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Abstract Accuracy is greatly affected by nonlinear motion of
hexapods. This need is more obvious when these mechanisms
are used in machining environments where precision and
surface qualities are of critical importance. In this paper,
comprehensive algorithm for hexapod tool path programming
is developed. Using C#.Net, this algorithm is developed based
on circular motion and rotation of the table which has the
capability of checking nonlinear error and keeping it in a
controlled limit as well. Improved Tustin algorithm is used
for interpolating circular path. To evaluate the accuracy of the
developed algorithm on a freeform surface, a turbine blade is
scanned, and its CAD model is developed. Taking zigzag
strategies, movement on turbine blade surface is approximated
with smaller circles using the algorithm presented in this
paper. The output accuracy resulted from interpolation algo-
rithm for passing on turbine blade surface is studied in
SimMechanics of MATLAB software. Using Total Station
camera, motion path of two turbine blades with different
radius curves on the hexapod table is experimentally obtained.
Finally, it can be stated that the developed algorithm based on
circular interpolation has the capabilities of motion on
freeform curves.

Keywords Hexapod . Tool path programming . Improved
Tustin approach . Nonlinear error . Freeform surface

1 Introduction

The general demand on the machine tool design for high-
speed machining lies primarily in the high acceleration capa-
bility of the machine axes while, at the same time, meeting the
high demands on machining accuracy [1]. Currently, most of
the machine tools are designed on basis of using simple open
kinematic chain. Such multi-axis machines suffer from the
disadvantage that each axis must either move or carry all other
axes that are situated further along the kinematic chain. In
order to overcome this weakness, parallel mechanism has
found extensive application as the table or spindle of machine
tools [2–4]. The accuracy is among the primary requirements
for precision machining. This needs a thorough understanding
of the tool path programming [5–7]. The purpose of the
present study is to partially meet this need and fill the gap
existing in the literature in this respect.

Dasgupta and Mruthyunjaya [8] developed an algorithm
for singularity-free path planning of the Stewart platform
manipulator. The limitations of their algorithm were its lack
of confidence in detecting the nonexistence of a singularity-
free path and its sensitivity to intersections of singularity
hypersurfaces. Shaw and Chen [9] investigated an algorithm
for generating the cutting path of a Steward platform-based
milling machine. Iso-scallop method and genetic algorithm
are utilized respectively in the process of generating the cut-
ting path and finding the configurations of the tool without a
singular position in their research work. Merlet [10] investi-
gated trajectory verification for a classical Gough-Stewart
platform. In his study, the real-time method has been devel-
oped and errors have been controlled. Pugazhenthi et al. [11]
developed an optimal trajectory planning algorithm for the
hexapod machine tool during contour machining. They devel-
oped a code to maximize the stiffness of the structure and
minimize the force requirement of the actuator, and the con-
straints of workplace and singularity have been taken into
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account in their study. Peidong and Changlin [12] presented a
new approach of motion planning based on the planned tra-
jectory on a parallel kinematic machine. Their approach was
verified by simulation results, which were consistent with the
planned trajectory. Dash et al. [13] presented a numerical
technique for path planning within the workspace of parallel
manipulators. Isolated singularities have been eliminated
through local routing method based on Grassmann’s line
geometry in their study. Afroun et al. [14, 15] presented a
technique for generating optimal motion for a parallel delta
robot and Gough parallel robot. In their study, the sequential
programming quadratic method has been applied to find the
optimal position of the spline control points. Harib et al. [16]
developed an analytical model for trajectory planning of a
redundant hybrid machine tool structure consisting of a
Stewart platform and a two-degree-of-freedom rotary tilting
table. Having presented eight coordinates, they defined five
coordinates through conventional part programming and other
three coordinates via trajectory planning. Li [17] investigated
reconfiguration and tool path planning of hexapod machine
tools. In his study, appropriate trajectory planning is consid-
ered to reduce nonlinear error in the path. Jinsong [18] utilized
kinematic nonlinearity of parallel machine tools to investigate
their interpolation accuracy. Zheng [19] developed a path
control algorithm for a parallel machine tool and applied it
to the CNC system software. The developed algorithm has
been verified by machining experiments. Chalak Qazani et al.
[20, 21] introduced hexarot mechanism as a novel 6-DOF
parallel manipulator and investigated its nonlinear error using
image processing technique. The effective parameters on non-
linear motion error of hexarot have also been determined in
their study.

The purpose of this study is to add different kinds of
circular interpolation with rotation of the table to interpolator
unit of hexapod table, as to provide the table with capability of
moving on freeform with approximation to smaller circles.
Using mid-oscillating circle, nonlinear error of the motion of
table is obtained. If the error rate becomes greater than the
specified amount, the developed algorithm decreases the non-
linear error by decreasing the feed rate. In addition, this
algorithm makes use of machine table with 2.5 degrees of
freedom by controlling the rotation of table within its
workspace. The output of the algorithm for motion on two
different turbine blade surfaces with different radiuses is in-
vestigated by simulation in MATLAB software, and motion
errors are obtained. By path programming, motion error is
sensed and checked using Total Station camera.

2 Description of hexapod table

The mechanical prototype of a hexapod table developed for
FP4MCNCmillingmachines andmachining centers is shown

in Fig. 1. It consists of a moving platform accommodating the
workpiece to be machined, a stationary platform fixed to the
foundation and six pods, the upper ends of which are connect-
ed to the moving platform through six spherical joints and the
lower ends are connected to the stationary platform through
six universal joints.

3 Nonlinear error analysis of the hexapod table motion

In order to control error in an acceptable range, the value of
nonlinear error must be obtained. Here, in this research, mid-
oscillating circle is utilized to obtain the kinematic error.

Oscillating circle of a curve abuts the curve at a point. In
other words, it has the same tangent and curvature as the curve
has at that point. Just as the tangent line is the best line for
approximating a curve at a given point, the oscillating circle is
the best circle that approximates the curve at a point. The
radius of the osculating circle is simply the inverse of curva-
ture. This, however, is of critical importance both in nonlinear
motion of the table and its path programming.

Curvatures vary throughout the whole path, and the radi-
uses of the oscillating circles at start and end points of the path
are different. Therefore, the radius of the mid-oscillating circle
is taken into account in this research (Fig. 2).

The normal vector of the plane consisting mid-oscillating
circle, h, can be presented as follows:

h ¼ P � N ¼
i j k
Px Py Pz

Nx Ny Nz

2
4

3
5 ð1Þ

Fig. 1 The hexapod table
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where P is the vector connecting two interpolated points A
and B and N is the unit vector which is normal to the tangent
vector. N can be obtained as follows:

N ¼ a= a� vj j ð2Þ

in which v and a=at+an are respectively the linear velocity
and acceleration vectors of the moving platform between A
and B (see Fig. 2).

Since points A and B are in the plane with normal vector h,
the center of the circular path can be obtained by solving the
system of nonlinear equations as follows:

Px
0−Cx

� �2 þ Py
0−Cy

� �2 þ Pz
0−Cz

� �2 ¼ ρ2

Px″−Cx

� �2 þ Py″−Cy

� �2 þ Pz″−Cz

� �2 ¼ ρ2

hx Cx−Pxð Þ þ hy Cy−Py

� �þ hz Cz−Pzð Þ ¼ 0

8><
>:

ð3Þ

where P′=(Px
′ , Py

′ , Pz
′ ) and P″=(P

x
″, P

y
″, P

z
″) are respec-

tively position vectors of the points A and B, and C=(C
x
,

C
y
, C

z
) is the center of the mid-oscillating circle. ρ is the

radius of the mid-oscillating circle and can be obtained as
follows:

ρ ¼ ρA þ ρBð Þ=2 ð4Þ

ρA and ρB are respectively the radius of the oscillating
circle at points A and B and can be defined as follows:

ρA ¼ 1=κA ð5Þ

ρB ¼ 1=κB ð6Þ

where κA and κB are curvatures in points A and B, respec-
tively. Curvature in these two points can be determined by
kinematics of pods and platform [22].

Considering direct kinematic equations [22] and substitut-
ing Eq. (3) into Eqs. (5) and (6), kinematic error equation can
be written as follows:

e ¼ ρ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2− S=2ð Þ2

q
ð7Þ

In Eq. (7), S is the distance between two interpolated points
A and B (i.e., the proper path), and it can be obtained in terms
of operator-defined feed rate, F, and the time at which the
control system responds to the servo motors, Ts, which yields
the following:

S ¼ F T s ð8Þ

The maximum angular displacement between two interpo-
lated points in terms of maximum nonlinear error, β, can be
obtained as follows:

β ¼ tg−1 e=2Rð Þ ð9Þ

where R (mm) is the radius of the interpolated circle.
Linear velocity and acceleration of the jth pod in the ith

position, lj′i and lj′ ′i, can be obtained solving the inverse kine-
matic problem of the mechanism [23–26], which can be
expressed as follows:

l
0i
j ¼ li−1j −lij

� �
=Ts ð10Þ

l
0 0i
j ¼ l

0i−1
j −l 0ij

� �
=Ts ð11Þ

By having the length and linear velocities and accelerations
of the pods, acceleration of the center of the moving platform

Fig. 2 Real and suitable paths

Fig. 3 Boundary conditions of 0.05-mm Tustin error and 0.25-mm
nonlinear error
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can be calculated [22]. Substituting these data into Eqs. (2),
(5), and (6) gives the curvature and the radius of oscillating
circle. If kinematic error exceeds acceptable range, S has to be
mitigated. In this condition, changing feed rate is of key
importance in controlling the path length and kinematic error
and can be obtained using the following:

F ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρeall−eall2

p
=T s ð12Þ

where eall is the maximum allowed error. The developed
CNC code, in order to control error in acceptable range,
calculates the feed rate from Eq. (12) and replaces it with the
previous one and then begins other interpolation process
based on the new feed rate.

There are twomain error sources in circular interpolation of
hexapod table: One is nonlinear error which is considered to
be 0.25 mm at maximum, and other is Tustin error with 0.05-

mm maximum allowance. These allowances, however, are
assumed considering the accuracy of the utilizedmeasurement
system (i.e., image processing).

Considering improved Tustin algorithm, the maximum
angular displacement between two interpolated points, α,
can be obtained as follows:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16= R−1ð Þ

p
¼ 4=

ffiffiffi
R

p
ð13Þ

In Eq. (13), R is the radius of the interpolated circle, and it
is in basic length unit (BLU) terms.

Considering Ts=0.1 (s), Eq. (12) can be rewritten compact-
ly as follows:

F ¼ 4
ffiffiffi
R

p
=T s ð14Þ

In order to make use of rotational capability of machine
table and to provide a motion with 2.5 degrees of freedom,
table rotation must be considered while interpolation. For this
purpose, to obtain Euler angles by the normal vectors of
platform, the following relations are utilized:

A ¼ Sin−1 ny=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2y þ n2z

q� �

B ¼ Sin−1 nx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2z

q� �

C ¼ Sin−1 nx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y

q� � ð15Þ

In relation (15), A, B, and C angles present platform angle
with respect to X, Y, and Z axes, respectively.

Fig. 4 Clockwise circular motion algorithm of hexapod table

Fig. 5 a Turbine blade cloud of
points. b CAD model created
from cloud of points in CATIA
and zigzag strategy display

Fig. 6 Turbine blade with low curvature
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4 Circular interpolation algorithm

Tool path programming for machine tools’ hexapod table is
developed based on circular interpolation. The main purpose
of this research is to add different kinds of circular interpola-
tors to the hexapod interpolator unit, in a way that would able
to track the freeform path by dividing it to smaller circles and
also by using circular interpolation and lining up the normal
vector of the table to the radius of related circle. It should be
noted that, while interpolating turbine blade surface with
smaller circles, interpolator unit checks the nonlinear error
and keeps it in controllable range.

There are two standards for using G-code in circular
motion: One is using I and J parameters which define the
geometry center of the moving platform according to its
initial point, and the other method is utilizing circle
radius (CR) parameter which specifies the radius of the
circle [27].

In the second method, if CR is positive, the angular motion
of the circle will be lower than 180°, and vice versa. Figure 3
presents the developed algorithm for clockwise circular mo-
tion of the hexapod table.

The first step in Fig. 3 includes the following: start point of
circular motion which is determined by existed position of
tool, end point of circular motion which is determined by
defined parameters in the same command, and circle center
which is determined after primary calculations and indepen-
dent from determining method. Using these parameters, the
circle is determined and interpolation process is performed as
well.

The second step is to verify input data. Since the oper-
ator may make a mistake in setting the parameters associ-
ated with the circle, program is able to check the parame-
ters in this step. If the parameters associated with the circle
are not verified, a message will be sent to the operator to
check and modify the parameters. First, circle’s radius is
obtained for the start and end points of circular motion. By
comparing the two numbers, if their absolute difference is
greater than 0.05 mm, the error message will appear.
Consideration of 0.05-mm difference for these two num-
bers is due to the numerical solution which is carried out by
the algorithm.

The third step is associated with start and end angles of the
circle. To perform more speedy interpolation and also to
reduce the amount of computation, machine’s center point is
transferred to the circle center using a matrix. Considering

Fig. 7 Simulink model of hexapod table

Fig. 8 a Motion simulation of
hexapod. b Hexapod control
system in SimMechanics
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four areas of trigonometric circle, the start and end angles of
circle are calculated as follows:

θ ¼ tg−1 J=Ið Þ :
f 0≤θ < π=2⇒θ ¼ θ

ifπ=2≤θ < 3π=2⇒θ ¼ θþ π
if3π=2≤θ < 2π⇒θ ¼ θþ 2π

8<
: ð16Þ

The fourth step calculates β and α from Eqs. (9) and (13),
respectively. The fifth step in Fig. 4, θ=θs, indicates the
interpolation step of the algorithm. The details of this step,

moreover, are presented in Fig. 4. In this step, considering the
predefined acceleration, 50mm/s2 in this study, the accelerator
unit of the table correlates the velocity of the table to the
velocity defined by operator, and then, platform moves with
constant velocity, and finally, the accelerator unit of the table
acts to reduce the velocity of the moving platform. Nonlinear
error analysis is performed for all the steps of trapezoidal
velocity profile. Feed rate is changed by Eq. (11) to obtain a
proper S and control kinematic error. Since this circular move-
ment should be combined with the rotation of the table,
calculation of interpolation points is performed regarding the
circle center and after calculating next point of radius normal
vector at the same point, and three Euler angles are obtained
by relation (15).

5 Tool path programming for the motion of the table on a
freeform surface

To investigate accuracy of interpolating algorithm while table
motion on a freeform path, a CAD model with freeform
characteristic is needed. For this purpose, Turbine blade of a
gas turbine, length of 14 cm and width of 10 cm, is modeled
by Imager 5006 (ZF), and its CAD model is extracted by
importing ASCII file to CATIA (Fig. 5).

Due to the large curvature of the turbine blade mentioned in
Fig. 5, when the rotation of the table is taken into account,
using this model is not appropriate to verify the algorithm.

Fig. 9 Simulated motion curve of table for moving on turbine blade
surface in SimMechanics and the desired curve obtained from the CAD
model

Fig. 10 Primary arrangements
for experimental test
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This, however, is thanks to the fact that the rotation of plat-
form exceeds the workspace borders of the table in this
condition. Therefore, by magnification of turbine blade with
high curvature on X axis, the turbine blade with low curvature
is obtained (Fig. 6).

6 Simulation study

In order to simulate the motion on the mentioned freeform
surface in MATLAB, the CAD model of hexapod table is
developed in SolidWorks and imported into the
SimMechanics environment of MATLAB software. Figure 7
illustrates the Simulink model of hexapod table.

Figure 8 presents the simulated model for hexapod table in
SimMechanics environment of MATLAB with its control
block diagram. In len block, the position of the table is
determined using six parameters of positions and Euler angles
of the platform center, which is the input of the software. The
output of this block diagram is entered to next block diagram
which is related to the control unit of the hexapod table. The
output of control system which determines displacement of
the pod is entered to plant block. Within this block, there are
all different kinds of modeled joints for the table. This model
has two output blocks, namely, Simout and Scope. Passing
trajectory of the center of the platform is obtained using
Simout output, and then, the motion error is calculated by
comparing Simout output with that of turbine blade surface.

Six parameters related to the position and Euler angles of
the platform center in different points on freeform surface are
considered as the inputs of len block. By importing CAD
model of the turbine blade with high curvature as a freeform
surface to the program written in C#.Net, these points are
obtained by the aid of the algorithm developed in this paper.
Since the rotation of the table exceeds the borders of
workspace in this condition, the rotation of platform is
neglected in this part of the simulation, and the results of the
simulation are shown in Fig. 9. Blue curve of Fig. 9 is the

simulated motion curve of the platform center to move in
motion on the turbine blade surface, and the red curve corre-
sponds to the desired curve on the turbine blade which is
obtained from the CAD model. Since the motion of hexapod
table is considered completely ideal in simulation, average
error of the two paths is obtained less than 0.01 mm. This,
however, is because of the fact that the control system of
hexapod mechanism sends pulses at intervals of 0.1 s. Low
error rates obtained in this setting confirm that the algorithm is
correct.

7 Experimental test

For performing experimental measurement on interpolated
points, Total Station camera, model TS9, is used. After re-
ceiving coordinate of two points in the space, this camera
arranges its coordination, and then, automatically measures
its distance from the target by sending a laser beam to it.
Afterward, using its rotational axis in cylindrical coordinates,
the camera acquires the desired position and automatically
shows it in Cartesian coordinate system. When the machine
table is rotating, IOM-GX3-20 sensor is utilized to measure its

Fig. 11 Path of turbine blade surface with high curvature

Fig. 12 Table motion error on turbine blade with high curvature, exper-
imental test

Fig. 13 Path of turbine blade surface with low curvature
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angle. This sensor saves the table angle in an Excel file. The
experimental setup is shown in Fig. 10. After running the
Human Machine Interpolation (HMI) software in the hexapod
control system, TRAJECSIA, a pause command is used. In
this condition, hexapod table which is moving from one
interpolated point to another stops and waits for operator’s
command. When the machine is in stop mode, position of the
target is sensed by camera, and this is repeated for next move,
and consequently, moving path of platform is obtained in this
way. Figure 11 shows motion of platform center using obtain-
ed points from experimental test by Total Station camera and
for turbine blade with high curvature.

In order to check the accuracy of hexapod motion, position
of platform center obtained by experimental test in movement
on turbine blade surface is imported to CATIA software in
ASCII file. According to Fig. 12, the error obtained by CATIA
software for motion on turbine blade surface with high curva-
ture is equal to 0.324 mm. Clearance between the gears,
spherical and universal joint clearance, and errors resulted
from assembling are the causes of these errors.

For turbine blade with low curvature, it is possible to
expect that the rotation of the table satisfies workspace limi-
tations of hexapod table respecting angular displacement. In
this case, therefore, table rotation is taken into consideration.
Table motion for points obtained from experimental test for
turbine plate with low curvature is illustrated in Fig. 13.

Graphical check for error in CATIA software for navigating
of turbine blade surface with low curvature indicates that the
error is 0.274 mm which is shown in Fig. 14. When the table
rotates and moves at the same time, reduction of error rate for
0.05 mm shows the effect of spherical joints on mechanism’s
clearance. This, however, is because that the increase of table
rotation decreases the clearance and the motion error rate.

The difference between the results of the experimental test
and simulation results can be attributed to the clearance of
spherical joints. It should also be noted that the clearance
existing in actuators and servos could have contributions in
the overall difference of the results of both the methods.

8 Conclusions

In this paper, a comprehensive algorithm for tool path pro-
gramming of hexapod table is developed. Using C#.Net, this
algorithm is developed based on both circular motion and
rotation of the table. The algorithm, moreover, has the capa-
bility of checking nonlinear motion error and keeps it in a
controlled limit as well. This algorithm by using rotational
capability of the table makes it possible to move with a higher
degree of freedom. As a case study for motion of table on
freeform surfaces, two different turbine blades with high and
low curvatures, which respectively lead to the rotational and
nonrotational motion of the table, are investigated via both
simulation and experimental methods. Motion error resulted
from simulation is less than 0.01 mm which proves the accu-
racy of the developed algorithm. Motion errors resulted from
experimental tests for motion on freeform surfaces are 0.324
and 0.274 mm for turbine blade surfaces with high and low
curvatures, respectively. The differences between these results
indicate effects of clearance of universal joint on performed
experimental tests.
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