
Int J Adv Manuf Technol (2015) 76:1705–1718
DOI 10.1007/s00170-014-6390-6

ORIGINAL ARTICLE

Efficient metaheuristic algorithm and re-formulations
for the unrelated parallel machine scheduling problem
with sequence and machine-dependent setup times

Oliver Avalos-Rosales · Francisco Angel-Bello ·
Ada Alvarez

Received: 2 September 2013 / Accepted: 11 September 2014 / Published online: 25 September 2014
© Springer-Verlag London 2014

Abstract In this paper, an unrelated parallel machine
scheduling problem with sequence and machine-dependent
setup times and makespan minimization is studied. A new
makespan linearization and several mixed integer formu-
lations are proposed for this problem. These formulations
outperform the previously published formulations regard-
ing size of instances and computational time to reach
optimal solutions. Using these models, it is possible to
solve instances six times larger than what was previously
solved and to obtain optimal solutions on instances of
the same size up to four orders of magnitude faster. A
metaheuristic algorithm based on multi-start algorithm and
variable neighbourhood descent metaheuristic is proposed.
Composite movements were defined for the improvement
phase of the proposed metaheuristic algorithm that consid-
erably improved the performance of the algorithm providing
small deviations from optimal solutions in medium-sized
instances and outperforming the best known solutions for
large instances.

Keywords Scheduling · Unrelated parallel machines ·
Dependent setup times · Makespan · Multi-start · VND

O. Avalos-Rosales · A. Alvarez
Universidad Autónoma de Nuevo León, Av. Universidad s/n, San
Nicolás de los Garza, NL, Mexico

O. Avalos-Rosales
e-mail: oliver@yalma.fime.uanl.mx

A. Alvarez
e-mail: ada.alvarezs@uanl.mx

F. Angel-Bello (�)
Tecnológico de Monterrey, Campus Monterrey, Av. Eugenio Garza
Sada 2501, Monterrey, NL, Mexico
e-mail: fangel@itesm.mx

1 Introduction

In this work, a problem is addressed in scheduling n jobs
on m unrelated parallel machines with the objective of min-
imizing the makespan, taking into consideration setup times
that depend both on the machine and the sequence.

The parallel machine scheduling problem has been exten-
sively studied due to its practical applications in various
manufacturing systems such as printed circuit board manu-
facturing, group technology cells, semiconductor manufac-
turing, painting and plastic industries, injection moulding
processes, remanufacturing, etc. [11]. An interesting sur-
vey on parallel machines can be found in [17]. However,
most of the literature address identical or uniform machines,
where the processing time of a job is the same regardless
of the machine where it is processed or is proportional to
the speed of the machine respectively. A recent work on
non-identical parallel machines addressing fuzzy processing
times is presented by Balin [3].

Less research has been conducted for studying the case
where the processing time of each job depends on the
machine on which it is processed, that is, the machines are
unrelated [5]. This is a common situation in several appli-
cations where there are parallel machines with different
capabilities.

From studies dealing with unrelated parallel machines,
only a few addresses the problem considering setup times.
Most assume that there are no setup costs or they are inde-
pendent of job sequence. Recently, Lin and Yang-Kuei and
Chi-Wei [14, 24] studied scheduling problems on unre-
lated parallel machines with release dates and without setup
times. Lin [14] proposed a Particle Swarm Optimization
algorithm for minimizing the makespan, and Yang-Kuei and
Chi-Wei [24] proposed several dispatching rules consider-
ing three performance measures.

mailto:oliver@yalma.fime.uanl.mx
mailto:ada.alvarezs@uanl.mx
mailto:fangel@itesm.mx

1706 Int J Adv Manuf Technol (2015) 76:1705–1718

However, this situation may not always be true in prac-
tice. A setup is a set of operations that should be performed
after processing a job on a machine to prepare it for pro-
cessing the next job. In various real-world industrial/service
environments, these times are sequence-dependent, that is,
depending not only on the job that will be processed but also
on the job processed just before [12].

The number of works addressing unrelated parallel
machine scheduling problems with sequence-dependent and
machine-dependent setups are even fewer, although this
situation appears, for example, in the textile, printed cir-
cuit boards and chemical industries [19] as well as in the
injection moulding process and in LCD manufacturing pro-
cesses [4]. All that has been previously mentioned gave the
motivation to focus on this kind of problem.

There are several performance criteria to measure the
quality of a scheduling. Recent results using metaheuristic
algorithms related to minimize the total tardiness on paral-
lel machines with sequence and machine-dependent setups
times can be found in [4, 11, 13, 15].

One of the performance criteria most broadly used is
the minimization of the maximum completion time of the
schedule, which is known as makespan (Cmax). It is a very
important measure of performance since it gives the total
time elapsed in processing all jobs under consideration [6].
The makespan is relevant in situations when a received
batch of jobs should be completed as soon as possible [1].
This kind of situation is especially common in server farms,
data centers and compute cloud (e.g. the Amazon Elastic
Compute Cloud) [21].

The problem of minimizing the makespan consider-
ing two identical machines is a NP-hard [8]. Indeed, a
problem with unrelated machines and sequence-dependent
setups is also NP-hard. This, coupled with the fact that
re-schedules are often required, usually prevents the use
of exact algorithms, and it is not surprising that many of
the methodologies that have been developed are based on
heuristics.

Regarding the unrelated parallel machine scheduling
problem (UPMSP) with sequence and machine-dependent
setup times and makespan minimization objective, some
heuristic algorithms have been developed recently. Helal et
al. [10] proposed a Tabu Search algorithm; Rabadi et al. [19]
introduced a new metaheuristic, MetaRaSP, which incorpo-
rates randomness within priority rules to construct a feasible
solution. More recently, Arnaout et al. [2] proposed an ant
colony algorithm, Ying et al. [25] developed a simulated
annealing approach which incorporates a restricted search
strategy, Fleszar et al. [7] proposed a multi-start variable
neighbourhood descent metaheuristic hybridized with math-
ematical programming and Vallada and Ruiz [23] presented
a genetic algorithm which exhibits a new crossover operator
including a local search procedure.

Only a few studies have developed exact methods to
solve the problem addressed in this paper. Tran and Beck
[22] proposed a Benders decomposition-based method for
minimizing the makespan, while Rocha et al. [20] presented
a branch and bound approach for minimizing the makespan
plus the weighted tardiness.

In this study, an unrelated parallel machine scheduling
problem with sequence and machine-dependent setup times
and makespan minimization is studied. From the literature
review, it is clear that this problem has not been sufficiently
studied in the available literature.

The main contributions of this paper can be summarized
as:

– New formulations for the problem and a new lineariza-
tion for the makespan are proposed, which in conjunc-
tion outperform the previously published formulations
regarding size of instances and computational time to
reach optimal solutions

– A multi-start algorithm based on the variable neigh-
bourhood descent metaheuristic was designed and
implemented, which outperforms the best known results
from literature.

– Composite movements were defined for the improve-
ment phase of the proposed metaheuristic algorithm
that considerably improved the performance of the
algorithm.

2 Problem formulation

The following assumptions and notations are used to
describe the problem:

– There is a set M of m parallel machines.
– Machines are continuously available, and each machine

can handle one job at a time without preemption, that
is, once the processing of a job has started, it cannot be
interrupted.

– There is a set N of n jobs to be scheduled.
– All the jobs are available in time 0. No precedence

constraints among jobs are imposed.
– Each job j has associated a processing time pij in each

machine i.
– There is a machine-dependent setup time sijk for pro-

cessing job k just after job j . In general, sijk �= sikj .
– The objective is to minimize the makespan Cmax.

Figure 1a illustrates that setup times are asymmetric,
while Fig. 1b illustrates that processing times and setup
times are machine dependent.

Finding a solution to the problem means to determine the
allocation of jobs to machines and the order in which each
machine will process the assigned jobs.

Int J Adv Manuf Technol (2015) 76:1705–1718 1707

Fig. 1 Graphical representation of processing times and setup times

Figure 2 shows a graphical representation of a solution to
the addressed problem with 17 jobs and 3 machines. In the
figure, blank blocks represent setup times and grey blocks
represent processing times.

First, two mixed integer formulations, referred to as
Model 1 and Model 2, are proposed to formalize the prob-
lem. Model 1 is a modification of formulations presented in
[19, 23]. Model 2 is a generalization of the one proposed
by Tran and Beck [22] for an alternative resource schedul-
ing that was used in a Benders decomposition process. From
this, several variations of these models have been obtained
including a new linearization for the makespan.

In order to establish these formulations, let us introduce
the following variables.

Xijk =
⎧
⎨

⎩

1, if job j is scheduled before job k in
machine i,

0, otherwise.

Cj : completion time of job j.

The set N plus a dummy job 0 will be denoted by N0 and
V will denote a very large constant. Variables Xi0k and Xij0

are used to specify which jobs k and j will be processed first
and at the end of each machine i, respectively. The process-
ing times and setup times associated to the dummy job are
considered 0 (pi0 = 0, si0k = 0 and sij0 = 0).

Model 1 can be stated as

min Cmax. (1)

Fig. 2 Graphical representation of a solution

Subject to:
∑

i∈M

∑

j∈N0
j �=k

Xijk = 1, ∀k ∈ N, (2)

∑

i∈M

∑

k∈N0
j �=k

Xijk = 1, ∀j ∈ N, (3)

∑

k∈N0
k �=j

Xijk −
∑

h∈N0
h�=j

Xihj = 0, ∀j ∈ N, ∀i ∈ M, (4)

∑

k∈N

Xi0k ≤ 1, ∀i ∈ M, (5)

Ck − Cj + V (1 − Xijk) ≥ sijk + pik,

∀j ∈ N0, ∀k ∈ N, j �= k, ∀i ∈ M, (6)

C0 = 0, (7)

Cj ≤ Cmax, ∀j ∈ N, (8)

Xijk ∈ {0, 1},
∀j ∈ N0, ∀k ∈ N0, j �= k, ∀i ∈ M,

Cj ≥ 0, ∀j ∈ N. (9)

Objective (1) minimizes the makespan of the solution.
Constraints (2) establish that every job has exactly one
predecessor, while constraints (3) establish that every job
has exactly one successor. Constraints (4) are the so-called
“flow conservation constraints”. They ensure that if a job
is scheduled in a machine, then it has a predecessor and
a successor in that machine. Constraints (5) ensure that at
most, one job is scheduled as the first job on each machine.
Constraints (6) provide a right processing order, avoiding
loops. Basically, they establish that if Xijk = 1, then Ck ≥
Cj + sijk + pik. If Xijk = 0, the constraint becomes redun-
dant. Constraint (7) sets the completion time of the dummy
job to 0. Constraints (8) linearize the objective function.
Finally, constraints (9) define the nature of the variables.

For the second formulation, in addition to the above
defined variables, let us introduce the following ones.

Yik =
{

1, if job k is assigned to machine i,
0, otherwise.

Model 2 can be obtained from Model 1 replacing con-
straints Eqs. 2, 3 and 4 by

∑

i∈M

Yik = 1, ∀k ∈ N, (10)

Yik =
∑

j∈N0,j �=k

Xijk, ∀k ∈ N, ∀i ∈ M, (11)

Yij =
∑

k∈N0,k �=j

Xijk, ∀j ∈ N, ∀i ∈ M, (12)

and adding Yik ≥ 0, ∀k ∈ N, ∀i ∈ M to constraints (9).
Constraints (10) ensure that each job is assigned exactly

to one machine. Constraints (11) establish that every job

1708 Int J Adv Manuf Technol (2015) 76:1705–1718

has exactly one predecessor and both are assigned to the
same machine. Constraints (12) guarantee that every job has
exactly one successor and both are assigned to the same
machine.

Model 1 has n2m + nm binary variables, n + 1 contin-
uous variables and n2m + nm + 3n + m + 1 constraints,
while Model 2 has n2m + nm binary variables, nm + n + 1
continuous variables and n2m+2nm+2n+m+1 constraints.

Note that in both formulations, the makespan Cmax =
maxj∈N {Cj } has been linearized as

Cj ≤ Cmax, ∀j ∈ N.

When Model 1 and Model 2 were solved using the Branch
and Bound algorithm (B&B), it was observed that the lower
bounds yielded by the linear relaxations were very weak.

This gave the motivation to propose a different repre-
sentation for the objective function. This representation was
obtained from the analysis of the structure of the solutions
to the linear relaxations for Model 1 and Model 2.

Specifically, when solving the linear relaxations for dif-
ferent data instances, we realized that the values of Cj

were near 0. With these values for these variables, also the
objective function value was near to 0.

For obtaining a new linearization for the makespan, the
concept of machine span will be used. The span Oi of
machine i is defined as the completion time of the last job
scheduled in machine i. Using variables Xijk , the span Oi

can be calculated as

Oi =
∑

j∈N0
j �=k

∑

k∈N

(sijk + pik)Xijk, ∀i ∈ M,

and then the makespan can be linearized as

Oi ≤ Cmax, ∀i ∈ M,

or equivalently as
∑

j∈N0
j �=k

∑

k∈N

(sijk + pik)Xijk ≤ Cmax, ∀i ∈ M. (13)

In addition, using variables Yik linearization (13) can be
rewritten as
∑

j∈N0
j �=k

∑

k∈N

sijk ∗ Xijk +
∑

k∈N

pik ∗ Yik ≤ Cmax, ∀i ∈ M.

(14)

It is not difficult to see that any feasible solution satisfies
these constraints, which means that constraints Eqs. 13 and
14 are valid inequalities to Model 1 and Model 2, respec-
tively. On the other hand, the left side of these constraints
easily compute the time at which each machine processes
its last job (Oi), as the sum of the setup time for processing
each job plus the processing time of that job. In addition,
they do not depend on the large constant V and force Cmax

to take a positive value if any of the variables Xijk or Yik are
positive.

In order to investigate which combination of defined vari-
ables with makespan linearization produces better results,
two alternatives have been considered for each formulation
(Model 1 and Model 2):

(a) To change the linearization of the makespan. It means
to replace constraints (8) by constraints (13) in Model 1
and by constraints (14) in Model 2, obtaining Model 1a
and Model 2a, respectively.

b) To include both linearizations. It means to add con-
straints (13) to Model 1 and constraints (14) to Model
2, obtaining Model 1b and Model 2b, respectively.

In short, the formulations considered in this work have
the following characteristics:

xijk yij Cj ≤ Cmax Oi ≤ Cmax

Model 1 � �
Model 2 � � �
Model 1a � �
Model 2a � � �
Model 1b � � �
Model 2b � � � �

Note than Model 1a and Model 2a have (n − m) less
constraints than Model 1 and Model 2, respectively, while
Model 1b and Model 2b have (m) more constrains than their
corresponding formulations Model 1 and Model 2.

In the computational experiment section, it will be shown
that the new makespan linearization allows to solve larger
instances and accelerates the solution process based on
branch and bound. Also, a detailed analysis of the behaviour
of previous formulations will be given.

3 Multi-start algorithm

When designing a solution method for scheduling problems,
one should consider that usually, it is hard in this context
to define neighbourhoods that preserve feasibility, but con-
structing a feasible solution may be a more simple process.
On the other hand, diversification should be an important
component of the method for not being stuck in small areas
of the solution space. Multi-start methods offer a framework
that all together provides diversification and take advantage
of the ease of constructing solutions.

A multi-start method is one that executes multiple times
from different initial points in the solution space. The
earliest works in multi-start methods were developed for
nonlinear unconstrained optimization problems and con-
sisted of the evaluation of the objective function at randomly
generated points. In metaheuristic optimization, multi-start

Int J Adv Manuf Technol (2015) 76:1705–1718 1709

algorithms are composed, generally, of two phases: (1)
diversification generator and (2) improvement method. A
multi-start algorithm iterates between these two phases
while saving the best solution found throughout the
improvement method.

The function of the diversification generator is to provide
starting solutions to the improvement phase, while ensur-
ing a certain degree of difference between them. In order to
endow diversification, randomness or some kinds of mem-
ory are commonly included in methods that are used to
provide starting solutions. Another way to include diversity
is to generate new solutions by perturbing the previously
generated solutions. Regarding the improvement methods,
local search procedures are, in general, simple and power-
ful. In these procedures, the search for a new solution is
conducted with respect to a neighbourhood structure. Usu-
ally, the neighbours of a given solution are feasible solutions
that can be obtained through simple movements. The search
begins at an initial feasible solution, explores the neighbour-
hood and moves to a neighbouring solution that improves
the value of the objective function if this improved solution
exists. When a new solution is found, the search is restarted.
The search terminates when for the current solution, any
neighbouring improved solution does not exist, that is, when
the search reaches a local minimum. For more information
about multi-start methods, see the work of Marti et al.[16] .

Figure 3 shows a general pseudo-code for a generic
multi-start algorithm.

Next, the designed constructive and improvement proce-
dures for the addressed problem are described.

3.1 Constructive procedure

The most commonly used solution representation for the
parallel machine scheduling problem is an array of jobs
Si for each machine i that represents the processing
order of the jobs assigned to that machine, that is, x =
{S1, S2, . . . , Sm}, where S1 represents the processing order
of jobs assigned to the machine 1 and S2 the same for
machine 2, and so on.

Fig. 3 Pseudo-code for a generic multi-start algorithm

The procedure works as follows: First, jobs are sorted in
a non-increasing order according to its average processing
time over all machines, that is, p̄j = ∑

i∈M
pij /m, then a

candidate list is formed with the s first jobs (s is a parameter)
from which one is randomly selected. For the selected job
j , it is determined the best insertion point in each sequence
Si , that is, the insertion point where the machine span is
less increased. Let us denote by �i the increase on the span
Oi of machine i for the best insertion point of job j in
that machine. Then, the job j will be inserted in machine
i∗ = argmin{Oi +�i} in the best insertion point in machine
i∗. The candidate list is then updated, and the process is
repeated until all jobs have been assigned to machines. A
pseudo-code for this procedure is shown in Fig. 4.

With the purpose of illustration, let us consider the
following example.

Example Let n = 8 , m = 2 and the following processing
times and setup times.

pij =
[

10 79 71 95 51 42 78 46
10 75 28 96 37 61 95 64

]

S1jk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 80 54 9 10 65 83 36
46 0 53 65 73 11 46 34
35 42 0 24 10 46 46 21
58 31 24 0 7 50 26 97
79 35 6 9 0 62 24 33
47 28 63 88 51 0 23 46
34 91 51 69 2 24 0 41
69 46 61 7 66 71 23 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

Fig. 4 Pseudo-code for procedure Constructive()

1710 Int J Adv Manuf Technol (2015) 76:1705–1718

S2jk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 74 5 25 45 46 81 35
64 0 1 91 23 19 74 27
16 99 0 62 25 44 86 32
35 95 23 0 45 49 70 21
18 44 50 1 0 84 90 71
15 31 48 79 95 0 9 61
93 37 59 96 13 1 0 6
14 37 94 84 49 98 81 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

The processing times and setup times associated to the
dummy job are considered 0 (pi0 = 0, si0k = 0 and
sij0 = 0).

Following the pseudo-code in Fig. 4, a solution x =
{−; −} is initialized with empty sequences S1, S2 and O =
{0, 0}. Then, the average processing time is calculated for
each job

p̄ = [10, 77, 49.5, 95.5, 44, 51.5, 86.5, 55],
and the list of jobs L = [4, 7, 2, 8, 6, 3, 5, 1] sorted in
non-increasingly order by the p̄j values is formed (step 2).
The candidate list LC = [4, 7, 2] is created with size s =
3 for this example (step 3) and a job is randomly selected
from it. Suppose that job 2 has been selected (step 5). In
order to find its best insertion point (steps 6–10), how the Oi

of each machine is increased should be evaluated. There is
only one position for inserting this job in each machine with
the following increments: �1 = s102 + p12 + s120 − s100 =
0 + 79 + 0 − 0 = 79 and �2 = s202 + p22 + s220 − s200 =
0+75+0−0 = 75 respectively. Since min{O1 +�1, O2 +
�2} = min{0 + 79, 0 + 75} = 75 and i∗ = arg mini{Oi +
�i} = 2, the best insertion point is in S2. Inserting the job 2
in S2, the following partial solution x = {−; 2} is obtained
with O = {0, 95} (step 11). The updated candidate list is
LC = [4, 7, 8] (step 12) and while LC �= ∅, the process
is repeated from step 5.

Let us suppose that in the next iterations, jobs 4, 6, 3,
7 and 5 were chosen from the respective candidate lists
obtaining the following partial solution x = {4, 5, 3; 2, 6, 7}
with O = {230, 259}. At this moment, only two jobs
remain non-assigned, so both are in the candidate list,
LC = [8, 1]. Suppose that job 1 is chosen. There are
four possible insertion points in each machine. Calculating
�1 = min{s101 + p11 + s114 − s104, s141 + p11 + s115 −
s145, s151 + p11 + s113 − s153, s131 + p11 + s110 − s130} =
min{0 + 10 + 9 − 0, 58 + 10 + 10 − 7, 79 + 10 + 54 −
6, 35 + 10 + 0 − 0} = min{19, 71, 137, 45} = 19 and
�2 = min{s201 + p21 + s212 − s202, s221 + p21 + s216 −
s226, s261 + p21 + s217 − s267, s271 + p21 + s210 − s270} =
min{0 + 10 + 74 − 0, 64 + 10 + 46 − 19, 15 + 10 + 81 −
9, 93+10+0−0} = min{84, 101, 97, 103} = 84, obtaining

min{O1 +�1, O2 +�2} = min{230+19, 259+84} = 249
and i∗ = arg mini{Oi + �i} = 1.

The above calculations indicate that the best inser-
tion point is at the first position of S1, obtaining x =
{1, 4, 5, 3; 2, 6, 7} with O = {249, 259}. Repeating the
process for the last non-assigned job (job 8), x =
{1, 4, 5, 3, 8; 2, 6, 7} with O = {316, 259} is obtained.

3.2 Improvement procedure

The improvement procedure consists of two stages. In both
stages, intermachine and intramachine movements are used,
but they are applied in a different way in each stage.

In the first stage, local searches based on interma-
chine movements are firstly applied, and then, intrama-
chine movements based on Or-opt [18] are applied to each
machine. In the second stage, the composed movements are
defined. Each composed movement uses one intermachine
movement and then applies Or-opt to the involved machines
in order to improve each sequence.

In both stages, strategies borrowed from variable neigh-
bourhood descent (VND) metaheuristic [9] have been devel-
oped which rely on the following facts: (i) a local minimum
with respect to one neighbourhood structure is not neces-
sarily so with another and (ii) a global minimum is a local
minimum with respect to all possible neighbourhood struc-
tures. An initial solution is improved by exploring several
neighbourhood structures Ng(g = 1, . . . , gmax) starting
from N1. If an improvement using Ng is made, the algorithm
restarts exploration from N1, otherwise it moves to Ng+1.
When g exceeds gmax, the process is terminated. A generic
pseudo-code of VND is shown in Fig. 5.

3.2.1 Improvement procedure: Stage I

In order to explore job assignments to machines, two neigh-
bourhoods have been included, while to improve the job
sequence at each machine, one more neighbourhood has
been considered. The neighbourhoods defined to deal with
the assignment problem are the following:

Fig. 5 Pseudo-code for a generic VND

Int J Adv Manuf Technol (2015) 76:1705–1718 1711

– The insertion neighbourhood, where each job is
extracted from its currently assigned machine and is
inserted in all possible positions of all other machines.

– The interchange neighbourhood, where each job of each
machine is interchanged with each job assigned to any
other machine.

Both insertion neighbourhood and interchange neigh-
bourhood have been divided into smaller sub-neighbour-
hoods and a VND search has been devoted to each type
of movement. This is accomplished because insertion and
interchange neighbourhoods have a great number of solu-
tions and because the span of the machines has been
considered to guide the search.

Specifically, each neighbourhood has been divided into
smaller sub-neighbourhoods, where the first to be explored
is the one that involves the most busy machine. That is, let
L denote the list of index of the machines sorted in a non-
increasing way of their spans and let [i] and [l] represent
the machines that occupy position i and position l in L,
respectively. Then,

– Ni
ins(x) : Insertion sub-neighbourhood, where each job

is extracted from machine [i] and inserted in all possible
positions of all other machines.

– Ni
int(x) : Interchange sub-neighbourhood, where each

job of machine [i] is interchanged with each job
assigned to any other machine [l], i < l.

The VND procedure that uses sub-neighbourhoods
Ni

ins(x) will be referred to as ins-VND, while the other
that uses sub-neighbourhoods Ni

int(x) will be referred to as
int-VND.

Figure 6 shows a pseudo-code for the Improvement
procedure: Stage I.

First, ins-VND is applied (step 2). When no more
improvements are found using these sub-neighbourhoods,
int-VND is applied (step 3). When no more improve-
ments are found using these sub-neighbourhoods, a local
search procedure based on Or-opt moves is applied to each
machine trying to decrease the machine span (step 4). Steps
2 to 4 are repeated until two consecutive procedures fail to
improve their input solutions.

Fig. 6 Pseudo-code for procedure Improvement: Stage I (x)

Details about implementation of VND will be discussed
in Section 3.2.3.

3.2.2 Improvement procedure: Stage II

The general idea here is similar to the one sketched in Fig. 6,
but now, composite moves are used to define the neighbour-
hoods. The composite insertion (interchange) consists of a
simple insertion (interchange) movement plus the optimiza-
tion of the sequence in both involved machines.

In this case, for each VND, the neighbourhood is divided
in the following way:

– Ni
com ins(x): The composite insertion sub-neighbour-

hood where each job is extracted from machine [i]
and inserted at the end of any other machine [l]. Both
sequences S[i] and S[l] are optimized using Or-opt.

– Ni
com int(x): The composite interchange sub-neighbour-

hood where each job of machine [i] is interchanged
with each job assigned to any other machine [l], i < l,
and both sequences S[i] and S[l] are optimized using
Or-opt.

The VND procedure that uses sub-neighbourhoods
Ni

com ins(x) will be referred to as com ins-VND, while
the other that uses sub-neighbourhoods Ni

com int(x) will be
referred as com int-VND.

Figure 7 shows a pseudo-code for the Improvement
procedure: Stage II.

First, com ins-VND is applied (step 2). When no more
improvements are found, com int-VND is applied (step 3).
Steps 3 and 4 are repeated until one of these procedures fails
to improve its input solution.

3.2.3 Implementation details

A generic pseudo-code for our VND procedures is showed
in Fig. 8. In this pseudo-code, the word type refers to the
neighbourhood’s type that is used in each VND procedure.

Throughout the search, movements are accepted regard-
ing the criterion explained next.

Consider a movement involving machines i and l. Let
Oi , Ol , Omov

i and Omov
l denote the span of machine i and

machine l before and after the movement mov is executed.
The movement is accepted if the makespan, restricted to the

Fig. 7 Pseudo-code for procedure Improvement: Stage II (x)

1712 Int J Adv Manuf Technol (2015) 76:1705–1718

Fig. 8 Pseudo-code for procedure type-VND(x)

involved machines, is decreased, that is,

max{Omov
i , Omov

l } < max{Oi, Ol}. (15)

Among several tested criteria, this acceptance criterion
showed the best results in preliminary experiments. Note
that it implicitly ensures that an acceptable movement does
not worsen the makespan. Additionally, it may be eas-
ily generalized to movements involving more than two
machines.

Let us define the value of a movement mov as

value(mov) = max{Oi, Ol} − max{Omov
i , Omov

l },
or equivalently as

value(mov) = min{ max{Oi, Ol} − Omov
i ,

max{Oi, Ol} − Omov
l }.

A movement is considered acceptable if its value is pos-
itive. Moreover, mov2 is considered better than mov1 if
value(mov2) > value(mov1).

So as not to explore the whole neighbourhood and to
reduce the number of calculations, first, the expression
value(best mov) is set to 0.

For evaluating a neighbour, the following inequality is
verified

a = max{Oi, Ol} − Omov
i > value(best mov).

In case if it is not fulfilled, the neighbour is discarded with-
out more calculations, but if it is fulfilled, the following
second inequality is verified

b = max{Oi, Ol} − Omov
l > value(best mov).

If this second inequality is not satisfied, the neighbouring
is discarded. Otherwise, the value of best mov is updated
as value(best mov) = min{a, b} and a new neighbour is
evaluated.

To further reduce the calculations, the computation of
the span of machines i and l is performed through the

computation of the changes carried out by the movement
mov. That is,

Omov
i = Oi + δi

and

Omov
l = Ol + δl,

where δi , δl denote how much the span of machines i

and l would change if a movement was performed. Recall
that movements were defined related to the neighbourhoods
established in each stage.

In summary, the proposed multi-start algorithm can be
outlined through the pseudo-code presented in Fig. 9.

Example (continued) Following the pseudo-code in Fig. 9,
once the solution x = {1, 4, 5, 3, 8; 2, 6, 7} with O =
{316, 259} has been created using Constructive(), the pro-
cedure Improvement: Stage I(x) is applied to this solution.
Then, according to the pseudo-code of this procedure, the
local optimum using ins-VND(x) should be found (step 2 in
Fig. 6).

To do that, the pseudo-code shown in Fig. 8 is followed.
Since Lm = [1 2] (step 1), the insertion of each job of
machine 1 (the machine in first position of Lm) in each
position of machine 2 is analyzed (N1

ins(x)). Of all these
possible movements, the one with the best value consists
of the removal of the job 5 from machine 1 and insert it
after job 7 in machine 2. For this movement, δ1 = s143 −
s145 − s153 − p15 = 24 − 7 − 6 − 51 = −40 and δ2 =
s275 + s250 − s270 + p25 = 13 + 0 − 0 + 37 = 50, then
value(mov) = max{316, 259}−max{316−40, 259+50} =
316 − 309 = 7, which is positive and greater than the value

Fig. 9 Pseudo-code for the proposed multi-start algorithm

Int J Adv Manuf Technol (2015) 76:1705–1718 1713

of any other movement. Performing this movement (step 7),
the solution x = {1, 4, 3, 8; 2, 6, 7, 5} with O = {276, 309}
is obtained.

Now, Lm = [2 1], i = 1 (step 8) and N1
ins consists

of exploring the insertion of each job of machine 2 in each
position of machine 1, but no movement with positive value
was found. Then, i ← 2 (step 10) and N2

ins is explored.
Since in this neighbourhood any movement with positive
value does not exist, ins-VND stops.

Now, according to the pseudo-code of the procedure
Improvement: Stage I(x), the local optimum using int-
VND(x) should be found (step 3 in Fig. 6), starting from
solution x = {1, 4, 3, 8; 2, 6, 7, 5} with O = {276, 309}.

Following the pseudo-code shown in Fig. 8, Lm =
[2 1]. When exploring N1

int, i.e the interchange of each job
of machine 2 with each job of machine 1, the movement
with the best value is the one that interchanges the job 2
of machine 2 with job 3 of machine 1. For this movement,
δ1 = −s143−s138−p13+s142+s128+p12 = −24−21−71+
31+34+79 = 28 and δ2 = −s202−s226−p22+s203+s236+
p23 = −0−19−75+0+44+28 = −22, then value(mov) =
max{276, 309}−max{279+28, 309−22} = 309−307 = 2,
which is positive and greater than the value of any other
movement. Performing this movement (step 7), the solution
x = {1, 4, 2, 8; 3, 6, 7, 5} with O = {304, 278} is obtained.
The machine list Lm = [1 2] is updated, i ← 1 (step 8)
and the new neighbourhood N1

int is explored (step 5). Since
in this neighbourhood any movement with positive value
does not exist and when dealing with two machines there
is just one such neighbourhood, the procedure int-VND
stops.

Returning to the pseudo-code of the procedure Improve-
ment: Stage I(x), a local search procedure based on Or-opt
movements is applied to each machine (step 4 in Fig.6)
in order to decrease the span of each machine. The proce-
dures ins-VND(x), int-VND(x) and Or opt(Si) are repeated
until two consecutive procedures fail to improve the solution
(step 5 in Fig. 6).

Now, following the pseudo-code in Fig. 9, the pro-
cedure Improvement: Stage II(x) is applied to the solu-
tion x = {6, 7, 5, 4; 2, 8, 1, 3} with O = {300, 223},
which is the solution obtained by Improvement: Stage
I(x). Then, according to the pseudo-code of the proce-
dure Improvement: Stage II(x), the local optimum using
com ins-VND(x) should be found (step 2 in Fig. 7).

Since Lm = [1 2] (step 1 in Fig. 8), the neighbour-
hood N1

com ins is explored, that is, the insertion of each job
of machine 1 (the machine in first position of Lm) at the
end of machine 2 and the optimization of both sequences
using Or opt. The movement with the best value consists of
the shifting of job 5 from machine 1 to machine 2. For this
movement, δ1 = s174−s175−s154−p15 = 69−2−9−51 =
7 and δ2 = s235 + s250 − s230 +p25 = 25+0−0+37 = 62,

then value(mov) = max{300, 223} − max{300 + 7, 223 +
62} = 300 − 307 = −7, which is negative, but when
the Or opt is applied to both sequences, value(mov) =
max{300, 223} − max{300 + 7 − 42, 223 + 62 + 0} =
300 − max{265, 285} = 15, which is positive and greater
than the value of any other movement, obtaining the solu-
tion x = {4, 7, 6; 2, 8, 1, 3, 5} with O = {265, 285}. The
machine list Lm = [2 1] is updated and the procedure
com ins-VND(x) continues its execution.

When it is finished, com int-VND(x) is applied (step
3 Fig. 7). The procedures com ins-VND(x) and com int-
VND(x) are repeated until one of them fails to improve
the solution (step 4 in Fig. 7), finishing the procedure
Improvement: Stage II(x).

According to the pseudo-code of the multi-start algo-
rithm, the incumbent is updated (steps 6–8 in Fig. 9) and the
algorithm continues until the stop criterion is reached.

4 Computational results

In this section, firstly, the results obtained when com-
paring the proposed formulations and their variations are
shown. Secondly, the experiments carried out to eval-
uate the performance of the proposed algorithm are
described.

The experiments were conducted on a Pentium Dual
Core PC with a 2.00 GHz and 3 GB RAM processor under
Ubuntu 11.1.

4.1 Instances

Three instance sizes were used: small, medium and large.
Small and large instances were taken from [23] and are
available at http://soa.iti.es. Additionally, medium-sized
instances were generated for conducting the experiments in
this research.

For the set of small instances, the following combina-
tions of number of jobs (n) and number of machines (m)
were considered: n ∈ {6, 8, 10, 12}, m ∈ {2, 3, 4, 5}. For
the set of large instances, the following values were tested:
n ∈ {50, 100, 150, 200, 250}, m ∈ {10, 15, 20, 25, 30}.
Setup times were uniformly distributed in four ranges: 1–
9, 1–49, 1–99 and 1–124. Processing times were uniformly
distributed between 1 and 99. There are 10 replicates for
each possible combination of number of machines, number
of jobs and range of setup times, obtaining a total of 640
small instances and 1000 large instances.

The medium-sized instances were generated in a sim-
ilar way. The following combinations of number of
jobs and number of machines were considered: n ∈
{20, 30, 40, 50, 60} and m ∈ {2, 3, 4, 5}. The setup times
were uniformly distributed in three ranges: 1–49, 1–99 and

1714 Int J Adv Manuf Technol (2015) 76:1705–1718

1–124. The processing times were uniformly distributed
between 1 and 99. For each combination, ten replicates were
generated, obtaining a total of 600 medium-sized instances.
These instances were generated in order to evaluate the
scope of the proposed formulations and to assess the per-
formance of the metaheuristic algorithm in instances of
medium size. They are available for interested readers upon
request.

4.2 Comparing the formulations

All formulations were implemented using the concert tech-
nology of CPLEX 12.4. The solver was allowed to run for
1 h. If the solver was unable to reach the optimal solution
within this time, the best integer solution found is reported.

Instances were grouped by number of machines and
number of jobs. Therefore, results have been averaged
over all instances belonging to each group, that is, 40 for
small-sized groups and 30 for medium-sized groups.

Table 1 shows results comparing formulations using dif-
ferent linearizations for the makespan, that is, Model 1,
Model 2, Model 1a, Model 2a, Model 1b and Model 2b.
Columns 1 and 2 refer to the size of the instances. Entries in
columns 3 and 6 (#Uns) exhibit how many instances were
unsolved to optimality for each group; entries in columns 4

and 7 display the average percentage gap (%gap). For each
instance, this percentage gap has been computed as

%gap = 100 × best obj int-best low bound

best obj int
,

where best obj int is the objective value of the best feasi-
ble solution found and the best low bound is the best lower
bound found. Entries in columns 5 and 8 (time) show the
average elapsed CPU time (in seconds), for Model 1 and
Model 2 respectively. Since Model 1a, Model 2a, Model 1b
and Model 2b solved to optimality all instances, only the
average elapsed CPU times (in seconds) to reach optimal
solutions are reported for them in columns 9, 10, 11 and 12,
respectively.

Note that using the typical linearization for Cmax, Model
1 and Model 2 were not capable of solving most of the
instances with 12 jobs, showing a large CPU time and gap.
On the other hand, models that involve the proposed lin-
earization solved to optimality all instances consuming less
than 3 s. In particular, the one that exhibits the best perfor-
mance is Model 2b, which includes assignments variables
and uses both linearization for the makespan.

Table 2 shows the performance of Model 2b on medium-
sized instances. As before, columns 1 and 2 refer to the size
of the instances, entries in column 3 (#Uns) exhibit how

Table 1 Performance of proposed formulations for small instances

Number m Model 1 Model 2 Model 1a Model 2a Model 1b Model 2b

#Uns %gap Time #Uns %gap Time Time Time Time Time

6 2 0 0 0.52 0 0 0.41 0.10 0.07 0.06 0.05

3 0 0 0.28 0 0 0.32 0.21 0.16 0.10 0.08

4 0 0 0.29 0 0 0.30 0.21 0.21 0.11 0.09

5 0 0 0.31 0 0 0.28 0.19 0.23 0.09 0.08

8 2 0 0 13.47 0 0 10.45 0.24 0.12 0.16 0.10

3 0 0 5.87 0 0 5.38 0.38 0.26 0.30 0.17

4 0 0 1.71 0 0 2.05 0.51 0.39 0.29 0.18

5 0 0 1.14 0 0 1.23 0.45 0.44 0.18 0.17

10 2 7 4.25 1499.81 3 1.36 1124.72 0.46 0.23 0.37 0.22

3 0 0 167.00 0 0 133.34 0.77 0.39 0.48 0.38

4 0 0 26.89 0 0 31.94 1.00 0.62 0.63 0.44

5 0 0 7.8 0 0 11.1 0.87 0.81 0.46 0.36

12 2 38 49.45 3549.48 38 47.10 3532.12 0.84 0.35 1.09 0.36

3 29 18.29 3094.16 28 17.87 2990.70 1.37 0.57 1.00 0.52

4 3 1.83 796.61 4 1.12 799.23 2.68 1.01 2.61 0.87

5 0 0 91.45 0 0 112.00 2.18 1.22 1.76 0.71

Values in italics indicate the lowest CPU times

Int J Adv Manuf Technol (2015) 76:1705–1718 1715

Table 2 Performance of Model 2b for medium instances

Number m Model 2b

#Uns %gap Time

20 2 0 0 1.25

3 0 0 3.25

4 0 0 10.96

5 0 0 43.3

30 2 0 0 4.19

3 0 0 19.07

4 0 0 165.15

5 0 0 460.14

40 2 0 0 12.74

3 0 0 79.4

4 0 0 589.9

5 3 0.2 1730.5

50 2 0 0 44.11

3 0 0 332.87

4 4 0.17 1925.3

5 20 2.27 3187.95

60 2 0 0 111.7

3 1 0.02 1171.5

4 9 0.49 2765.61

5 28 3.58 3580.46

many instances were unsolved to optimality for each group,
while column 4 (%gap) shows the average percentage gap.
Column 5 (time) reports the average elapsed computational
time in seconds.

As can be observed, Model 2b is capable of solving to
optimality all the 20-job and 30-job instances, 97.5 % of the
40-job instances, 80 % of the 50-job instances and 68.33 %
of the 60-job instances.

As expected, the computational time grows as the size
of the instance increases. It is worthy to mention that
the unsolved instances consume the allowed computational
time (3600 s), which increases the average CPU time for the
group of instances.

4.3 Evaluating the performance of the solution method

In this subsection, the experiments carried out to evaluate
the performance of the proposed metaheuristic algorithm
are reported. In order to evaluate the contribution of each
stage of the improvement procedure on the quality of
obtained solutions, three versions of the algorithm will be
tested:

– MAI: only the first stage of the improvement procedure
is applied.

– MAII: only the second stage of the improvement proce-
dure is applied.

– MAIII: both stages of the improvement procedure are
applied.

For conducting this experiment the best known solu-
tions for medium and large instances will be used: the
optimal or the best known solutions for medium-size
instances obtained by Model2b and the best known solu-
tions reported in [23] for large instances. Results regarding
small instances are not reported because the three tested
versions of the algorithm obtained the optimal solutions
for all instances, consuming,in average, less than 1 ms per
instance.

The algorithm was implemented in C++ programming
language. The stopping criterion of the algorithm consists in
allowing a maximum CPU time. After preliminary calibra-
tion, it was set equal to 200×n ms. The stopping criterion
was determined in a similar way than [23] and the three ver-
sions were allowed to run for the same computational time
for a fair comparison.

Table 3 shows, for medium-sized instances, the compar-
ison between the three versions of the multi-start algorithm
with optimal or best found solutions obtained using Model
2b. As before, columns 1 and 2 refer to the size of instance.
Columns 3, 4, 5 and 6 report the average relative devia-
tion for Model 2b, MAI, MAII and MAIII, respectively,
from the best known solution. For each instance, the relative
deviation (%RD) is computed as %RD = 100 ∗ (Cmax −
C∗

max)/C∗
max, where Cmax is the makespan obtained with the

specific tested method and C∗
max is the makespan of the best

known solution.
From Table 3, it can be noticed that the two versions that

include the stage II (composite movements) obtain better
values. This indicates that it is more convenient to include
the stage II than to assign all the allowed computational time
to stage I. Moreover, as the instance size grows, the version
that includes both stages reaches better results. This can be
observed more clearly in Fig. 10.

Table 4 shows, for the large instances, the comparison
between the three versions of the multi-start algorithm with
the best known solutions so far obtained by the genetic algo-
rithm proposed by [23]. In columns 3 to 6, the average
relative deviations of GA, MAI, MAII and MAIII are dis-
played, where relative deviation (%RD) for each instance is
calculated as before. However, C∗

max is the makespan of the
new best known solution. The time limits for GA are shown
in column 7, while time limits for MAI, MAII and MAIII
are shown in column 8 (MAs) for each combination of m

and n.
It can be observed that MAIII performs better than GA

in 83.5 % of the instances and has the same behaviour in
6.2 %; only 10.3 % of the instances obtained worse results.

1716 Int J Adv Manuf Technol (2015) 76:1705–1718

Table 3 Relative deviation between Model 2b and three versions of
multi-star algorithm on medium instances

Number m Relative deviation

Model 2b MAI MAII MAIII

20 2 0 0 0 0

3 0 0 0.11 0.12

4 0 0.17 0.04 0.02

5 0 0.11 0 0

30 2 0 0.56 0.27 0.32

3 0 0.71 0.5 0.4

4 0 1.06 0.89 0.58

5 0 2.19 0.77 0.39

40 2 0 1.9 1.27 1.31

3 0 2.58 1.14 1.45

4 0 3.7 1.62 1.78

5 0 4.3 2.5 1.74

50 2 0 3.25 1.9 1.67

3 0 4.63 2.61 2.46

4 0 5.51 3.16 2.61

5 0 5.69 2.86 2.56

60 2 0 4.49 2.87 2.65

3 0 5.86 2.98 2.64

4 0 6.52 3.38 3.27

5 0.12 6.74 3.05 2.57

Values in italics in columns 4, 5 and 6 indicate the lowest average
relative deviations

Moreover, with these tested variants of our algorithm, 871
new best solutions were found for the 1000 large instances
generated by Vallada and Ruiz [23], which are available for
interested readers upon request.

 0

 1

 2

 3

 4

 5

 6

 7

20
-2

20
-3

20
-4

20
-5

30
-2

30
-3

30
-4

30
-5

40
-2

40
-3

40
-4

40
-5

50
-2

50
-3

50
-4

50
-5

60
-2

60
-3

60
-4

60
-5

R
el

at
iv

e
D

ev
ia

tio
n

Model2b
MAI
MAII

MAIII

Fig. 10 Relative deviation of Model 2b, MAI, MAII and MAIII versus
number of jobs and machines (n − m)

Table 4 Comparison between three versions of multi-start algorithm
and published results on large instances

Number m Relative deviation Time (s)

GA MAI MAII MAIII GA MAs

50 10 1.96 3.10 2.62 1.66 12.5 10

15 4.39 1.70 1.41 0.83 18.8 10

20 6.70 2.29 2.65 1.17 25.0 10

25 7.54 2.07 2.29 1.96 31.3 10

30 6.51 2.07 2.76 1.28 37.5 10

100 10 2.78 6.86 1.92 1.37 25.0 20

15 4.29 6.03 1.63 0.98 37.5 20

20 5.45 4.65 2.00 1.04 50.0 20

25 8.06 3.79 1.52 1.16 62.5 20

30 8.80 3.23 1.81 0.94 75.0 20

150 10 4.20 7.83 1.70 0.71 37.5 30

15 5.72 8.60 1.82 1.01 56.3 30

20 6.96 7.06 1.78 0.96 75.0 30

25 9.45 6.27 1.78 0.95 93.8 30

30 9.51 4.03 1.58 0.29 112.5 30

200 10 2.61 5.18 3.97 0.96 50.0 40

15 6.89 8.47 2.95 0.69 75.0 40

20 9.61 8.98 1.77 0.93 100.0 40

25 11.60 8.06 2.13 1.17 125.0 40

30 11.97 7.41 2.42 0.86 150.0 40

250 10 1.16 3.75 17.54 2.65 62.5 50

15 5.96 6.85 10.71 0.74 93.8 50

20 9.23 8.79 4.89 0.50 125.0 50

25 13.11 9.71 2.22 0.86 156.3 50

30 13.20 7.97 2.52 0.90 187.5 50

All 7.11 5.79 3.22 1.06 75.0 30

Values in italics in columns 3 and 6 indicate the lowest average relative
deviations

Given that the computer used by Vallada and Ruiz [23]
to implement GA and the one used in this experiment have
similar features, the average CPU time spent by GA and MA
to reach the solutions are shown in Table 4. From this, it
is clear that the computational time used by the variants of
the multi-start algorithm is always less than the CPU time
used by GA. The results obtained in this experiment indi-
cate (as for the medium-sized instances) the convenience of
including the stage II instead of assigning all the allowed
computational time to stage I.

Results in Table 4 and Fig. 11 show that MAIII (the ver-
sion including both stages in the improvement procedure)
reaches better results for larger instances. It can be observed

Int J Adv Manuf Technol (2015) 76:1705–1718 1717

0

2

4

6

8

10

12

14

16

18

50
-1
0

50
-1
5

50
-2
0

50
-2
5

50
-3
0

10
0-
10

10
0-
15

10
0-
20

10
0-
25

10
0-
30

15
0-
10

15
0-
15

15
0-
20

15
0-
25

15
0-
30

20
0-
10

20
0-
15

20
0-
20

20
0-
25

20
0-
30

25
0-
10

25
0-
15

25
0-
20

25
0-
25

25
0-
30

R
el

at
iv

e
D

ev
ia

tio
n

GA
MAI
MAII

MAIII

Fig. 11 Relative Deviation of GA, MAI, MAII and MAIII versus
number of jobs and machines (n − m)

that even though good results were obtained when using
only the stage II, they are still improved when this stage
starts from a good initial solution provided by the stage I.

To confirm the previous observations, some statistical
tests were performed, specifically the Friedman test for
paired samples and the Wilcoxon signed rank test.

The Friedman test has been applied to the relative devia-
tions obtained by each method for large instances (columns
3–6 in Table 4), and the resulting p value of 0.000 clearly
indicates that there are statistically significant differences
among the four methods tested.

The Wilcoxon test was applied to each pair of algorithms
with a significance level of α = 0.05. For this test, first, the
difference scores between the relative deviations of the two
selected algorithms are calculated and then hypothesis H0:
MD = 0 and H1: MD > 0 are stated, where MD denotes the
population median difference. The results, shown in Table 5,
confirm that MAIII outperforms GA, MAI and MAII with
p values of 0.000, MAII outperforms GA and MAI with p
values of 0.001 and MAI outperforms GA with a p value of
0.028.

Table 5 Results of the Wilcoxon signed rank test to each pair of
algorithms

Tested N for Wilcoxon p Estimated

algorithms Test Statistic values media

GA-MAIII 25 322 0 6.04

MAI-MAIII 25 325 0 4.695

MAII-MAIII 25 325 0 1.175

GA-MAII 25 283 0.001 4.52

MAI-MAII 25 280 0.001 3.18

GA-MAI 25 234 0.028 1.335

In summary, it can be concluded that there is statistical
evidence to affirm that MAIII is significantly better than
the other algorithms and the three versions of the proposed
algorithm outperform the best results from the literature.

5 Concluding remarks

Several formulations have been proposed in this paper for a
scheduling problem with sequence and machine–dependent
setup times. These formulations involve linearizing the
makespan as the maximum of the completion times of
the machines, which provides improved dual bounds and
speeds up the solution process when using a branch-and-
bound commercial solver. Particularly, the formulation that
includes arc variables and assignment variables as well
as the typical and the new proposed linearization of the
makespan reached the best results.

In order to solve larger instances, an efficient multistart
algorithm was designed and implemented, whose main fea-
ture lies in the improvement phase. Two stages were defined
for this procedure where the inter- and intramachine move-
ments, defined to explore the neighbourhood, were used in a
different way in each stage. The algorithm takes advantage
of the speed of the search in the first stage and uses compos-
ite movements in the second stage to intensify the search.
On the other hand, the proposed acceptance criterion allows
to define the value of a movement, guides the search in an
efficient way and reduces the CPU time required to explore
a neighbourhood. Computational results show the superior-
ity of the proposed algorithm over the best known results
from literature. A future interesting work may include to
investigate the use of both linearization of the makespan
in formulations that consider other performance measures
like the total completion time or the total tardiness. From
a methodological point of view, it is worthy to explore the
combination of the simple and composite movements in
other scheduling problems. The generalization of this study
in environments where the machines present unavailability
periods is also an interesting research avenue.

Acknowledgments This work has been partly supported by the
Research Chair in Industrial Engineering of Tecnológico de Monterrey
(ITESM Research Fund CAT128) and the Mexican National Council
of Science and Technology (grant CB 167019).

References

1. Allahverdi A (2000) Minimizing mean flowtime in a two-machine
flowshop with sequence-independent setup times. Comput Oper
Res 27(2):111–127

1718 Int J Adv Manuf Technol (2015) 76:1705–1718

2. Arnaout J, Rabadi G, Musa R (2010) A two-stage ant colony
optimization algorithm to minimize the makespan on unrelated
parallel machines with sequence-dependent setup times. J Intell
Manuf 21(6):693–701

3. Balin S (2012) Non-identical parallel machine scheduling with
fuzzy processing times using robust genetic algorithm and simu-
lation. Int J Innov Comput Inf Control 8(1 B):727–745

4. Chen JF (2009) Scheduling on unrelated parallel machines with
sequence-and machine-dependent setup times and due-date con-
straints. Int J Adv Manuf Technol 44(11–12):1204–1212

5. Cheng T, Ding Q, Lin B (2004) A concise survey of scheduling
with time-dependent processing times. Eur J Oper Res 152(1):1–
13

6. De P, Morton T (1980) Scheduling to minimize makespan on
unequal parallel processors. Decis Sci 11(4):586–602

7. Fleszar K, Charalambous C, Hindi K (2012) A variable neighbor-
hood descent heuristic for the problem of makespan minimisation
on unrelated parallel machines with setup times. J Intell Manuf
23(5):1949–1958

8. Garey R, Johnson D (1979) Computers and intractability: a guide
to the theory of NP-completeness. Series of Books in the Mathe-
matical Sciences. W. H. Freeman

9. Hansen P, Mladenović N, Pérez JAM (2010) Variable neigh-
bourhood search: methods and applications. Ann Oper Res
175(1):367–407

10. Helal M, Rabadi G, Al-Salem A (2006) A tabu search algorithm
to minimize the makespan for the unrelated parallel machines
scheduling problem with setup times. Int J Oper Res 3(3):182–192

11. Lee JH, Yu JM, Lee DH (2013) A tabu search algorithm for unre-
lated parallel machine scheduling with sequence-and machine-
dependent setups: minimizing total tardiness. Int J Adv Manuf
Technol:1–9

12. Lee Y, Pinedo M (1997) Scheduling jobs on parallel machines
with sequence-dependent setup times. Eur J Oper Res 100(3):464–
474

13. Lin SW, Lu CC, Ying KC (2011) Minimization of total tardi-
ness on unrelated parallel machines with sequence-and machine-
dependent setup times under due date constraints. Int J Adv Manuf
Technol 53(1–4):353–361

14. Lin YK (2013) Particle swarm optimization algorithm for unre-
lated parallel machine scheduling with release dates. Math Probl
Eng. doi:10.1155/2013/409486

15. Lin YK, Hsieh FY (2014) Unrelated parallel machine schedul-
ing with setup times and ready times. Int J Prod Res 52(4):1200–
1214

16. Martı́ R, Moreno-Vega JM, Duarte A (2010) Advanced
multi-start methods. In: Gendreau M, Potvin JY (eds)
Handbook of Metaheuristics, vol 146. Springer, pp 265–
281

17. Mokotoff E (2001) Parallel machine scheduling problems: a sur-
vey. Asia Pac J Oper Res 18(2):193–242

18. Or I (1976) Traveling salesman-type combinatorial problems and
their relation to the logistics of regional blood banking. PhD thesis.
Northwestern University, Evanston

19. Rabadi G, Moraga R, Al-Salem A (2006) Heuristics for the unre-
lated parallel machine scheduling problem with setup times. J
Intell Manuf 17(1):85–97

20. Rocha P, Ravetti M, Mateus G, Pardalos P (2008) Exact algo-
rithms for a scheduling problem with unrelated parallel machines
and sequence and machine-dependent setup times. Comput Oper
Res 35(4):1250–1264

21. Tian K, Jiang Y, Shen X, Mao W (2010) Makespan minimiza-
tion for job co-scheduling on chip multiprocessors. Tech. Rep.
WM-CS-2010-08, Department of Computer Science, College of
William & Mary

22. Tran T, Beck J (2012) Logic-based benders decomposition for
alternative resource scheduling with sequence dependent setups.
In: 20th European Conference on Artificial Intelligence, pp 774–
780

23. Vallada E, Ruiz R (2011) A genetic algorithm for the unrelated
parallel machine scheduling problem with sequence dependent
setup times. Eur J Oper Res 211:612–622

24. Yang-Kuei L, Chi-Wei L (2013) Dispatching rules for unrelated
parallel machine scheduling with release dates. Int J Adv Manuf
Technol 67(1–4):269–279

25. Ying K, Lee Z, Lin S (2012) Makespan minimization for schedul-
ing unrelated parallel machines with setup times. J Intell Manuf
23(5):1795–1803

http://dx.doi.org/10.1155/2013/409486

	Algorithm and re-formulations for the unrelated parallel machine scheduling problem with dependent setup times
	Abstract
	Introduction
	Problem formulation
	Multi-start algorithm
	Constructive procedure
	Improvement procedure
	Improvement procedure: Stage I
	Improvement procedure: Stage II
	Implementation details

	Computational results
	Instances
	Comparing the formulations
	Evaluating the performance of the solution method

	Concluding remarks
	Acknowledgments
	References

