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Abstract The multi-pass turning process is one of the most
used machining methods in manufacturing industry. The min-
imization of the unit production cost is considered the key
objective of this operation. In this work, the cutting parameters
are carried out using a recently developed advanced bio-
inspired optimization algorithm, called the cuckoo optimiza-
tion algorithm (COA). The obtained results are compared with
previously published results available in the literature. It has
been proven that the COA competes robustly with a wide
range of optimization algorithms.

Keywords Multi-pass turning operations . Cutting
parameters . Unit production cost . Cuckoo optimization
algorithm

Nomenclature
UC Unit production cost, excluding material cost

($/piece)
CM Cutting cost by actual time in cutting ($/piece)
CI Machine idle cost due to loading and unloading

operations and tool idle motion time ($/piece)
CR Tool replacement cost ($/piece)

CT Tool cost ($/piece)
Vr, Vs Cutting speeds in rough and finish machining,

respectively (m/min)
VrL, VrU Lower and upper bounds of cutting speed

in rough machining, respectively (m/min)
VsL, VsU Lower and upper bounds of cutting speed

in finish machining, respectively (m/min)
fr, fs Feed rates in rough and finish machining,

respectively (mm /rev)
frL, frU Lower and upper bounds of feed rate in rough

machining, respectively (mm/rev)
fsL, fsU Lower and upper bounds of feed rate in finish

machining, respectively (mm/rev)
dr, ds Depths of cut for each pass of rough and finish

machining, respectively (mm)
drL, drU Lower and upper bounds of depth of roughing

cut, respectively (mm)
dsL, dsU Lower and upper bounds of depth of finishing

cut, respectively (mm)
n Number of rough cuts (rough passes)
dt Total depth of metal to be removed (mm)
D, L Diameter and length of work piece,

respectively (mm)
k0 Direct labor cost, including overheads ($/min)
kt Cutting edge cost ($/edge)
tmr, tms, tm Rough machining time, finish machining time,

and actual machining time, respectively (min)
tc, te, ti Constant term of machine idling time, tool

exchange time, and total machine idle time,
respectively (min)

h1, h2 Constants pertaining to tool travel and
approach/depart time, respectively (min)

Tr, Ts Expected tool life for rough and finish
machining, respectively (min)

TP Tool life of weighted combination
of Tr and Ts (min)
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θ Weight for Tp
TL, TU Lower and upper bounds for tool life,

respectively (min)
α, β, γ, C Constants of the tool life equation
p, q, r, C0 p=1/α, q=β/α, r=γ/α, and C0=C

1/α

SR Maximum allowable surface roughness (mm)
SC Limit of stable cutting region
R Nose radius of the cutting tool (mm)
Fr, Fs Cutting forces during rough and finish

machining, respectively (kgf)
FU Maximum allowable cutting force (kgf)
k1, u, v Constants of the cutting force equation
Pr, Ps Cutting powers during rough and finish

machining, respectively (kW)
PU Maximum allowable cutting power (kW)
η Power efficiency
λ, υ Constants related to expression of the stable

cutting region
Qr, Qs Limit of stable cutting region constraint

chip-tool interface temperatures during
rough and finish machining, respectively (°C)

QU Maximum allowable chip-tool interface
temperature (°C)

k2, τ, ϕ, δ Constants related to the equation of chip-tool
interface temperature

k3, k4, k5 Constants for roughing and finishing
parameter relations

X {x1, x2, …, xNCOA} Set of cutting parameters,
i.e. design variables

1 Introduction

The process of metal removal using multi-pass turning oper-
ations involves two separated stages, the rough machining
stage and the finish machining stage. Several variables should
be considered to achieve products that meet the specifications.
These can be categorized as input variables, such as cutting
speed, feed rate, depth of cut, number of passes, work material
and its properties, tool material and tool geometry, and cutting
fluid properties and characteristics and output variables, such
as production cost, production time, tool life, dimensional
accuracy, surface roughness, cutting forces, cutting tempera-
ture, and power consumption [1–3].

The present work focuses on the well-known multi-pass
turning optimization problem which consists of selecting the
optimal cutting parameters, i.e., cutting speeds, feed rates,
depths of cut, and number of passes, for minimizing a pro-
duction cost-based objective function [3–9]. The first applica-
tion of a prevailing metaheuristic called the cuckoo optimiza-
tion algorithm (COA) to the optimization of turning opera-
tions in the literature is addressed for this purpose.

The reminder of the paper is organized as follows. A brief
overview of the literature on the multi-pass turning operations
is presented in the next section. Section 3 presents the optimi-
zation problem of unit production cost in multi-pass turning
operations. Section 4 describes the basic idea behind the
cuckoo optimization algorithm and presents pseudocode sum-
marizing its fundamental steps. Section 5 is devoted to the
results obtained by the implemented COA and the discussion.
Section 6 concludes this work.

2 Literature review

The overview of the literature shows that several researchers
from different backgrounds have investigated the optimization
of cutting parameters in turning operations. Generally, the
authors used traditional mathematical programming tech-
niques, probabilistic or heuristic/metaheuristic methods, and
hybrid approaches to optimize the machining conditions. It
should be noted that evolutionary algorithms were the most
powerful approach, and this constitutes their advantages: an
efficient way to produce acceptable solutions by trial-and-
error in reasonably practical time, diversified solutions, and
the possibility of handling the constraints.

After the pioneer works developed in [10–14], Shin and
Joo [4] proposed a comprehensivemathematical model solved
by a dynamic programming approach. Later, several re-
searchers have relied on the data of this model to improve
the results using different resolution methods.

Chen and Tsai [5] solved the optimization problem by
combining the simulated annealing algorithm and a Hook-
Jeeves pattern search technique (SA-PS), whereas Chen and
Su [15] solely used a simulated annealing. Gupta et al. [16]
proposed an approach based on linear programming.
Onwubolu and Kumalo [6] investigated the use of the genetic
algorithm (GA) to optimize the parameters of multi-pass
turning operations. However, M. Chen and K. Chen [17]
applied a float-encoding genetic algorithm (FEGA) and re-
vealed that Onwubolu and Kumalo [6] incorrectly manipulat-
ed the machining model presented by Chen and Tsai [5].
Similarly, the results found by Aryanfar and Solimanpur
[18] using GA exceed the bound of some constraints.

Vijayakumar et al. [19] proposed an approach based on ant
colony optimization (ACO). In the technical note [20], Wang
revealed that Vijayakumar et al. [19] did not provide the
optimal values they found for the depth of the rough cuts
and the finishing cut and the constraint related to the number
of passes.

A hybrid approach by combining genetic algorithm and
artificial immune system (GA-AIS) has been implemented by
Zheng and Ponnambalam [21] without considering the
bounds on the number of passes.
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In [22], a comparison of six non-traditional methods, the
genetic algorithm (GA), simulated annealing algorithm (SA),
Tabu search algorithm (TS), ant colony optimization (ACO),
memetic algorithm (MA), and particle swarm optimization
(PSO), has been performed to determine the optimal machin-
ing parameters for turning cylindrical stocks into various
continuous finished profiles and different data. It has been
shown that the results were outperformed by the PSO.

Yildiz implemented several optimization techniques for
solving the multi-pass turning operations problem, such as
differential evolution algorithm and receptor editing (DERE),
artificial bee algorithm (ABC), differential evolution algo-
rithm (DE) [23], hybrid artificial bee colony algorithm [8],
hybrid robust differential evolution algorithm (HRDE), artifi-
cial immune algorithm (AIA) [24], and hybrid robust
teaching-learning-based optimization algorithm (HRTLBO)
[25]. It should be noted that the minimum production cost
was provided without any information about the optimal
values of the machining parameters. Hence, the constraint
violations cannot be fully investigated from these works.

Venkata Rao and Kalyankar [3] applied the teaching-
learning-based optimization algorithm (TLBO). The authors
showed that the TLBO requires a lower number of iterations
for convergence to the optimal solution.

Belloufi et al. [26] used a firefly algorithm (FA) and a
hybrid genetic algorithm-sequential quadratic programming
(GA-SQP) [27]. The obtained numerical value of the cost was
better than that of other optimization techniques. However, the
constraints have been incorrectly handled.

In [7], Srinivas et al. used the particle swarm optimization
(PSO) with a carefully detailed comparison of the constraint
violations found in ACO [19], GA [6], and SA-PS [5]. Later,
Costa et al. [9] improved the results of Srinivas et al. [7] by
applying a hybrid particle swarm optimization technique
(HPSO) which combines the PSO and SA.

The next section presents the comprehensive mathematical
model for minimizing the unit production cost in multi-pass
turning operations.

3 Optimization model of multi-pass turning operations

In this paper, the detailed mathematical model presented in [3,
7–9] is adopted. The numerical data are reported in Table 1.

3.1 Objective function: Unit production cost

The aim considered here is to minimize the unit production
cost (UC) in multi-pass turning operations. The UC is divided
into four basic cost elements:

(1) Cutting cost by actual time, CM;

(2) Machine idle cost due to loading and unloading opera-
tions and idling tool motion, CI;

(3) Tool replacement cost, CR;
(4) Tool cost CT.

Thus, the objective function is defined as follows:

F Xð Þ ¼ Min UCð Þ ¼ Min CM þ CI þ CR þ CTð Þ ð1Þ

The expression of each cost element is given below.

3.1.1 Machining cost

The machining cost involves the multi-pass roughing and a
single-pass finishing, respectively:

CM ¼ k0
πDL

1; 000V r f r
nþ πDL

1; 000V s f s

� �

¼ k0
πDL

1; 000V r f r

dt−ds
dr

� �
þ πDL

1; 000V s f s

� �

¼ k0 tmr þ tmsð Þ

ð2Þ

Finally,

CM ¼ k0tm ð3Þ

where tm is the actual machining time.

3.1.2 Machine idling cost

The machine idling cost is defined by the sum of a constant
term related to the loading/unloading operations and a variable
term representing the idle tool motion:

CI ¼ k0 tc þ h1Lþ h2ð Þ nþ 1ð Þ½ �

¼ k0 tc þ h1Lþ h2ð Þ dt−ds
dr

þ 1

� �� � ð4Þ

Finally,

CI ¼ k0ti ð5Þ

where ti is total machine idle time.

3.1.3 Tool replacement cost

From Taylor’s tool-life equation, the life of a tool is given by:

T ¼ C1=α

V 1=α f β=αdγ=α
¼ C0

Vp f qdr
ð6Þ
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It has been considered that the same tool is used for the
entire machining operation process of both roughing and
finishing. Furthermore, the wear rate of tools differs between
the operations. Thus, the tool life can be expressed as:

T p ¼ θT r þ 1−θð ÞT s; θ∈ 0; 1½ � ð7Þ

where:

T r ¼ C0

Vp
r f

q
r d

r
r

; T r ¼ C0

Vp
s f

q
sd

r
s

ð8Þ

It should be noted that the majority of authors simplify Tp
(Eq. (7)) by ignoring the weight θ:

Tp ¼ T r þ T s ð9Þ

The tool replacement time depends on the tool life (Tp),
time required to exchange a tool (te), and machining time (tm):

CR ¼ te
Tp

πDL
1; 000V r f r

dt−ds
dr

� �
þ πDL

1; 000V s f s

� �

¼ te
tm
Tp

ð10Þ

The tool replacement cost CR is given by:

CR ¼ k0te
tm
Tp

ð11Þ

3.1.4 Tool cost

The tool cost CT is given by:

CT ¼ k t
tm
Tp

ð12Þ

3.2 Machining constraints

The unit production cost (UC) defined by Eq. (1) is
subject to several constraints during the roughing and
finishing operations. These constrains can be classified
as follows:

(1) Parameter bounds;
(2) Tool-life constraint;
(3) Operating constraints consisting of surface finish con-

straint (only for finish machining), cutting force con-
straint, and power constraint;

(4) Stable cutting region constraint;
(5) Chip-tool interface temperature constraint;
(6) Roughing and finishing parameter relations;
(7) Bounds on the number of rough passes.

3.2.1 Rough machining

(a) Parameter bounds:
The range of cutting speeds is:

V rL≤V r ≤V rU ð13Þ

Table 1 Machining model data
Parameter Value Parameter Value Parameter Value

D 500 mm L 300 mm dt 6 mm

VrU 500 m/min VrL 50 m/min frU 0.9 mm/rev

frL 0.1 mm/rev drU 3 mm drL 1 mm

VsU 500 m/min VsL 50 m/min fsU 0.9 mm/rev

fsL 0.1 mm/rev dsU 3 mm dsL 1 mm

p 5 q 1.75 r 0.75

u 0.75 v 0.95 η 0.85

λ 2 υ −1 τ 0.4

ϕ 0.2 δ 0.105 R 1.3 mm

C0 6×1011 h1 7×10−4 h2 0.3

TL 25 min tc 0.75 min/piece te 1.5 min/edge

PU 5 kW TU 45 min FU 200 kgf

SC 140 SRU 10 μm QU 1,000 °C

k0 $0.5 per minute k1 108 k2 132

k3 1 k4 2.5 k5 1

kt $2.5 per edge θ 0.8
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The feed rate is restricted as:

f rL≤ f r ≤ f rU ð14Þ

Bounds on the depth of cut are:

drL≤dr ≤drU ð15Þ

(b) Tool-life constraint:

TL≤T r ≤TU ð16Þ

(c) Operating constraints:

(i) Cutting force constraint:
The cutting force constraint is given in terms of

maximum force FU according to:

F r ¼ k1 f rð Þu drð Þv≤ FU ð17Þ

(ii) Power constraint:
The power required during the cutting operation

should not exceed the available power PU of the
machine tool:

Pr ¼ F rV r

6; 120η
¼ k1 f rð Þu drð ÞvV r

6; 120η
≤PU ð18Þ

(iii) Stable cutting region constraint:
The constraint on the stable cutting region in

turning is expressed as:

V rð Þλ f rð Þ drð Þν ≥SC ð19Þ

(iv) Chip-tool interface temperature constraint:
The temperature generated at the chip-tool inter-

face should not exceed the permissible limit:

Qr ¼ k2 V rð Þτ f rð Þϕ drð Þδ ≤QU ð20Þ

3.2.2 Finish machining

For all the constraints defined in Eqs. (13)–(20), the suffix r is
replaced by s for the finish machining constraints:

V sL≤V s≤V sU ð21Þ

f sL≤ f s≤ f sU ð22Þ

dsL≤ds≤dsU ð23Þ

TL≤T s≤TU ð24Þ

Fs≤ FU ð25Þ

Ps≤PU ð26Þ

Qs≤QU ð27Þ

V sð Þλ f sð Þ dsð Þν ≥SC ð28Þ

The surface finish constraint is given by:

f 2s
8R

≤ SRð ÞU ð29Þ

The cutting parameter relation constraints are:

V s≥k3V r ð30Þ

f r≥k4 f s ð31Þ

dr ≥k5ds ð32Þ

The number of rough passes (n ¼ dt−ds
dr

) should be an

integer and is restricted as follows:

dt−dsL
drL

≤
dt−ds
dr

≤
dt−dsU
drU

ð33Þ

4 Cuckoo optimization algorithm

The cuckoo optimization algorithm (COA) is a bio-inspired
and a population-based stochastic optimization technique re-
cently proposed by Ramin Rajabioun [28]. COA can deal with
several otherwise intractable problems, such as multivariable
controller design [28], replacement of obsolete components in
industrial plants [29, 30], job scheduling [31], statistical pro-
cess control [32], fractional-order hyperchaotic system [33],
analyzing the electrochemical machining process [34], uncon-
ventional machining processes [35], and determination of the
warranty period [36].

The COA uses the biological inspiration of the social
behavior of a bird species called cuckoos. The cuckoos have
the ability to lay eggs in the nest of another species and the
cuckoo chicks will be fed by the host birds. As some of the
eggs are dissimilar to the host bird’s eggs, they are detected
and destroyed by the host birds (Fig. 1).
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First, a given population of mature cuckoos starts to lay
eggs in their habitat:

Habitat ¼ x1; x2;…; xNCOA½ � ¼ V r; f r; dr;V s; f s; ds½ � ð34Þ

where x1; x2;…; xNCOAð Þ represent the design variables.
The value of the cost function is obtained by evaluating the

profit of a habitat:

Profit ¼ − f COA Habitatð Þ ¼ − f COA V r; f r; dr;V s; f s; dsð Þð35Þ

where the sign (−) is attributed to generate a cost minimi-
zation because the cuckoos try to maximize the number of
surviving cuckoo eggs. Therefore, a candidate habitat matrix
Npop × NCOA is randomly generated.

The eggs will be laid within a distance ELR (egg laying
radius):

ELR ¼ α� Number of currentcuckoos0 eggs
Totalnumberof eggs

� varhi−varlowð Þ ð36Þ

where α is an integer imposed to accommodate the value of
ELR, varhi and varlow are the upper limit and the lower limit
for variables, respectively.

When the eggs hatch, the cuckoo chicks will eat most of the
food of the host birds and the food is insufficient for all the
chicks. Thus, some chick cuckoos will starve. Once the
cuckoos mature and the reproduction period approaches, they
migrate toward best habitat. To recognize which cuckoo be-
longs to which group, the algorithm uses K-clusteringmethod.

Figure 2 shows an illustrative outline of the cuckoo’s
migration. Each cuckoo flies only λ% of all way toward goal
with a deviation φ (rad):

λ ∼ U 0; 1ð Þ
φ∼U −

π
6
;
π
6

� � ð37Þ

where λ is a random number uniformly distributed between 0
and 1.

After the migration step, a new egg-laying process restarts.
Thus, the cuckoo optimization algorithm is summarized as
follows [28]:

Step 1: Initialize the habitats with some random points on
the profit function;

Step 2: Dedicate some eggs to each cuckoo;
Step 3: Define ELR for each cuckoo;
Step 4: Let cuckoos lay eggs inside their corresponding ELR;
Step 5: Destroy those eggs that are recognized by host birds;
Step 6: Let eggs hatch and chicks grow;
Step 7: Evaluate the habitat of each newly grown cuckoo;
Step 8: Limit cuckoos’ maximum number in environment

and kill those who live in worst habitats;
Step 9: Cluster cuckoos, find best group and select goal

habitat;
Step 10: Let new cuckoo population migrate toward goal

habitat;
Step 11: If stop condition is satisfied, stop; otherwise, go to

Step 2.

Figure 3 shows the flowchart of the cuckoo optimization
algorithm (COA). The pseudocode of the proposed approach
is as follows:

%Parameters
Habitat size = N
Number of initial cuckoos = InitCuck
Maximum number of eggs for each initial cuckoo =
MaxEggs

n
1

2

N
3

4

5

Egg 

Nest      

Habitat       

1

2

N
3

4

5n

Destroyed egg 

Fig. 1 Egg laying of cuckoos

Group 1

Group 2

Group 3

GGooaall ppooiinntt

d

φ
λ×d

NNeeww hhaabbiittaatt

Fig. 2 Migration of the cuckoos toward goal habitat
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Minimum number of eggs for each initial cuckoo =
MinEggs
Maximum cuckoos may live at the same time =
MaxCuck
Maximum iterations = CuckIter
Begin
%Initialization
Generate some random points;
%Loop until the termination condition
For Iter = CuckIter Do
Dedicate some eggs to each cuckoo;
Calculate the ELR for each cuckoo according to Eq. (36);
Laying eggs inside the calculated ELR;
End

Destroy some eggs;
Let eggs hatch and chicks grow;
Evaluate the fitness function according to Eq. (1) and
implemented by Eq. (35);
Constraint handling with violation terms by considering
Eqs. (13)–(33);
Limit the number of cuckoos;

Table 2 COA property and value

COA property Value

Dimension of the problem to optimize (number of cutting
parameters)

6

Number of initial population of cuckoos 5

Minimum number of eggs for each initial cuckoo 2

Maximum number of eggs for each initial cuckoo 9

Maximum number of cuckoos that can live at the same time 50

Maximum iterations of the algorithm 70

Fig. 4 Convergence of unit production cost (case Tp=Tr+Ts)

Table 3 Results obtained by COA (case Tp=Tr+Ts)

Variable Range/Limit COA result

Cutting parameters Vr 50–500 123.1462 (m/min)

fr 0.1–0.9 0.5655 (mm/rev)

dr 1.0–3.0 3.0 (mm)

Vs 50–500 169.9876 (m/min)

fs 0.1–0.9 0.2262 (mm/rev)

ds 1.0–3.0 3.0 (mm)

Constraints for rough cut Tr 25–45 25.2028 (min)

Fr ≤200 199.9924 (kgf)

Pr ≤5 4.7344 (kW)

SC ≥140 2.8586e+003

Qr ≤1,000 906.4140 (°C)

Constraints for finish cut Ts 25–45 25 (min)

Fs ≤200 100.5908 (kgf)

Ps ≤5 3.2870 (kW)

SC ≥140 2.1787e+003

Qs ≤1,000 858.4936 (°C)

(SR)U 10 0.0053 (μm)

Constraint on variable
relations

≥k3 1.0 1.38

≥k4 2.5 2.5

≥k5 1.0 1.0

Unit production cost 1.959 ($/piece)

Start 

Initialize cuckoos 
with eggs

Lay eggs in 
different nests

Some eggs are 
detected and 

destroyed 

Population is 
less than 

maximum? 

Check survival of 
eggs in nests 

(get profit values) 

End

Kill cuckoos in 
worst area 

Let eggs hatch 
and grow

Find nests with 
best survival 

rate 

Determine cuckoo 
societies

Move all cuckoos 
toward best 
environment

Determine egg 
laying radius for 

each cuckoo

Stop condition 
satisfied? 

No 

Yes 

Yes 

No 

Fig. 3 Flowchart of COA [28]
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Apply K-means clustering, find best group, and select
goal habitat by considering Eq. (37);
Migrate toward goal habitat;
End For
Generate the optimal cutting parameters
Generate the minimum unit production cost

5 Results and discussion

The goal is to minimize the unit production cost (UC) in multi-
pass turning operations using the cuckoo optimization algo-
rithm. The problem is defined by the object function (Eq. (1))
and subject to the constraints (Eqs. (13)−(33)). Table 2 contains

Table 4 Comparison of different optimization methods (case Tp=Tr+Ts)

Method Cutting speed (m/min) Feed rate (mm/rev) Depth of cut (mm) UC ($/piece) Constraint violation

Vr Vs fr fs dr ds

COA (present study) 123.1462 169.9876 0.5655 0.2262 3 3 1.959 0

GA [6] 114.22 164.369 0.7 0.2978 2.9745 2.9863 1.8450 (16), (17), (18), (24) (31), (32)

PSO [7] 106.69 155.89 0.897 0.28 2 2 2.272 0

ACO [19] 103.05 162.02 0.9 0.24 – – 1.626 (33): not considered

HPSO [9] 123.3424 169.9783 0.5655 0.2262 3 3 1.959 0

SA–PS [5] – – – – – – 2.313 –

TLBO [3] 110 170 0.565 0.225 3 3 1.973 0

HRDE [24] – – – – – – 2.046 –

AIA [24] – – – – – – 2.12 –

DERE [23] – – – – – – 2.046 –

ABC [23] – – – – – – 2.118 –

DE [23] – – – – – – 2.136 –

HABC [8] – – – – – – 2.046 –

HRTLBO [25] – – – – – – 2.046 –

GA–SQP [27] 94.464 162.289 0.866 0.258 3 3 1.814 (16), (17)

FA [26] 98.4102 162.2882 0.820 0.2582 3 3 1.824 (17)

Fig. 5 Convergence of unit
production cost (case Tp=θTr+(1
−θ)Ts)
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the rules and parameters for the COA implemented to solve this
optimization problem. These values were chosen by trial-and-
error and based on experience. The algorithm has been run on
Intel Pentium Processor G620 (3Mo Cache, 2.60GHz, Sandy
Bridge) PC with 4 GB memory (Windows 7, 64 bits).

The optimization process of the COA is shown in Fig. 4,
whereas the results are reported in Table 3. The algorithm used
3,500 function evaluations and the execution time was 22.58 s
of CPU time.

From Table 3, it can be observed that the minimum unit
production cost value is 1.959 ($/piece). It should be noted
that the results were obtained at the 37th iteration of the COA.

From the comparison of the results given in Table 4, it is
seen that the minimum of the UC in multi-pass turning oper-
ations is achieved by the COA with feasible solutions com-

pared to the published works. The results which should be
considered as competitive from the literature are the particle
swarm optimization (PSO) of Srinivas et al. [7], teaching-
learning-based optimization algorithm (TLBO) of Venkata
Rao and Kalyankar [3], and hybrid particle swarm optimiza-
tion (HPSO) of Costa et al. [9]. It can be seen also that the
HPSO provided the same UC with COA (1.959 $/piece).
However, the COA has outperformed the HPSO since the
COA required 3,500 function evaluations and the conver-
gence iteration was 37, whereas the HPSO required 62,500
function evaluations and the convergence iteration was 202.

As mentioned in Section 3, some authors consider Tp=θTr+
(1−θ)Ts. The COA has been implemented to consider this case
using the same number of function evaluations fixed in Table 2,
where the execution time herewas 24.74 s ofCPU time. Figure 5
shows the optimization process of the COA, whereas the opti-
mal results are given in Table 5.

From Table 5, it can be observed that the minimum unit
production cost value is 2.239 ($/piece). The results were
obtained at the 24th iteration. Table 6 reveals that the COA
has outperformed the results obtained by the HPSO [9].

6 Conclusions and future research

In this paper, the prevailing cuckoo optimization algorithm
(COA) has been implemented for the optimization of cutting
parameters in the multi-pass turning operations. The goal was
to minimize the unit production cost (UC). Several authors
tried to solve this problem using other optimization techniques
without overlooking on the constraint violations. Further-
more, it has been observed that the optimal parameters were
not reported in many works; only the UC value was provided.

The results showed that the COA is highly competitive to
other published optimization techniques available in the liter-
ature. The COA required a lower number of function evalua-
tions, improved the convergence rate, and showed its ability to
handle different constraint forms.

For future work, another optimization technique may be
applied to perhaps provide better results. Another point to
explore is to propose a hybrid and/or multi-objective COA.

Table 5 Results obtained by COA (case Tp=θTr+(1−θ)Ts)

Variable Range/Limit COA result

Cutting parameters Vr 50–500 117.9322 (m/min)

fr 0.1–0.9 0.5655 (mm/rev)

dr 1.0–3.0 3.0 (mm)

Vs 50–500 123.1993 (m/min)

fs 0.1–0.9 0.2262 (mm/rev)

ds 1.0–3.0 3.0 (mm)

Constraints for rough cut Tr 25–45 25.031 (min)

Fr ≤200 199.992 (kgf)

Pr ≤5 4.533 (kW)

SC ≥140 2.6217e+003

Qr ≤1,000 890.863 (°C)

Constraints for finish cut Ts 25–45 25 (min)

Fs ≤200 100.590 (kgf)

Ps ≤5 2.382 (kW)

SC ≥140 1.1444e+003

Qs ≤1,000 754.768 (°C)

(SR)U 10 0.005 (μm)

Constraint on variable
relations

≥k3 1.0 1.044

≥k4 2.5 2.5

≥k5 1.0 1.0

Unit production cost 2.239 ($/piece)

Table 6 Comparison of different optimization methods (case Tp=θTr+(1−θ)Ts)

Method Cutting speed (m/min) Feed rate (mm/rev) Depth of cut (mm) UC ($/piece) Constraint violation

Vr Vs fr fs dr ds

COA (present study) 117.9322 123.1993 0.5655 0.2262 3 3 2.239 0

HPSO [9] 109.663 169.97 0.5655 0.226 3 3 2.035 (24)
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