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Abstract Tool condition monitoring (TCM) system serves as
the link between the cutting tool condition and the mainte-
nance decision. The recent prognostic system employs highly
complex models, which might need long calculation time.
This long calculation time is acceptable for machine health
prognostics, as machines’ maintenance interval is in the unit
of month. However, a cutting tool’s life varies between mi-
nutes to hours. The calculation time might be critical to
achieve a valid prognosis. In this paper, a novel prognostic
system is proposed for TCM prognostics. This system consists
of two parts: (1) online cutting force prediction part and (2)
tool wear estimation part. The first part predicts the future
cutting force segmentation by projecting the embedded his-
torical cutting force with function approximation methods.
Three function approximation methods are compared in the
aspect of prediction error and calculation time. It is found that
the Saucer’s local linear model could achieve the lowest
prediction error (4.71 %) and calculation time (2.717 s) com-
pared with global linear model and nonlinear model. The
second part estimates the tool wear by inputting the predicted
cutting force to a Bayesian-multilayer perceptron. It is found
that this system can trace the progress of tool wear accurately
(95 % successful rate has been achieved). Moreover, good
generalization for different cutting conditions is also achieved.
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1 Introduction

In a manufacturing system, the failure of cutting tool will
cause catastrophic destruction of the workpiece as well as a
large machine downtime. Therefore, the maintenance process
or the replacement decision, whose object is to make use of
the knowledge of failures and accidents to achieve the possi-
ble safety of the cutting tool with lowest possible cost, is of
significance to the manufacturing system.

Tool condition monitoring (TCM) system monitors the
cutting tool condition in the manufacturing system. This sys-
tem has been largely viewed as a link between tool condition
and maintenance decision. However, in recent studies on
TCM, little attention has been paid to contribute to the main-
tenance decision. The evidence is the vast number of diagno-
sis research that has been conducted to investigate the detailed
faults of cutting tool. However, in order to make an optimal
decision, the residual life of cutting tool and the probability of
failure are more useful than diagnosing the tool wear value.
Moreover, the diagnosis of the cutting tool failure is far too
late for proper maintenance decision. Therefore, prognosis
system, which could predict the future condition of cutting
tool, is more important in TCM application.

Several researchers have prognosticated machinery
health [1-3]. Lin and Makis [4] predict the probability
of failure by using recursive filters. However, the cal-
culation time is long and might not be applicable for
TCM applications. Wang et al. [5] and Yam et al. [6]
developed a system, which predicts the future condition
of the engineering system. However, no confidence in-
terval is studied in this study. Therefore, the result
might not help to make decisions for maintenance.

In TCM prognostics, the literature is very few. Baruah and
Chinnam [7] is the only group to study the prognostic problem
of drilling process until 2011. Hidden Markov model (HMM)
was applied in their study to build the prognostic system.
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However, this model is difficult to generalize cutting condi-
tions, which is not present in the training set [8].

Therefore, there are two challenges of prognostic probabil-
ity of failure for TCM applications. The first one is the
calculation time. Comparing machinery health monitoring
and TCM, the machine life is in the unit of month or year,
whereas the unit for a cutting tool is minutes or hours. There-
fore, the calculation time for the TCM application is critical.
The second is how to generalize the prediction results into
new cutting condition.

In this study, a prognostic system is proposed and investi-
gated. The system is constructed by adding an online force
prediction part to a traditional TCM diagnostic system. The
TCM diagnostic system is usually made up of signal process-
ing, feature extraction, feature selection, and tool wear esti-
mation. This process is illustrated in Fig. 1.

The prognosis purpose is achieved by online predicting the
force signal and passes this predicted signal through the rest of
the diagnostic system. This process is illustrated in Fig. 2.

In this paper, the cutting force is predicted instead of the
tool wear. This is because the calculation process of tool wear
might bring noise or error. The calculation process includes
feature extraction; feature selection and multilayer perceptron
(MLP) (see Fig. 2). These noise or error might increase the
chance of mis-prediction. There are two sub-parts in the force
prediction process: (a) reconstruct the time series by delay
coordinates embedding and (b) prediction by function approx-
imation methods.

In the first sub-part, delay coordinates embedding recon-
structs the time series (cutting force signal) into a high-
dimensional state space. The relationship between the delay
coordinates of a point and the points that appear some time
later in the state space can be used to infer the future value of
the time series. This idea was first studied by Packard et al. [9].
It is found that delay coordinate embedding technique is more
advanced than the conventional time series prediction tech-
nique in predicting the nonlinear time series. Therefore, it was
wildly sued in time series prediction [10].

The second sub-part aims at studying the relationship be-
tween the delay coordinates. In this study, three function
approximation approaches are investigated: (1) Sauer’s [11]
local linear regression approach, (2) global linear regression
approach, and (3) nonlinear approaches. The Sauer’s local
linear approach is suitable for predicting the low-
dimensional chaotic system. However, if the system has sto-
chastic property, local linear regression might lead to under
fitting. In this situation, the global linear regression might be

the best approach. However, if the relationship between
the coordinates in the state space is nonlinear, the non-
linear approach might perform better than those two
approaches. The nonlinear approaches usually need a
longer calculation time than the linear regression ap-
proaches, because the former usually have more un-
known parameters. These three approaches have their
advantages and disadvantages. Therefore, in this study,
they are compared in the aspect of calculation time and
average scale independent error (ASIE).

The tool wear estimation is achieved by Bayesian-
multilayer perceptron (B-MLP).

Therefore, the objectives of this study are the following:

* Reconstruct the cutting force signal into a higher dimen-
sional state space.

+ Investigate the proper embedding dimension.

» Investigate the three function approximation approaches
in the aspect of ASIE and calculation time.

» Establish the tool wear estimation part by B-MLP to get
the prognosticated tool wear and its confidence interval.

* Compare and analyze the tool wear estimated by true
cutting force and predicted cutting force.

It is found that the delay coordinate embedding with
Sauer’s local linear regression approach generate the
smallest calculation time (2.7 s), and a reasonable
predicting error (4.71 %). This indicates that delay
coordinate embedding with Sauer’s local linear model
is promising in cutting force prediction. It is also found
that the tool wear estimated by cutting force predicted
by this approach well matched the tool wear estimated
by true cutting force.

The paper is organized as follow: Section 2 intro-
duces the theory background of our approach to prog-
nosis, Section 3 describes the experiment verification
process, Section 4 discusses the results, and Section 5
is the conclusion.

2 Theory background
2.1 Delay coordinate embedding
The technique of delay coordinate embedding is to

reproduce the set of dynamical states of a system using
vectors derived from a time series measured from the

Fig. 1 TCM diagnostic system Sensor
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Fig. 2 The proposed prognostic
process is achieved by adding
online force prediction part to the
diagnostic system

system. Consider a time series {x(1),x(2),x(3),....x(N)}.
A delay coordinate vector is

b(t) = [x(2),x(t-7), ..., x(t=(m—1)7)] (1)

where te[l+(m—1)1,N], m is the embedding dimen-
sion, and 7 is the time delay. It is called delay coordi-
nate vector because its components consist of time-
delayed versions of the observable system. b(f) is a
vector in a D-dimensional state space R”. A trajectory
B in R” is defined as follows:

B=[p"(t) b (t+1)...b" (t + m) (2)

In order to extract the behaviors of the time series in an
efficient way, optimal values of m and 7 have to be deter-
mined. In this study, m and 7 are determined by false nearest
neighbors [12].

2.2 Prediction

The known time series is referred as training set. For
each reconstructed delay coordinate vector b in the
training set, the value of the series ¢ time units later is
defined as its observation X. Our aim is to find the
reconstructed vector b* corresponding to the end of

Prediction error%
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Online force prediction part

Signal
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Prediction of sensor signal in the
future time unit

v

Feature
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B-MLP

the series and use the knowledge of the training set to
estimate the unknown observation X*= P,(b*).

2.2.1 Local linear approach

Local linear approach is achieved by choosing a small
size of neighborhoods in the state space and using
linear regression to approximate the function between
the state space data and the corresponding observations.
This approach is first studied by Casdagli [13]. In his
study, it is found that local linear approach can give an
accurate short-term prediction for low-dimensional cha-
otic system. This local linear approach used in this
study is based on Sauer’s idea [11]. In his study, the
state space is constructed by passing original delay
coordinate vector into a low-pass filter. The state space
is defined as follows:

b= MIx(1), x(t-7), ..., x(t—(w—1)7)]" (3)

Where M is an mxw matrix of rank m, and M=
M3MM,. The three compositions are the following lin-
ear operations:

M;=FFT of order w;

Prediction error%
>

0 2‘0 f;’) 6.0 8‘0 1‘&) 120
Number of neighborhood

(B) Worn Machining Tool

Fig. 3 The prediction error for a fresh machining tool and b worn machining tool, when the neighborhood increases from 5 to 120
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Fig. 4 The architecture of the
multilayer perceptron. The delay
coordinate vector is the input to
this network. Their linear
combination builds the hidden
units. The observation X in ¢ time
unit later is the output

x(t-(m-1)7)

* M, sets to zero all but the lowest m/2 frequency contribu-
tions; and

*  Mj=inverse FFT of order m, using the remaining m/2
frequencies.

After the low-pass embedding, the nearest neighbor-
hoods are chosen. The distance between each delay
coordinate vector is defined as the Euclid distance.
Then, singular vector decomposition (SVD) is used to
concentrate the state space information. Finally, weight-
ed linear regression is applied to approximate the func-
tion between state space and the observation. However,
if the underlying dynamics is indeed stochastic or cha-
otic of high dimension, then local models will give less
accurate forecasts since the small neighborhoods give
them the flexibility to fit the noise in addition to the
signal. Figure 3 shows how the number of nearest
neighborhood affects the prediction error for both fresh
and worn cutting tool.

As shown in Fig. 3a, when the nearest neighborhood
increases from 5 to 120, the prediction error increases
from 5 to 10 % for fresh machining tool. However, as
shown in Fig. 3b, the prediction error is higher
(20.9 %) at small nearest neighborhood and lower
(10.9 %) at larger nearest neighborhood. This indicates
that the underline dynamic of the cutting force signal

Table 1 Selected features

Number Feature Notation
1 Average force Fa

2 Maximum force level fm

3 Total harmonic power thp

4 Total amplitude of cutting force fa

5 Amplitude ratio ra

6 Standard deviation std

7 Standard deviation of the force components in tool  fstd

breakage zone
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for worn cutting tool is chaotic of higher dimension
than the fresh cutting tool. Therefore, global linear
approach is proposed to compare with local linear
approach.

2.2.2 Global linear approach

Global linear approach is achieved also by using linear regres-
sion to approximate the function between state space and the
corresponding observations. However, different from local
linear approach, which uses small size of neighborhoods,
global linear approach uses a large size of neighborhoods.
This approach is suitable for modeling the linear and stochas-
tic system [13] but will cause over fitting for the low-
dimensional chaotic system. In this study, the global linear
approach is also based on Sauer’s idea, but the whole history
state space is used for approximating the function between the
state space and observations, instead of small size of
neighborhoods.

2.2.3 Nonlinear approaches

Nonlinear approaches are also known as artificial neural
network modeling. These approaches are wildly used in
prediction of machine health monitoring index [5,
14-16]. However, the structure of artificial neural net-
work is much more complex than the linear approaches
(local linear approach and global linear approach). This
indicates a longer calculation time, which is not expect-
ed in TCM applications. In this study, a multilayer
perceptron (MLP), which is one of the artificial neural
networks, is used to approximate the function between
state space and observations. The network architecture
is illustrated in Fig. 4.

As shown in Fig. 4, the input to this neural network
is the delay coordinate vector. The output is the obser-
vation X in ¢ time unit later. The network parameters
were estimated by known delay coordinate vector and
its corresponding observation X.
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Fig. 5 Experimental setup
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2.3 Bayesian-MLP for regression

The probability of failure could be extracted from the predict-
ed cutting tool value and its uncertainty. Therefore, a diagnos-
tic system, which estimates not only the tool wear value but
also its uncertainty, is of great importance.

Bayesian-MLP (B-MLP) offers a reasonable solution for
this diagnostic system. This model starts with a prior proba-
bility distribution before the data is observed. Once the data is
observed, Bayes’ theorem can be used to obtain the posterior
probability and update the beliefs on the network parameters.
In this process, Bayesian-MLP handles uncertainty in a natu-
ral manner.

The training of the neural network for regression can be
conducted as follow:

1. Create and initialize the network by assuming the
hyperparameters controlling the distribution of the net-

work parameters, including the weights and biases.

Table 2 Experimental components

Components

Makino CNC milling machine with Funuc controller
EGD 4450R cutter with AC325 inserts

ASSAB718HH workpiece (206 mmx43 mmx 106 mm)
Kistler 9265B Quartz 3-Component Dynamometer
Kistler 5019A Multi-channel Charge Amplifier

NI-DAQ PCI 1200 Board

Olympus microscope and Panasonic digital camera
Computer with Pentium |||600 MHz and 128 M SDRAM

2. Optimize the weights and biases through an optimization
algorithm.

3. Update the hyperparameters by presenting the observa-
tion data.

Seven features are selected, which is listed in Table 1, as the
input to the Bayesian-MLP [15]. The training set includes T3,
T4, T5, T8, T10, and T12, and the rest of the tests are used as
testing sets.

3 Experiment setup

Face milling tests are conducted as a case study. The
schematic diagram of the experimental setup is illustrat-
ed in Fig. 5, and its components are listed in Table 2.
The cutting force along the y direction of the machine
(transverse force) was captured by the Kistler dyna-
mometer in the form of charges and converted to volt-
ages by the Kistler charge amplifier. The voltage signal
was sampled by the PCI 1200 board at 2,000 Hz and
directly streamed to the hard disk of the computer.
Then, the signal went through a low-pass filter. The
remaining signal is 500 Hz. The flank wear of each
individual tooth was measured at an interval of five
tool passes by the Olympus microscope, and at each
time, an average was taken from all the teeth mounted
on the cutter. The tool state was observed by a digital
camera. Twelve experiments were conducted on the
CNC milling machine, with the cutting conditions listed
in Table 3.
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Table 3 Cutting experiments

Test no. Spindle speed (rpm) Feed rate (mm/min) Depth of cut (mm) Insert number
Tl 800 150 1 4
T2 1,000 100 1 2
T3 1,000 100 1 4
T4 1,000 200 1 2
T5 1,000 300 1 4
T6 1,200 150 1 2
T7 1,200 200 1 2
T8 1,200 300 1 4
T9 600 100 2 4
T10 600 200 2 4
T11 800 100 2 2
T12 1,000 100 1 4

4 Results and discussion
4.1 Force prediction
4.1.1 Embedding dimension and delay time

False nearest neighbors [12] is applied to select an
appropriate embedding dimension. If the embedding di-
mension is too small, some points might be considered
as the nearest neighbors. However, as the dimension
increases to a certain number, the false nearest neigh-
bors drop to zero. In that case, we have unfolded or
embedded the time series in a high-dimensional Euclid-
ian space (see Fig. 0).

20
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Fig. 6 The R1 and R2 embeddings of the x coordinate of the plane. The
points A and B are false neighbors while the points A and C are true
neighbors. Therefore, the false NN percentage for these three points in
one dimension is 33.3 %

@ Springer

The percentage of false nearest neighbors (NN) for
269,995 data points from the entire tests is shown in
Fig. 7. The smallest embedding dimension defined as
the false NN drops until 0.01 and 0.001 are summarized
in Table 4.

As shown in Table 4, the average embedding dimen-
sion for false NN percentage <0.1 is 17 and this value
increase to 27 if the false NN percentage <0.001. It is
suggested that projecting the cutting force time series
into the higher dimension will have a positive effect in
unfolding. Therefore, 27 is used as the embedding di-
mension in the following study.

4.1.2 Compare the three function approximation approaches

Three approaches, which are local linear approach, glob-
al linear approach, and nonlinear approach, are com-
pared in the aspect of calculation time, which is the
CPU time needed for predicting one revolution cutting
force signal, and prediction results’ ASIE, which is
defined as average scale independent error:

1 N
ASIE = NZ

i=1

yf)A’i
Dy

where N is the prediction length, y; is the true cutting
force, and y; is the predicted cutting force. Dg is
max(y1,)s...,vn). The prediction horizon is 1 min in this
comparison.

The ASIE and calculation time for both fresh tool
and worn tool of Sauer’s local linear approach, global
linear approach, and nonlinear (MLP) approach are
compared in Table 5. For fresh tool, as can be seen in
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Table 5, the Sauer’s local linear approach generates the
smallest ASIE and the least calculation time. This
indicates that the Sauer’s local linear model is the most
suitable approach for modeling the fresh cutting force
signal. It is found that the MLP needs the longest
calculation time (91.5 min). This indicates that this
approach cannot achieve the prognostic purpose, as
the prediction horizon is only 1 min. It is also found
that global linear approach generates the highest ASIE

Table 4 The smallest embedding dimension for the entire test and their
average

False NN percentage False NN percentage

<0.1 <0.001
Tl 17 20
T2 16 25
T3 16 50
T4 17 25
T5 13 25
T6 17 30
T7 24 40
T8 16 30
T9 17 20
T10 14 20
T11 24 20
T12 9 20
Average embedding 17 27
dimension

35 40 45 50 55 60

Embedding Dimension

65 70

(11.8 %). This ASIE is much higher than Sauer’s local
linear approach (4.71 %). This indicates that the cut-
ting force for fresh tool signal follow the low-
dimension and chaotic property, instead of stochastic
property.

For the worn tool, it is found in Table 5 that for all
three approaches, the ASIE are higher than the fresh
tool. However, MLP generate the smallest ASIE. This
indicates that the worn tool cutting force signal is
nonlinear stochastic. Although the Sauer’s local linear
model generate a little bit higher ASIE for the worn
cutting tool signal, this difference between three ap-
proaches is not significant. Therefore, for the tool wear
estimation part, delay coordinate embedding with
Sauer’s local linear model is used for cutting force
prediction. This predicted cutting force signal will un-
dergo the diagnostic system to achieve the prognostic

purpose.

Table 5 Compare the ASIE and calculation time for Sauer’s local linear
approach, global linear approach, and nonlinear (MLP) approach

ASIE (%)  Time/s
Fresh tool (0—-0.3 mm) Sauer’s local linear  4.71 2717
Global linear 11.80 3.2892
MLP 6.86 91.4945
Wom tool (0.3-0.5 mm)  Sauer’s local linear  13.64 2.7716
Global linear 11 3.3028
MLP 10.34 88.1626

@ Springer



520

Int J Adv Manuf Technol (2015) 76:513-521

06 T T T T T T T

04H

02}

Tool wear/ mm

S 10 15 20 25 30 35 40 45

o

10 15 20 25 30 35 45
Cutting time/ minutes

Cutting time/ minutes

o
w
T
1

o
N
T

o
-

Probability of failure

o

(&)

Fig. 8 Comparisons of true tool wear, predicted tool wear, and their
confidence interval for T7. w/ true tool wear, w2 tool wear estimated by
true cutting force, w3 tool wear predicted by delay coordinate embedding

4.2 Tool wear prognostics

The tool wear for T7 estimated by the predicted cutting
force and its 95 % confidence interval (w3), estimated
by true cutting force (w2), are compared with true tool
wear value in Fig. 8 (first subplot). The prediction
horizon is 60 s. The prognosis results catch the trend
of true tool wear well. The predicted probability of
failure is shown in Fig. 8 (second subplot). The proba-
bility of failure increased rapidly at the 39th minute,
which indicates high risk of tool failure. This result
could help in determining the optimal tool replacement
time to achieve highest profit rate.

If true tool wear falls between the 95 % confidence
interval of the predicted tool wear, the prediction is
considered as a success. The successful rates of all
testing sets are listed in Table 6. As shown in Table 6,
the smallest successful rate is 85 % (T7) and the
highest is 95 % (T6). This result suggests that the delay
coordinate embedding combine with B-MLP is capable

Table 6 Successful rate

for testing sets Succeed percentage

T1 94
T2 86
T6 95
T7 85
T9 95
T11 86

@ Springer

of generalizing the prognostic results into different cut-
ting conditions.

5 Conclusions

TCM serves as a link between the tool condition and the
replacement decision module. However, recent studies on
TCM system mainly focuses on diagnostic of the different
tool wear states and tool wear phenomenons, which are not
helpful in making an optimal decision. However, the prognos-
tic system in the literature tends to employ highly complex
structures, which might need huge calculation time. More-
over, the existing TCM prognostic system is not able to be
generalized into different cutting conditions. Therefore, a
novel prognostic system has been proposed in this paper to
solve these problems.

The proposed prognostic system consists of two major
parts: (1) cutting force prediction and (2) tool wear estimation.
In the first part, there are two sub-parts: (a) reconstruct the
time series by delay coordinates embedding and (b) prediction
by function approximation. In part (b), three function approx-
imation approaches were compared: Sauer’s local linear ap-
proach, global linear approach, and nonlinear approach. It is
found that the cutting force predicted by Sauer’s local linear
approach generate the smallest ASIE (4.71 %) and calculation
time (2.7 s). This result shows that the cutting force can be
considered generated by a low-dimensional chaotic system. In
the second part (tool wear estimation), it is found that the tool
wear estimated by predicted cutting force (delay coordinate
embedding with Sauer’s model) well matched the tool wear
estimated by true cutting force (more than 85 % successful
rate). In conclusion, this study shows a promising prognostic
system in TCM applications.
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