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Abstract This paper deals with the extrusion of gear-like
profiles and uses of finite element method (FEM) and artificial
neural network (ANN) to predict the extrusion load. In the
study, gear-like components has been manufactured by for-
ward extrusion for the AA1070 aluminum alloy and the
process was simulated by using a DEFORM-3D software
package to establish a database in order to provide the data
for ANN modeling. Serious experiments were performed for
only one die set and four teeth gear profile to obtain data for
comparing with DEFORM-3D results. After verifying a high-
ly appropriate FEM simulation with the experiment at the
same conditions, Results were enhanced for different die
lengths, extrusion ratios, and two extra teeth number as three
and six using FEM simulations. Subsequently, the data from
the performed FEM simulations were submitted for the best
obtained ANNmodel. Finally, a good agreement between FE-
simulated and ANN-predicted results was obtained. The pro-
posed ANN model is found to be useful in predicting the
forming load of the different die set variations based on the
reliable test data.

Keywords Gear forming . Finite element method . Artificial
neural network . Extrusion . Aluminum

1 Introduction

Extrusion is a commonly usedmetal forming process in which
metal billet is forced into a die that is containing a desired

product shape. The direct extrusion of rods and solid shapes is
the simplest production method in use. Uniform material flow
in the cross-section area is highly important to obtain high
quality products in the extrusion process. Besides the type and
speed of extrusion, billet material properties at extrusion tem-
perature, frictional conditions, type-layout, and design of die
and extrusion ratio (ER) deeply influence the material flow.
The die set design is also another decisive factor for the
extrusion process. Optimum design would give the product
quality and less deformation load. In the past, researchers used
conical die because of the ease of the manufacturing. But for
the past two decades, CNC machines have provided to man-
ufacture complex die shapes and products like curved dies.
Many researchers have performed studies on linearly converg-
ing and cosine die profiles because of their advantages in
deformation load. Azad-Noorani et al. [1] studied on the
optimal die profile by using finite element method (FEM)
analysis and experimental results with the comparison of the
conical and curved die profiles. They obtained the FEM
results and experimental results are found quite familiar but
curved dies give 12 % less extrusion load for the same profile.
In common with Azad-Noorani, Bakhshi-Jooybari et al. [2]
obtained FEM, upper bound method, slab method, and exper-
imental results for conical and curved dies by using lead and
aluminum to obtain the optimum die profile. Maity [3] also
investigated the three-dimensional extrusion of square section
from square billet with a polynomial-shaped curved die using
the upper bound method and compared it with the experimen-
tal results. Chen and Ling [4, 5] proposed a velocity field for
axisymmetric extrusions through cosine, elliptic, and hyper-
bolic dies. Many of the studies have been performed to inves-
tigate the effect of the die profile on the deformation load and
the product quality. Reggiani et.al [6] used FEM method to
predict the charge weld in hollow sections and validated their
results with experiments. Fereshteh-Samiee et al. [7] opti-
mized geometries of the second-order polynomial and
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exponential die profiles in order to minimize the extrusion
load by means of experimental, numerical, and analytical
approach. Their study showed that the influence of the die
geometry was more apparent at lower extrusion ratios. Karami
and Abrinia [8] developed a new kinematically admissible
velocity field for the forward extrusion of a square section
from a round billet and compared the upper bound results with
FEM and experimental results. Onuh et al. [9] investigated the
effect of the punch velocity and for the different extrusion
ratios, extrusion load increases with the increase of the extru-
sion velocity, respectively. Qamar et al. [10] analyzed the
effect of the shape complexity on the dead metal zone and
metal flow through the flat-faced dies by experimental and
numerical methods using Ansys-LS-Dyna. Zhang et al. [11]
applied Taguchi’s design to optimize the aluminum extrusion
process of hollow sections based on experimental data and the
results of numerical simulations.

For the last two decades, there has been an increased
interest in the used metal forming methods like forging and
extrusion to manufacture gears which are conventionally
manufactured by metal cutting methods. Gears are the main
machine components that transfer the torque and power and
they need highmechanical properties and good surface quality
and for this reason, bulk forming methods are convenient for
gears to have longer service life and lower manufacturing cost.
Jung et al. [12] carried out two different experimental methods
to obtain the spur gear form. Song and Im [13] developed a
software for the extrusion of the solid and hollow gears. They
also proposed empirical equation to have the efficient die
design. Altinbalik and Ayer [14, 15] performed a series of
studies for the extrusion of clover sections which are used for
trochoidal gears of external gear pumps.

On the other hand, expert systems such as artificial neural
network (ANN), fuzzy logic, and genetic algorithms have
been used to predict the material behavior at various condi-
tions [16–19]. Some researchers developed a genetic algo-
rithm to optimize the identified model for optimal shape with
minimum force and strain. Among them, the ANNs are very
efficient models as an alternative to classical regression
models. Artificial neural networks (ANN) are a mathematical
system having an interconnected assembly of simple ele-
ments, which emulates the ability of biological neural net-
work. ANN models can represent a complex nonlinear rela-
tionship between the input and the output of any system.
Furthermore, they can solve a diversity of problems because
of their speed and capability of learning, robustness, predic-
tive capabilities, generalization properties and ease of working
with high dimensional data [20–23]. Regarding the applica-
tion of ANN modeling to metal forming, Li and Bridgwater
[24] studied to forecast the extrusion load. Hsiang et al. [25]
studied to investigate the influence of temperature on hot
extrusion of AZ61 magnesium alloy using artificial neural

networks. It is found that the ANN can accurately analyze
the tensile strength distribution for rectangular tube under
different parameters. Toros and Ozturk [16] used the ANN
modeling to identify the material flow curves of strain hard-
ened 5083-H111 and 5754-O Al–Mg alloys. Qin et al. [26]
performed ANN modeling to evaluate and predict the defor-
mation behavior of ZK60 magnesium alloy during hot com-
pression. Zhou et al. [27] used ANN model by taking extru-
sion ratio, ram speed, shape complexity, and ram displacement
as the input variables and the extrusion load and exit temper-
ature as the output parameters for a specific AZ31B magne-
sium extrusion alloy shape. Jawwad and Barghash [28] stud-
ied the effects of industrial extrusion process parameters and
their interactions on the resultingmaximum extrusion pressure
by using a newly devised ANN-based partial modeling tech-
nique. They found that their ANN-based model has shown
superior prediction capabilities compared to the linear model
with a marginal overall prediction error value of ±2.5 %.

Extrusion load is one of the most important parameters to
obtain the suitable die design. However, there are so many
parameters that affect the extrusion load. Herein, it should be
noticed that, to the authors’ best knowledge, a predictive ANN
model for gear profiles having different teeth number has not
been studied in the literature and is the subject of current
study. Therefore, the research presented in this study focused
to investigate the nonlinear effect of tooth number of gear,
extrusion ratio, die land length, and the die displacement on
the extrusion load. For this purpose, FEM result obtained from
DEFORM-3D software are validated by extrusion experi-
ments and then changes of the mentioned parameters were
successfully predicted by using artificial neural network
modeling.

2 Methodology

In the first stage of the study, gear-like profiles were formed by
forward extrusion, and experimental data was obtained for the
selected process parameters. Then, FEM simulations were
performed and their results were compared and validated with
experimental results. In the next stage of study, 27 FEM
simulations totally were applied for the parameters which
were selected with the different levels. Finally, the best devel-
oped ANN model was selected for prediction of the FEM
results. The flowchart of the study was given in Fig. 1.

2.1 Experimental study and die layout

AA1070 billet material was used in the experiment to obtain
the gear formed products because of having cold formability
properties. Stress–strain relationship of the material was ob-
tained from compression test and the equation was determined
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as follows:

σ ¼ 144ε0:162MPa ð1Þ
Gear-like profile of the dies was defined mathematically

and the inlet and exit geometries of the die were expressed as;

Rinlet θ; zð Þ ¼ 14 ð2Þ

Routlet θ; zð Þ ¼ 8:7þ 3:5cos 4θð Þ ð3Þ

In this study, transition profile of forward extrusion die was
selected as straight tapered which is given Eq. 4.:

Rtap θ; zð Þ ¼ Routlet þ Rinlet−Routletð Þ L−z
L

� �
ð4Þ

The die land length was determined to be L=15 for the
produced experimental die. Photographical view of the die
assembly with each part with experimental set-up and sche-
matic illustrations of profiles of dies for forward extrusion are
shown in Fig. 2.

Experimental billet specimens have been cut from the bar and
machined to 28-mm diameter and 45 mm in length. An extru-
sion container with internal diameter of 28.2 mm having 60-mm
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Fig. 1 The flow chart of this study

Fig. 2 Photographic view of die assembly and schematic view of the dies a experimental set-up of die assembly; b straight tapered-four teeth die
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outer diameter and a punch having 28.2-mm diameter were
machined. The die transition geometry chosen was straight-
tapered die. The extrusion ratio is given by R = (Ainlet/Aoutlet)
and it is obtained as R=2.39. The die was manufactured by W-
EDM machine because of their geometrical complexity and the
other die components weremachined at CNC.Container and the
punch were made from 1.2344 DIN hot worked tool steel
materials and hardened to 54 HRC.

Forward extrusion experiments were carried out on the
150-ton hydraulic press with constant ram speed of 5 mm/s.
The specimens were cleaned with acetone before deformation
in order to ensure the similar friction conditions. The load
values were obtained by transforming the pressure signal that
was received from the programmable logic controller (PLC)
system that is formed and the pressure transmitter that is
located on the hydraulic press by the PLC system. The move-
ment and the position of the press were determined in accor-
dance with the information taken from the digital linear ruler.
The PLC system computes the load-stroke values by combin-
ing the load values that are read with the signals which come
from the pressure valve that corresponds to the position infor-
mation that is coming from the digital linear ruler. In this way,
when the upper plate of the press reached the adjusted position
of 28-mm ram travel, the experiment was stopped bymeans of

the software. Data files of the extrusion load versus the stroke
were stored in the software.

2.2 Finite element modeling of the extrusion

DEFORM-3D was specialized as finite element-based soft-
ware for metal-forming simulations and it was used in this
study to simulate the extrusion trials by the dies having a
different number of gears, extrusion ratios, and die land
lengths (L) combinations. Calculation of the plastic deforma-
tion behavior of the workpiece can be simulated by DE-
FORM-3D. The die and the other extrusion tooling equip-
ments, like punch and container, were assigned to be rigid and
made from H13 tool steel. Temperature of the die components
and billet materials were defined as cold extrusion condition
due to the fact that the experiment was performed at room
temperature. Ram speed was also adjusted as 5 mm/s constant
value same as punch velocity and friction factor is determined
by compression tests as 0.4 to be compatible with the exper-
imental conditions.

In the present simulation, the complete models of the
experiments were modeled to obtain more intensive simula-
tion results. Three extrusion dies having different teeth num-
ber of gears (T), three different extrusion ratios (R) and three
die land lengths (L) were designed with CAD software while
the geometry and dimensions of the billet and stem were kept
unchanged. Thus, totally 27 simulations were performed
using all combination of T, R and L. Levels of the parameters
used in the simulations can be seen in Table 1.

In finite element simulations, it is important to balance the
calculation of the simulation time and the sensitivity of the
simulation. The more mesh density in an object provides more

Table 1 Levels of the parameters used in simulations

Input parameters Level 1 Level 2 Level 3

Teeth number (T) 3 4 6

Extrusion ratio (R) 2.07 2.39 3.08

Die bearing length (mm) (L) 10 15 20

Fig. 3 Neural network structure
with a flowchart of BP algorithm
for extrusion load prediction
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correct simulation results. However, it needs a longer simula-
tion time. The different mesh density distributions were used
to save the calculation time and data storage space for the
simulations performed in the present work. Finer meshes were
generated in the areas around the gears cavity of the dies,
while coarser meshes were generated in the other areas of the
workpieces that are close to the punch.

2.3 Application of ANN to FEM simulations of extrusion

2.3.1 View of the artificial neural network

An artificial neural network is a flexible mathematical struc-
ture which is capable of learning from past experiences and
then forecasting new results on the basis of the experiences.
ANN models are useful and efficient to predict the results of
processes related to the input parameters, particularly in prob-
lems for which the characteristics of the processes are difficult
to describe by using physical equations. Therefore, re-
searchers paid attention to investigate on ANN due to diffi-
culties in solutions for some of the complex engineering
systems in the past decade. An ANN structure has three main
layers: a set of input nodes, one or more layers of hidden
nodes, and a set of output nodes. A number of neurons in each
layer work as an independent processing element and densely
interconnected with each other. The methodology of ANNs is

based on learning the relationship between input and output
data sets. After training, the ANN using a special learning
function and learning rule, a data set which has not been
trained are used for the test and validation of networks. The
network is continuously worked and updated by a training
function till a desired error criterion is obtained [29, 22].

Different learning rules can be used for the self-
organization of the ANN structure. The most widely used
learning algorithm is the back propagation algorithm since it
works by sending inputs forward and then propagating errors
calculated using a certain error criteria backwards. In this
algorithm, the learning procedure is continued till the minimal
error is obtained.

2.3.2 Parameter setting for ANN (development of neural
network model structure)

The neural network was built to predict the results of the
extrusion load obtained from FEM simulation results and its
structure is given in Fig. 3. This study takes into consideration
for input parameters such as gear number, die bearing length
(L path), extrusion ratio, and ram travel (taken into account
with 28 mm). The aim of using the ram travel as an input
neuron is that the determining of the extrusion load at pre-
scribed ram travel path at various gear number, die bearing
length and extrusion ratio. The output layer consists of one
neuron representing extrusion load occurring at different die
design parameters.

A transfer function for the hidden layer is required to
acquaint the nonlinearity into the network. ATanhAxon trans-
fer function was used. The proposed ANN model for
predicting extrusion load of different die designs in FEM
simulations was employed as the feed-forward neural

Table 2 Comparison of the dif-
ferent NN modeling results Algorithm Function Neuron number R2 Average absolute error (%)

LM TanhAxon 12 0.998 1.96

Momentum TanhAxon 12 0.906 13.72

Momentum TanhAxon 20 0.908 13.81

Momentum TanhAxon 28 0.933 11.91

0

2

4

6

8

10

0.94

0.95

0.96

0.97

0.98

0.99

1

0 4 8 12 16 20 24 28

Er
ro

r %R2

Neron number

R2 Error %

Fig. 4 Performance of the network for different neuron numbers for LM
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networks which consist of multilayer perceptions trained
back-propagation algorithms.

The predicted results should be validated to assure that the
proposed model is robust and generalizable to different con-
ditions. When a robust prediction method is implemented, the
neural network can be capable of generalizing new data. For
this purpose, the available data set is split into two categories
named training and test subsets. For this study, 756 data
patterns were randomly divided into 604 training data patterns
(80 %) and 152 test data patterns (20 %). Then, measuring the
generalization of the network is performed by the testing
subset data. In this study, testing data sets were not used
during training of the network and therefore, they could form
a good indicator to test the accuracy of the developed network.

2.3.3 Selection of back-propagation algorithm
(Levenberg–Marquardt algorithm)

Two back-propagation algorithms, Levenberg–Marquardt
(LM) and momentum, are compared to select the best fitting
back propagation algorithm for the present study. In the se-
lection, coefficient of multiple determinations (R2) between
the ANN-predicted and FEM-simulated data set were com-
pared. In addition, the performance of the back-propagation
algorithms is evaluated with average absolute error (%)
values. It can be seen from Table 2 that the best back-
propagation algorithm for the present application, with aver-
age absolute error (%) for minimum value, and maximum R2,

is the Levenberg–Marquardt (LM) algorithm while transfer
function is TanhAxon.

2.3.4 Optimal neuron number

The ideal number of neurons in the hidden layer should be
found through trial and error. It is started with a trial process
by using four neurons in the hidden layer as an initial guess in
the optimization of the network. Then, the neuron numbers
were increased 4 by 4 till 28 neuron numbers to obtain the
coefficient of multiple determinations (R2). It can be seen from
Fig. 4 that the R2 values increased till 12 neuron numbers
while they slowly decrease over that neuron number. There-
fore, the optimal neuron number for the Levenberg–
Marquardt algorithm is decided to be 12 neurons. In addition,
the average absolute error (%) for minimum value also was
evaluated with 12 neuron numbers. Furthermore, some addi-
tion ANN models with Momentum algorithm and TanhAxon
function having 12, 20 and 28 neurons in hidden layers also
were used. These neuron numbers for LM algorithm showed
highest performance, they therefore were used also for Mo-
mentum algorithm. However, the results of both R2 and aver-
age absolute error (%) obtained with themwere not better than
(LM) algorithm, TanhAxon function and 12 neuron combina-
tion. This case can be seen very well by comparing Fig. 4 and
Table 2.

As a result, the optimal neural network structure for esti-
mation of extrusion load in this study is determined with the
Levenberg–Marquardt back-propagation algorithm, a
TanhAxon transfer function at the hidden layer with 12
neurons.

3 Results and discussion

3.1 Experimental verification of FEM simulation

An extrusion experiment was performed to validate the FEM
simulations with the die having four gears, extrusion ratio 2.39
and 15 mm die land length. The other conditions in the
experiment are explained in the experimental study (subhead
2.1) above. Ayer [30] performed several extrusion experi-
ments for different die set in his Ph.D. thesis. Average of

Fig. 6 Comparisons between the experimental and FE simulated extru-
sion load

Table 3 Maximum loads (kN)
calculated from FE simulations 3 Teeth 3 Teeth 3 Teeth 4 Teeth 4 Teeth 4 Teeth 6 Teeth 6 Teeth 6 Teeth

R2.07 196 221 238 210 236 257 231 255 279

R2.39 310 358 373 330 381 405 353 406 431

R3.08 519 553 578 542 576 615 573 605 651

L10 L15 L20 L10 L15 L20 L10 L15 L20
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extrusion load experimental results were used to compare with
DEFORM-3D results, in this study. Comparison of extrusion
loads versus the ram travel between experimentally measured
and theoretically calculated load values which were obtained
from DEFORM-3D simulations are shown in Fig. 5.

It can be seen from Fig. 5 that the experiment results agree
well with the FE-simulated results at the same conditions. The
average error between the FE-simulated load and experimen-
tally measured extrusion load throughout the ram stroke is
4.9 %. In Fig. 5, the maximum extrusion load is of the most
interest. The error between the FEM-simulated and experi-
mentally measured maximum extrusion load is as small as
3 %. In addition, coefficient of multiple determinations (R2)
between the FEM-simulated load and experimental extrusion
load was compared in Fig. 6, and it is clearly seen that there is
a good agreement between the simulation and experiment.

3.2 Effect of the selected parameters on the extrusion load

It can be seen that extrusion ratio is the main parameter which
affects the extrusion load most. The increasing extrusion ratio
leads to the increasing extrusion load which is expected;

however, in addition to this normal issue, an excessive in-
crease was observed when the ram travel arrived to a specific
point where maximum extrusion load occurs. Effect of line-
arly changing die land length is significant and dominant
compared to change of tooth number. For the evaluation of
these influences, tooth number, die land length, and extrusion
ratio is used for three-level combinations and 27 different die
combinations were obtained corresponding to these three-
level combination and then simulations were realized. The
maximum loads obtained from these die combinations by
FEM simulations can be seen at Table 3.

On the other hand, the ram travel distance of which the
maximum load occurs varies with die land length. The extru-
sion load was observed as maximum either in case of the
shorter ram travel distance for the shorter die land length or
the longer ram travel distance for the longer die land length.
Maximum extrusion load also occurs at shorter ram travel
distance for the higher extrusion ratios while die land length
is constant. The two mentioned situations are related with the
fulfilling of the die land length. It should be noticed in the
performed FEM simulations in this study that the billet and
container diameter were increased for obtaining the higher
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Fig. 8 FE schematical view of die set, simulated and experimental images of the product with gears having four teeth
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extrusion ratio while the die was constant. The change of
extrusion load according to the die land length, the extrusion
ratio, and tooth number is given in Fig. 7. In order to avoid the
inclusion of too many figures to this paper, only some curves
are shown in Fig. 7. It is clearly seen from the figure that the
extrusion ratio is more effective on extrusion load than the die
land length and the tooth number. When extrusion ratio is R=
2.07, container diameter is the same as die orifice but as the
extrusion ratio increased by the increased container diameter,
a 90 ° die entrance angle occurs and causes a dead metal zone
at the die entrance which leads to a high increase in the
extrusion load.

3.3 Comparison between FEM simulation and ANN

Finite-element method has been used for the last years and is
also one of the most popular numerical methods especially for
the complex geometries. In conventional ways of extrusion
investigations, metal flow and forming load are determined by
either using limit and slab analysis methods or trial–error
methods. FEM gives much more faster and accurate results
for complex geometries and gaining momentum in simulating
process. Extrusion process is naturally complicated and is
always related to complex product shapes so it is a wide range
application area of the FEM eventually. DEFORM-3D soft-
ware is a well-known FEM method, which is specialized on
the metal forming processes, one of the most used effective
tools for research and also in industrial applications, and gives
very similar results to real problems. Die layout, product
geometry and process parameters should be defined. Mesh
density and element type is also important for DEFORM-3D.
Simulations are carried out with respect to initial conditions
and mesh density. Each parameter change requires new sim-
ulation sequence but for an ANN system, it is vice versa and is
not necessary to set a new model with each parameter change.
This is one of the most important advantages of the ANN. It is
aimed to predict the output result after training data set by
using the ANN model. The actual performance of an ANN
model is understood with the stage of the testing data. Once an
ANN model predicts the results at testing stage, then each
input parameter’s level can be changed with new ones for
prediction of the output results. For this study, the number of
gear tooth has been selected as 3, 4, and 6, so FEM simula-
tions has been realized by these three level parameters (Figs. 8
and 9).

After performing FEM simulations, the obtained data were
submitted for ANN training and testing. Coefficient of multi-
ple determinations (R2) between the FEM-simulated extrusion
load and predicted extrusion load with ANN is shown in
Fig. 10. As it is seen from the figure, a high R2 value express-
ing a good agreement between FEM-simulated results and
ANN-predicted results has occurred; the fact that the FEM-
simulated and the ANN-predicted results are very close to
each other and can also be seen in Fig. 11. The differences,
called as error, between the desired and output results are
given in detail in Fig. 12. It can be seen that the left Y-axis
shows the error (kN) and the right Y-axis shows the error in
percentages. X-axis is for the number of the performed tests. It
is obvious that the differences between ANN and FEM results
as error (kN) in the left Y-axis are values in the range of
(−24.1)–(17.06), while error (%) results in the right Y-axis
are in the range of (−9.66)–(7.89) and it is very meaningful
to use the ANNmodel to estimate the extrusion load instead of
performing much more FEM results for a new level of the
parameters and to save the calculation times. In the graph, for
most points, it is clear that there is no proportion between error
(kN) and error (%) values. The reason of this observation is
the change of the estimated extrusion loads’ magnitude.
Therefore, it is much more realistic to take into account of

Fig. 9 FE simulated images for
gears having three and six teeth

Fig. 10 Comparisons between the FE-simulated and the ANN-predicted
extrusion load
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the error (%) values instead of the error (kN) to see the forecast
performance of the ANN model. In Fig. 13, it is shown in the
histogram that most error (kN) values are between ±7.5, while
error (%) values are just between ±3 %. It was calculated that
the average of the errors (%) and the errors (kN) are just
1.96 % and 4.87 kN, respectively.

4 Conclusion

Extrusion load is affected by a number of parameters and it is
necessary to define them to control the whole process and for
this aim, several empirical, numerical methods have been
developed for this purpose. In this study, an integrated ANN

Fig. 11 FE-simulated and ANN-
predicted extrusion load in the test
period

Fig. 12 Error (kN) and error (%)
of the ANN prediction
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and FEM methodology confirmed with the experiment was
developed which focused to investigate the nonlinear effect of
different die parameters on extrusion load. Complex interac-
tions were observed from the results. Gear-like components
have been manufactured by forward extrusion and simulated
successfully using a DEFORM-3D software package and
established a database in order to provide the data for ANN.
Gear tooth number, extrusion ratio, die land length, and ram
displacement were taken as the input data for ANN, while the
extrusion load was selected as the output data. Comparisons
demonstrated that a very good correlation between the FEM-
simulated and predicted extrusion loads from the developed
ANN model has been obtained. In the statistical model, R2

value between the ANN and FEM results was found to be
0.9981; so, this case indicates that the excellent capability of
the developed ANN model as a useful tool to predict the
extrusion load for different die combinations to produce
gear-like profiles is obvious. It is observed from the results
that extrusion ratio (ER) is the main parameter that affects the
extrusion load most comparing to the effect of teeth number
and die land length. As a conclusion, an ANNmodel has been
applied for gear profiles having different teeth number and it
has not been studied in the literature and good agreement was
obtained for extrusion load predictions of gear-like profiles.
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