recent 20 years, there have been numerous
studies conducted on the prediction of surface roughness
and the optimization of cutting parameters for many
engineering applications. As for the theoretical and em-
pirical models about surface roughness and cutting pa-
rameters, Geoffrey and Winston presented the theoretical
arithmetic idealized model of arithmetical mean value
Ra for turning operation. A lot of empirical regression
models for surface roughness based on the cutting pa-
rameters were proposed [2]. Fang and Safi-Jahanshaki
presented a new algorithm to establish a reference tool-
based model for predicting the surface roughness
through the correlation analysis and regression method.
Compared with the traditional method, the algorithm
needed much less experimental work, but it showed a
reasonable accuracy in predicting the surface roughness
in finish machining [3]. Hasan et al. developed a
Taguchi optimization method for low surface roughness
in terms of process parameters when milling the mold
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surfaces of 7075-T6 aluminum material [4]. Chen and
Lee developed an on-line surface recognition system
that was based on a statistical multiple regression mod-
el, and sensing techniques were used to monitor the
effects of vibration produced by the motions of the
cutting tool and workpiece during turning operations.
Test results indicated that the system could predict sur-
face roughness on line and in real time with an approx-
imate accuracy of 94 % [5]. The mathematical models
of aluminum alloy 2014 were presented for predicting
five different surface profile parameters caused by inter-
nal ball burnishing process parameters, namely burnish-
ing speed, feed, depth of penetration, and number of
passes [6]. Erol et al. study the influence machining
parameters on the surface roughness obtained in drilling
of AISI 1045 and developed a mathematical prediction
model of the surface roughness using response surface
methodology (RSM) [7]. Wang et al. presented a theo-
retical and experimental investigation into the effect of
the workpiece material on surface roughness in the
ultra-precision milling process and studied the influ-
ences of material swelling and tool-tip vibration on
surface generation in ultra-precision raster milling [8].
Cakir et al. examined the effects of cutting parameters
(cutting speed, feed rate, and depth of cut) on the
surface roughness through the mathematical model de-
veloped by using the data gathered from a series of
turning experiments performed [9]. Chinnasamy and
Muthu carried out the machining process on brass
C26000 material in dry cutting condition in a CNC
turning machine and presented an artificial neural net-
work (ANN) model that has been designed through

feedforward back-propagation network using Matlab
(2009a) software to predict the surface roughness [10].
An actual modeling approach using a feed forward
multilayered neural network for the prediction and con-
trol of surface roughness in turning has been investigat-
ed [11]. A neural network-based surface roughness
Pokayoke system with in-process NN-based surface
roughness prediction system was used to predict the
roughness in end milling and to adjust the machine
parameters on line when a defect of surface roughness
was detected by the system [12]. Öktem developed an
integrated study of surface roughness to model and
optimize the cutting parameters in the end milling of
AISI 1040 steel material with TiAlN solid carbide tools
under the wet cutting condition and presented an artifi-
cial neural network (ANN) based on back-propagation
(BP) learning algorithm to construct the surface rough-
ness model by a full factorial design of experiments
[13]. Lee et al. presented an abductive network for
modeling drilling process to predict the surface rough-
ness [14]. Çolak et al. used evolutionary programming
methods to predict surface roughness in end milling
aluminum 6061-T8 [15]. Ding et al. investigated the
effects of cutting parameters on cutting forces and sur-
face roughness in hard milling of AISI H13 steel with
coated carbide tools and found that the axial depth of
cut and the feed were the two dominant factors affect-
ing the cutting forces and established two empirical
models for predicting the cutting forces and surface
roughness [16]. Basak et al. discussed the burnishing
parameters which affect to surface roughness and sur-
face hardness on aluminum 7075-T6 materials and used
a fuzzy model based on the experimental results to
achieve the best parameters for the burnishing process
[17]. Oktem et al. developed a neural network model to
predict the surface roughness in the mold cavity and
used genetic algorithm coupled with neural network to
find optimum cutting parameters leading to minimum
surface roughness without any constraint [18].
Bozdemir and Aykut developed an artificial neural net-
work (ANN) model to predict the surface roughness of
Castamide block samples in wet and dry conditions
[19]. Palani and Natarajan presented a system for auto-
mated, noncontact, and flexible prediction of surface
roughness of end-milled parts through a machine vision
system which is integrated with an artificial neural
network (ANN) [20]. Dhokia et al. showed the use of
GA to formulate an optimized surface roughness predic-
tion model for ball-end machining of polypropylene
[21]. A RBF neural network model was used to predict
the surface roughness in turning stainless steel 304L
[22]. Benardos et al. presented a feed forward artificial
neural network to predict the surface roughness (Ra) in

Table 1 Mechanical properties of AlMn1Cu

Tensile strength
(MPa)

Yield strength
(MPa)

Hardness
(HB)

Elasticity modulus
(GPa)

130 50 300 71

Fig. 1 The experimental setup
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CNC face milling series 2 aluminum alloy [23]. Çaydaş
et al. developed a feed forward neural network based on
back-propagation and a regression model to predict sur-
face roughness in the abrasive water jet machining
process [24]. Artificial neural network models were
developed for the analysis and prediction of the rela-
tionship between the cutting conditions and the corre-
sponding fractal parameters of machined surface in face-
milling operation [25].

The literatures revealed that the study which focused on
the high intensity and hardness materials had achieved a
wealth of fruit on surface roughness. But few researches
were reported on the low strength and soft materials, such
as anti-rust aluminum alloy. In the presented paper, the
effects of cutting parameters on the surface roughness
were studied for improving the machined surface quality
of anti-rust aluminum (AlMn1Cu) in high-speed milling.
The high-speed machining (HSM) is widely applied in
modern manufacturing to produce exact structural parts
and functional parts in aerospace and weapon industries
with high machining efficiency, lower cutting forces,
higher part precision, and better surface quality. So, the
surface quality of the aluminum alloy parts is significantly
improved by the high-speed machining technology.

This paper aims to study the cutting parameters significant-
ly affecting the surface roughness as well as to build the
predictionmodel of the surface roughness based on the cutting
parameters such as cutting speed, feed-per-tooth, and depth of
cut. For those purposes, the experiments were designed on the
basis of the factorial design and homogeneous design
methodology.

2 Experimental works

2.1 Experimental conditions

Milling experiments were conducted using a high-speed ma-
chining center (Mikron Corporation, model: XSM600),
whose maximum spindle speed is 60,000 rpm and maximum
feed rate is 85 m/min. The workpiece material used for the
experiments is AlMn1Cu whose chemical composition in-
cludes Si 0.6 %, Fe 0.7 %, Cu 0.2 %, Mn 1.0∼1.6 %, Mg
0.05 %, Zn 0.1 %, and Ti 0.15 % in addition to Al. The
mechanical properties of AlMn1Cu are given in Table 1.
The dimension of the workpiece is 150 mm×25 mm×
25 mm. The milling cutter is 4-mm diameter two-flute end
mill H10F uncoated carbide tool supplied by SANVIK (Code,
R216.32-04030-AC08P). The experimental setup is shown in
Fig. 1.

2.2 Surface roughness measurements

The arithmetic mean value (Ra) is the most popular method to
describe surface roughness in engineering practice.
Mathematically, Ra is the arithmetic value of the departure of
the profile from centerline along sampling length. In this
paper, the Ra is selected to describe the surface roughness.

The end milling is capable of producing two kinds of
surfaces: under surface and wall surface. The under-surface
is produced on the end mill’s end cutting edge, and the wall
surface is produced on the end mill’s cylindrical cutting edge,
as shown in Fig. 2a. In this paper, the under-surface and wall

Feed direction

Axial feed

Wall-surface

Under-surface

1
5

m
m

20mm

Measured surface

A
B

CD

Measured surface

25mm

6
m

m

A
B

CD

(a)                 (b)                    
(c)

Fig. 2 a Machined specimen, b
testing specimen and critical
region of Ra,u, and c testing
specimen and critical region of
Ra,w

Table 2 The cutting parameters and their levels used in the factorial
design experiment

Cutting parameter Level 1 Level 2 Level 3

Cutting speed, vc [m/min] 100.54 301.63 502.72

Feed per tooth, fz [mm/tooth] 0.03 0.05 0.07

Depth of cut, ap [mm] 0.5 1.5 2.5

Table 3 The cutting parameters and their levels used in the homoge-
neous design experiment

Cutting parameter Level 1 Level 2 Level 3 Level 4 Level 5

Cutting speed, vc [m/min] 100.54 201.09 301.63 402.18 502.72

Feed per tooth, fz
[mm/tooth]

0.03 0.04 0.05 0.06 0.07

Depth of cut, ap [mm] 0.5 1.0 1.5 2.0 2.5
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surface were measured by utilizing a portable surface
profilometer (MarSurfPS1). The surface roughness (Ra) of
the under-surface is quoted as Ra,u. Fig. 2b shows the testing
specimen and critical region (ABCD) of Ra,u. The surface
roughness (Ra) of the wall surface is quoted as Ra,w. Fig. 2c
shows the testing specimen and critical region (ABCD) of
Ra,w. Roughness measurements (the cutoff is 0.8 mm) were
repeated at least five times, and the average of five Ra value
was presented.

2.3 Experiment design

For investigating the effects of cutting parameters (spin-
dle speed N, feed per tooth fz, and depth of cut ap) on
the surface roughness and building the predictive math-
ematic model of surface roughness by the least squares
regression, series of experiments were conducted.
Firstly, a 33 (3 factors, 3 levels, 27 tests) full factorial
design was used for the end milling experiments. The

milling parameters were shown in Table 2. Secondly,
the homogeneous design was used for the experiments.
The levels for the milling parameters with respect to the
homogeneous design experiments were shown in
Table 3. All milling operations for workpieces were
conducted with the conventional milling at a width of
cut w=2.5mm.

3 Results and discussion

3.1 Factorial design experiments

The factorial design experiment was carried out in order
to research the influence of the cutting speed (vc,
m/min), feed per tooth (fz, mm/z), and depth of cut
(ap, mm) on the surface roughness (Ra). The experimen-
tal results were listed in Table 4. The range analysis of
factorial experiment indicates that the minimum Ra,u and
Ra,w are all achieved at vc=502.72m/min, fz=0.03 mm/
tooth, and ap=0.5 mm. In this experimental conditions,
the same cutting experiments were carried out four
times, the Ra,u is within 0.145∼0.187 μm and the Ra,w

is within 0.210∼0.245 μm.
The analysis of variance (ANOVA) was used to study

cutting parameters significantly affecting the surface rough-
ness. The significance levels ofF tests are selected asα1=0.01
and α2=0.05. The symbol ‘**’ indicates that the correspond-
ing source is significant at 0.99 confidence level, and the
symbol ‘*’ indicates that the corresponding source is signifi-
cant at 0.95 confidence level. Table 5 shows the result of
ANOVA for Ra,u. It can be concluded that the significant

Table 4 The experimental results of factorial design for Ra

No. vc [m/min] fz [mm/tooth] ap [mm] Ra,u [μm] Ra,w [μm]

1 100.54 0.03 0.5 0.260 0.326

2 301.63 0.03 0.5 0.213 0.255

3 502.72 0.03 0.5 0.181 0.237

4 100.54 0.05 0.5 0.284 0.423

5 301.63 0.05 0.5 0.226 0.344

6 502.72 0.05 0.5 0.253 0.296

7 100.54 0.07 0.5 0.391 0.828

8 301.63 0.07 0.5 0.353 0.369

9 502.72 0.07 0.5 0.399 0.414

10 100.54 0.03 1.5 0.254 0.524

11 301.63 0.03 1.5 0.429 1.578

12 502.72 0.03 1.5 0.375 2.046

13 100.54 0.05 1.5 0.378 0.305

14 301.63 0.05 1.5 0.557 2.129

15 502.72 0.05 1.5 0.417 2.392

16 100.54 0.07 1.5 0.533 0.683

17 301.63 0.07 1.5 0.557 1.873

18 502.72 0.07 1.5 0.446 2.687

19 100.54 0.03 2.5 0.311 0.349

20 301.63 0.03 2.5 0.653 2.802

21 502.72 0.03 2.5 0.514 1.658

22 100.54 0.05 2.5 0.449 0.253

23 301.63 0.05 2.5 0.662 2.391

24 502.72 0.05 2.5 0.639 3.182

25 100.54 0.07 2.5 0.602 0.535

26 301.63 0.07 2.5 0.874 2.748

27 502.72 0.07 2.5 0.624 3.245

Table 5 ANOVA for Ra,u

Source of
variance

Sum of
squares

Degrees of
freedom

Mean
square

F value C%

vc 0.0642 2 0.0321 5.177 7.92 *

fz 0.1413 2 0.0707 11.403 17.44 **

ap 0.4257 2 0.2128 34.322 52.53 **

vc×fz 0.0102 4 0.0026 0.419 1.26 –

vc×ap 0.0802 4 0.0200 3.225 9.90 –

fz×ap 0.0249 4 0.0062 1.000 3.07 –

e (error) 0.0639 8 0.0080 1.290 7.88 –

Total 0.8104 26 – – 100 –

e' 0.0990 16 0.0062 – –

SS sum of squares,DF degrees of freedom,MSmean square, C% percent
contribution for SSTotal
F0.99,2,16=6.226, F0.99,4,16=4.773, F0.95,2,16=3.634, F0.95,4,16=3.007,
sse0 ¼ sse þ ss f z�ap þ ssvc� f z
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factors affecting Ra,u are the depth of cut, feed per tooth,
cutting speed, and the interaction between cutting speed and
depth of cut. The depth of cut is the most statistically signif-
icant factor influencing Ra,u, which explains 52.53 % of the
total variances. The second largest contribution comes from
the feed per tooth with 11.403 %.

The main effects of cutting speed, feed per tooth, and depth
of cut for Ra,u are plotted in Fig. 3. The main effect plots are
just graphs of the response averages at the levels of the three
factors. Fig. 3a shows that the average of Ra,u is larger at vc=
301.63 m/min (the spindle speed (N) is 24,000 rpm), because
the forced regenerative chatter of milling cutter is prone to
occur at N=24,000 rpm and the large ap. Figure 4 shows the
machined surface obtained in two different depths of cut at the
same spindle speed and feed per tooth. As shown, an increase
in depth of cut led to slight milling cutter chatter. Ra,u increases
with the increase of feed per tooth and depth of cut (Fig. 3b, c).
Figure 5 presents the three-dimensional surface plot of Ra,u

response. When the depth of cut is 0.5 mm, Ra,u decreases
with the increase of cutting speed and increases with the
increase of the feed per tooth (Fig. 5a). When the depth of
cut is 1.5 and 2.5 mm, the values of Ra,u are larger at vc=
301.63 m/min (N=24,000 rpm). Therefore, the preconditions
to obtain the smaller values of surface roughness should avoid
the cutting parameters which induce the forced regenerative
chatter of milling cutter.

Table 6 shows the result of ANOVA for Ra,w. It can be
concluded that the significant factors affecting Ra,w are the

(a)          (b) (c)

Fig. 3 Main effects plots for Ra,u

(a) 

ap=0.5mm 

(b) 

ap=2.5mm

Fig. 4 The photomicrographs of machined under surface with the dif-
ferent ap (N=24,000 rpm, fz=0.07 mm/tooth)
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Fig. 5 The effects of spindle speed and feed per tooth on Ra,u in different
depth of cut
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depth of cut, cutting speed, and interaction between
cutting speed and depth of cut. The depth of cut is
the most statistically significant factor influencing Ra,w,
which explains 38.08 % of the total variances. The
second largest contribution comes from the cutting
speed with 30.71 %, and the feed per tooth does not
have statistical significance for Ra,w.

Figure 6 shows the same result with the analysis of vari-
ance. For the main factors, the feed per tooth affects the
surface roughness less, while the depth of cut and cutting
speed are the significant factors affecting the surface rough-
ness (Ra,w). The surface roughness appears to be a non-linear
increasing function of vc and ap and to be an almost-linear
increasing function of fz. This result seems to contradict with a
common expectation that the surface roughness usually de-
creases with the increase of cutting speed. At this point, it
should be due to the interaction between cutting parameters.
The milling cutter flutter is prone to occur when the cutting
parameters are at a higher level. So, the deeper cutting marks

and large plastic deformation are generated on the machined
surface, and the surface roughness is greatly increased.
Figure 7 shows the relationship between the surface roughness
and the cutting parameters. When ap is 0.5 mm, the values of
surface roughness, which are small, decrease with increasing
cutting speed. But, when the depth of cut is 1.5 and 2.5 mm,
the values of surface roughness are greatly increased with the
increase of cutting speed. In addition, it can be concluded
from Fig. 7 that the values of surface roughness slightly
increase with feed per tooth increasing at the same cutting
speed and depth-of-cut. Therefore, the conditions to obtain the
smaller values of surface roughness are high cutting speed,
small feed per tooth, and small depth of cut.

3.2 Homogeneous design experiments

Table 7 lists the experimental results of homogeneous design
for surface roughness. Figure 8 is the scatter matrix plot of the
surface roughness based on the experimental results of homo-
geneous design. The scatter plots show Ra,u increases with
cutting parameters increasing, and the value of Ra,u is uni-
formly dispersed at different levels. It can be concluded that
the interaction between cutting parameters has a significant
influence on surface roughness (Ra,u). From the scatter plots of
Ra,w, it can be observed that Ra,w is clearly divided into two
parts. When the cutting parameters are all of high levels, such
as vc=502.72 m/min, fz=0.07 mm/tooth, and ap=2.0 mm,
Ra,w is larger. Therefore, the scatter plots of Ra,w showed the
same result as in Fig. 7, which was caused by the same
reasons.

4 Surface roughness prediction model

Regression analysis method is used to establish the
mathematical prediction model of surface roughness. In

Table 6 ANOVA for Ra,w

Source of variance Sum of
squares

Degrees of
freedom

Mean
square

F value C%

vc 9.2763 2 4.6382 41.747 30.71 **

fz 0.7242 2 0.3621 3.259 2.40 –

ap 11.5037 2 5.7519 51.772 38.08 **

vc × fz 0.5897 4 0.1474 1.327 1.95 –

vc × ap 6.9236 4 1.7309 15.580 22.92 **

fz × ap 0.0682 4 0.0171 0.154 0.23 –

e (error) 1.1203 8 0.0140 0.126 3.71 –

Total 30.206 26 – – 100 –

e′ 1.7782 16 0.1111 – –

SS sum of squares,DF degrees of freedom,MSmean square, C% percent
contribution for SSTotal
F0.99,2,16=6.226, F0.99,4,16=4.773, F0.95,2,16=3.634, F0.95,4,16=3.007,
sse0 ¼ sse þ ss f z�ap þ ssvc� f z
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Fig. 6 The main effects plots for Ra,w
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the presented investigation, a whole analysis was done
using the experimental data in Tables 4 and 6. A non-
linear polynomial model was performed to predict the
surface roughness by the partial least square regression.
The regression model can be expressed as

Ra; j ¼ b0; j þ b1; jvc þ b2; j f z þ b3; jap þ b4; jvc f z

þ b5; j f zap þ b6; jvcap þ b7; jv
2
c þ b8; j f

2
z þ b9; ja

2
p ð1Þ

where Ra,j (j=u, w) is the surface roughness, bi,j (i=0, 1…
9) is the coefficient of the non-linear polynomial model, vc is
cutting speed (m/min), fz is the feed per tooth (mm/tooth), and
ap is the depth of cut (mm). Let x1=vc, x2=fz, x3=ap, x4=vcfz,

x5=fzap, x6=vcap, x7=vc
2, x8=fz

2, and x9=ap
2, and then Eq. (1)

can be written as follows:

Ra; j ¼ b0; j þ b1; jx1 þ b2; jx2 þ b3; jx3 þ b4; jx4 þ b5; jx5

þ b6; jx6 þ b7; jx7 þ b8; jx8 þ b9; jx9 ð2Þ

Equation (2) is a multiple linear regression model.
Table 8 lists the data for the prediction model of surface
roughness.

The variable values of Table 8 are mean-centered and
normalized before the regression calculation for Eq. (2).
The mean-centered and normalized function is

x*ij ¼ xij−x j
� �

=s j ¼ xij−x j
� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

i¼1

n

xij−x j
� �2

vuut ð3Þ

where xij is the jth values of variable xj, x j is the mean of
variable xj, and sj is the standard deviation.
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Fig. 7 Effect of spindle speed and feed per tooth on Ra,w in different depth of cut

Table 7 The experimental results of homogeneous design

No. vc [m/min] fz [mm/tooth] ap [mm] Ra,u [μm] Ra,w [μm]

1 100.54 0.03 1.0 0.212 0.342

2 201.09 0.04 2.5 0.367 0.374

3 402.18 0.05 0.5 0.229 0.383

4 502.72 0.07 2.0 0.693 3.572

5 100.54 0.04 1.5 0.337 0.319

6 301.63 0.05 2.0 0.450 2.288

7 301.63 0.06 1.5 0.447 0.434

8 502.72 0.07 0.5 0.397 0.414

9 201.09 0.03 0.5 0.248 0.318

10 201.09 0.03 2.5 0.447 0.312

11 402.18 0.06 1.0 0.331 2.720

12 402.18 0.06 2.0 0.664 2.833

13 301.63 0.05 1.0 0.291 0.265

14 502.72 0.07 2.5 0.625 3.245

15 100.54 0.03 2.0 0.279 0.341

16 201.09 0.04 0.5 0.186 0.327

17 402.18 0.05 2.5 0.599 2.891

18 502.72 0.07 1.0 0.418 0.618
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Fig. 8 The scatter matrix plot of surface roughness
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The surface roughness regression equation can be calculat-
ed by the method of partial least square. Nine latent variables
including in the surface roughness prediction model are se-
lected based on the cross validation, and then the mean-
centered and normalized regression model for surface rough-
ness obtained as follows:

R�
a;u ¼ 0:2010x�1 þ 0:5301x�2 þ 0:7582x�3
−0:0064x�4 þ 0:1727x�5 þ 0:2351x�6
−0:0663x�7 þ 0:1566x�8 þ 0:0274x�9

R�
a;w ¼ 0:5668x�1 þ 0:1020x�2 þ 0:5879x�3
−0:0486x�4 þ 0:0200x�5 þ 0:4537x�6
−0:1414x�7 þ 0:0138x�8−0:1516x

�
9

8>>>>>><
>>>>>>:

ð4Þ

where xi
* is the mean-centered and normalized variable.

After original variables being mean-centered and normal-
ized, the regression coefficients of Eq. (4) indicate the degree
that the corresponding independent variables (cutting param-
eters) influence on the dependent variable (Ra,u and Ra,w). The
greater value of the regression coefficient indicates that the
corresponding variable has greater significance for surface
roughness (Ra,u, and Ra,w). The effect of variable coefficient
meant positive effect, negative coefficient meant negative
effects. Figure 9 shows the histogram of the coefficients of
Eq. (4). From Fig. 9, the same results with the ANOVA for
surface roughness (Ra,u and Ra,w) can be concluded.

The mean-centered and normalized variables of Eq. (4) are
converted into the original variables. Then the surface rough-
ness prediction model is

Ra;u ¼ 0:4319þ 1:0144� 10−4vc−11:209 f z
−0:0854ap−4:2745� 10−4vc f z þ 3:2926 f zap

þ3:2141� 10−4vcap−5:9072� 10−7v2c
þ136:95 f 2z þ 0:01a2p;R

2 ¼ 0:9313
Ra;w ¼ −0:7454þ 0:0038vc þ 2:9394 f z
þ0:5999ap−0:0219vc f z þ 1:8352 f zap
þ4:2876� 10−3vcap−8:6547� 10−6v2c
þ82:039 f 2z−0:3745a

2
p;R

2 ¼ 0:9257

8>>>>>>>>>><
>>>>>>>>>>:

ð5Þ

Table 8 The data for prediction model

Experiment no. x1, (vc) x2, (fz) x3, (ap) x4, (vc fz) x5, (fzap) x6, (vcap) x7, (vc
2) x8, (fz

2) x9, (ap
2) Ra,u Ra,w

1 100.54 0.03 0.5 3.0162 0.015 50.27 10108.29 0.0009 0.25 0.260 0.326

2 301.63 0.03 0.5 9.0489 0.015 150.815 90980.66 0.0009 0.25 0.213 0.255

3 502.72 0.03 0.5 15.0816 0.015 251.36 252727.4 0.0009 0.25 0.181 0.237

– – – – – – – – – – – –

44 402.18 0.05 2.5 20.109 0.125 1005.45 161748.8 0.0025 6.25 0.599 2.891

45 502.72 0.07 1.0 35.1904 0.07 502.72 252727.4 0.0049 1 0.418 0.618

Ra,u

Ra,w

*

1x
*

9x*

8x
*

7x
*

6x
*

5x
*

4x
*

3x
*

2x

Fig. 9 Coefficients of the mean-centered and normalized regression
model
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Fig. 10 Normal probability plot of residuals (5 % confidence interval)
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where R2 is the coefficient of multiple determination. This
value indicates that the presented model fits the data very well.
Figure 10 shows the normal probability plot of residuals for
the regression model. It can be easily observed that the resid-
uals do not appear abnormally and the plot appears linear. In
order to verify the accuracy of the proposed surface roughness
prediction model, five experiments were performed at the
same experimental condition as designed previously. The
predicted value and the associated experimental value were
compared and the percentage error was calculated. Table 9
shows the results of experiments. It can be concluded that the
error percentage is within the permissible limits. The biggest
error are 9.81 % for Ra,u and 14.64 % for Ra,w. So, the
prediction model of surface roughness is accurate and credi-
ble, and it can be used to predict the surface roughness values
at any cutting speed, feed per tooth, and depth of cut within the
range of the experimentation conducted.

5 Conclusion

The following conclusions can be concluded based on the
experimental results in the high-speed peripheral milling of
ALMn1Cu:

(1) The range analysis of factorial experiment indicates that
the minimum Ra,u and Ra,w are all achieved at vc=502.72
m/min, fz=0.03 mm/tooth, and ap=0.5 mm. In this ex-
perimental condition, the same cutting experiments were
carried out four times, the Ra,u is within 0.145∼0.187 μm
and the Ra,w is within 0.210∼0.245 μm.

(2) The significant factors affecting Ra,u are the depth of cut,
feed per tooth, cutting speed, and interaction between
cutting speed and depth of cut. The most statistically
significant factor influencing on Ra,u is the depth of cut,
which explains 52.53 % of the total variances. The
second largest contribution comes from the feed per
tooth with 11.403 %.

(3) The significant factors affecting Ra,w are the depth of cut,
cutting speed, and interaction between cutting speed and

depth of cut. The depth of cut is the most statistically
significant factor which explains 38.08 % of the total
variances. The second largest contribution comes from
the cutting speed with 30.71 %, and the feed per tooth
does not have statistical significance on Ra,w. The condi-
tions to obtain the smaller values of Ra,w are high cutting
speed, small feed per tooth, and small depth of cut.

(4) The non-linear polynomial model of surface roughness
based on the cutting parameters was built by the method
of partial least square, and the R2 values for the mathe-
matical prediction model of surface roughness is enough
to obtain reliable estimates. The further validation exper-
iments show that the experimental values of surface
roughness well correspond to the prediction. So, the
proposed mathematical prediction model of surface
roughness can be used to estimate the expected perfor-
mance for any factor levels.
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