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Abstract In this paper, a maximum likelihood estimator
(MLE) is developed to estimate change point when monotonic
change occurs in the mean of response variables in multivar-
iate linear profiles in Phase II. Performance of the proposed
estimator is compared to the performance of step change and
linear drift estimators under different shift types. To conduct
comparisons, accuracy and precision of the estimators are
considered as performance measures. Simulation results show
that the average change point estimate of the proposed esti-
mator is less biased than the one for the step and drift estima-
tors in small shifts, because Zronoonic 1S closer to the actual
change point of 25 in small shifts. Also, the precision of the
proposed estimator is approximately better than that of the
step and drift estimators, because its precision values are
higher. Hence, the proposed estimator has better performance
in terms of both accuracy and precision in small shifts under
any kinds of increasing changes. In single step and linear drift
changes when the magnitude of shifts increases, the accuracy
and precision of their corresponding estimators become better
than the accuracy and precision of the proposed estimator.
However, the proposed estimator has an advantage that it does
not require assumptions about the change type, and its only
assumption is that the mean of the response variables changes
in an increasing manner. Additional evaluations on the effect
of smoothing constant show that with smaller values of the
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smoothing constant, the proposed change point estimator has
less biased estimates and smaller values of mean square error
in small shifts rather than the step and drift estimators, leading
to a better performance. Also, the larger values of smoothing
constant lead to the better performance of the monotonic
estimator in large shifts. Finally, the application of the pro-
posed estimator is shown through a real case in the calibration
process in the automotive industry.

Keywords Change point estimation - Monotonic change -
Maximum likelihood estimator - Multivariate linear profile -
Statistical process control

1 Introduction

In statistical process control (SPC), control charts are very
effective tools to detect changes in a process. When a control
chart signals, quality practitioners must search for assignable
causes. Knowing the time at which the process began to vary,
referred to as change point, can save the time to find and remove
the special causes. Several approaches have been proposed to
estimate change point related to an out-of-control signal. Page
[1] and Nishina [2] proposed built-in change point estimators of
cumulative sum (CUSUM) and exponentially weighted moving
average (EWMA) control charts, respectively. Maximum likeli-
hood estimator (MLE), clustering analysis, and artificial neural
networks are the other approaches used in the change point
estimation literature which are more capable than built-in esti-
mators in estimating change point. Pignatiello and Samuel [3]
compared the performance of the MLE approach with the
CUSUM and EWMA built-in estimators’ performance to esti-
mate time of a single step change in a normal process mean.
Comparison of MLE with CUSUM built-in estimator was car-
ried out following an out-of-control signal from a CUSUM
control chart. Results showed that in a small shift of §=0.5, the

@ Springer



1538

Int J Adv Manuf Technol (2014) 75:1537-1556

average change point estimate using CUSUM built-in estimator
is badly biased. But 7, is much closer to the actual change point
of 100 and it is less biased. When the magnitude of shift is 6=1,
both estimators are unbiased and the precision of the CUSUM
built-in estimator was better than that of MLE. However, for
other magnitudes of shifts, the MLE approach has better perfor-
mance in terms of both accuracy and precision of the estimates.
Comparison of MLE with EWMA built-in estimator was also
performed after receiving an out-of-control signal from a
EWMA control chart. Results showed that the EWMA built-in
estimator performs better than the MLE approach only in small
shift size of §=0.5, but for other shift sizes, the MLE has superior
accuracy and precision. Hence, it can be concluded that the
MLE is overally more capable than built-in estimators. Step
change is one of the potential change types in a process. For
example, step changes can arise from tool breakage. Hence,
some researches have been performed to estimate the step
change point. Samuel et al. [4] used the MLE approach to
estimate time of a step change in X control chart. Samuel et al.
[5] also considered estimating step change point in the variance
of a normal process using MLE. Noorossana et al. [6] also used
MLE to identify change time in high-yield processes. On the
other hand, linear drift changes can also occur in processes. For
example, tool wear leads to a linear trend in the process param-
eters. Therefore, the MLE approach has been developed to
estimate drift changes. Perry and Pignatiello [7] introduced a
maximum likelihood estimator to estimate linear trend distur-
bances in a normal process mean. Perry et al. [8] estimated drift
change point in a Poisson rate parameter using MLE. They also
compared the performance of the linear drift MLE to the one for
the step MLE when linear trend disturbance is imposed to the
process. Comparison results showed that to detect linear trend
disturbances, the step MLE is not as capable as the linear drift
MLE. In practice, sometimes the change type is not known a
priori. The step and linear drift MLEs are derived under step and
linear trend change assumptions. But monotonic MLE does not
require any assumption about the change type. Isotonic and
antitonic are two types of the monotonic change. The only
assumption of the isotonic change is that the process parameter
changes increasingly. Also, in antitonic changes, the only as-
sumption is that the process parameter changes in a decreasing
manner. Hence, in the monotonic MLE, assumption about the
change type can be released. Perry et al. [9] and Noorossana and
Shadman [10] used MLE to identify the time when isotonic
change occurs in a process fraction with nonconforming and
normal process mean, respectively. In this paper, estimating
monotonic change point is considered and the MLE approach
proposed by Perry et al. [9] is developed to estimate the isotonic
change point in the mean of multivariate linear profiles.

The MLE approach can be used in Phase II, and it also
requires knowing the underlying distribution. A clustering
approach was also introduced by Ghazanfari et al. [11] to
estimate a step change point which can be applicable to both
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Phases I and II; also it does not require any assumptions about
an underlying distribution. Alaeddini et al. [12] proposed an
approach based on hybrid fuzzy clustering to estimate change
point of a process mean with capability of applying in fixed
and variable sampling control charts and also normal and non-
normal distributions. Finally, Ahmadzadeh [13] and Atashgar
[14] proposed approaches for change point estimation in the
mean of multivariate processes based on artificial neural net-
work. Amiri and Allahyari [15] comprehensively reviewed
the change point estimation literature.

In some situations, the quality of a process or product is
defined as a regression relationship between a response vari-
able and one or more explanatory variables entitled profile.
This relationship can be characterized by a simple linear,
multiple linear, polynomial, or nonlinear regressions. Many
studies have been carried out on profile monitoring in both
Phases [ and II. Kang and Albin [16] proposed two approaches
for monitoring simple linear profiles in both Phases I and II
The first approach is using the 7° control chart, and the second
method is applying combined EWMA and R control charts for
the residuals. The 7° control chart, which is a Shewhart-type
control chart, can detect large shifts in the profile mean faster
than EWMA-R approach. But the EWMA-R approach detects
small to moderate mean shifts sooner. The R chart is also used
to monitor the regression variation. Among the other ap-
proaches of Phase I monitoring of simple linear profile, the
global F test and likelihood ratio test (LRT) control chart are
two important methods. Mahmoud and Woodall [17] recom-
mended the global F test which can test the similarity of the
regression lines of all samples. They also suggested not using
the EWMA-R approach in Phase 1. They stated that the
EWMA chart can detect small to moderate shifts quickly,
but the goal of Phase I is not quick detection of process shifts.
Also, in EWMA charts, several samples may cause an out-of-
control signal. Thus, identification and elimination of out-of-
control samples can be hard. Mahmoud et al. [18] used the
LRT-based control chart which is more capable than the global
F test in sustained shifts, because its probability of out-of-
control signal is greater than that of the global F test. Finally,
Yeh and Zerehsaz [19] recommended a control chart based on
change point to monitor a simple linear profile in Phase I when
only one observation in each sample is available.

Monitoring simple linear profile in Phase II has been also
considered by several authors. As mentioned above, Kang and
Albin [16] proposed 7> and EWMA-R control charts. Kim
et al. [20] suggested coding the x values to make estimated
intercept and slope of the regression line independent. Hence,
two separate control charts can be used to monitor the inter-
cept and slope. They also applied three EWMA control charts
for monitoring the intercept, slope, and variance of the regres-
sion line, separately. Gupta et al. [21] applied the coded method
and three Shewhart-type control charts instead of three EWMA
control charts to detect large shifts as soon as possible. Zou et al.
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[22] proposed a control chart based on change point to monitor
simple linear profiles in Phase II. Zou et al. [23] designed a self-
starting control chart for Phase II monitoring of simple linear
profiles when a sufficient number of samples to estimate Phase
II control limits is unavailable. Zhang et al. [24] incorporated
EWMA procedure to the construction of LRT which can detect
shifts in the intercept, slope, variance, and simultaneous shifts
by only one control chart. They also added the variable sam-
pling interval (VSI) scheme to their proposed control chart.
Mahmoud et al. [25] considered monitoring simple linear pro-
files in Phase II when only two observations are available for
each subgroup. They suggested an approach to estimate the
variance of the regression line with two observations. Li and
Wang [26] integrated a VSI procedure to EWMA control chart.
Using the VSI procedure improved the performance of the
control chart to detect shifts. Zhu and Lin [27] proposed a
Shewhart-type control chart to monitor the slope of linear
profiles in both Phases I and II. Hosseonifard et al. [28] devel-
oped three monitoring methods based on artificial neural net-
works to monitor simple linear profiles. Noorossana and
Ayoubi [29] have concentrated on monitoring simple linear
profiles in Phase I when the underlying distribution of the
observation is unknown. They proposed a nonparametric boot-
strap 7° control chart. They showed that when the control limits
are estimated using sufficient data, the bootstrap 7° control
chart performs well in detecting changes.

Some authors also focused on monitoring multiple linear and
polynomial profiles. Zou et al. [30] used a variance transforma-
tion and recommended using multivariate exponentially weight-
ed moving average control chart to monitor the mean and
variance of a general linear profile, simultaneously. They also
added the VSI feature to their proposed control chart to improve
its performance to detect all shifts. Mahmoud [31] proposed a
data reduction approach for multiple linear profiles monitoring in
Phase I in which, regardless of the number of explanatory
variables, the profile response is monitored using only three
parameters, an intercept, a slope, and a variance. The advantage
of their method is improving detection of changes in the profile
parameters in high-dimensional space. Kazemzadeh et al. [32]
developed three methods including LRT, global F test, and 7*
control chart to monitor polynomial profiles in Phase 1. Amiri
et al. [33] considered monitoring an autocorrelated polynomial
profile in an automotive industry.

There are also some applications of more than one profile
whose response variables are correlated, known as multivariate
profiles. In this manner, separate monitoring of each profile can
lead to misleading results. Hence, some approaches have been
proposed to monitor multivariate profiles. For example,
Noorossana et al. [34] considered Phase I monitoring of multi-
variate multiple linear profiles. They proposed four methods
including 7> control chart, the LRT approach, Wilk’s lambda
test, and principal component analysis (PCA). They presented
that in sustained shifts, the LRT method has superior

performance. Eyvazian et al. [35] considered monitoring mul-
tivariate multiple linear profiles in Phase II. They proposed four
methods including the multivariate exponentially weighted
moving average (MEWMA) method, MEWMA in low-
dimensional space, LRT approach, and combined MEWMA
and chi-square control charts. Zou et al. [36] also proposed a
lasso-based approach to monitor multivariate linear profiles.
Several authors have considered applications of change
point in profile monitoring. In Phase II, Zou et al. [22, 30]
used the likelihood ratio method to monitor and estimate the
time of a step shift in the mean of linear profiles. Eyvazian
et al. [35] developed the likelihood ratio method for multivar-
iate multiple linear profiles subject to a step change. In this
paper, we develop the MLE to identify the time of a mono-
tonic change in the mean of response variables of multivariate
linear profiles in Phase II. Underlying profile model and MLE
derivation are discussed in Section 2. The third section con-
tains the description of MEWMA and chi-square control
charts for monitoring multivariate linear profiles. In Section 4,
simulation results and the performance comparison of the
maximum likelihood estimators under single step, multiple
step, and linear drift shifts are evaluated. Section 5 discusses
about the effect of the smoothing coefficient on control chart’s
average run length (ARL) as well as the proposed estimator
performance. A numerical example is provided in Section 6.
Concluding remarks are presented in the final section.

2 Underlying model and MLE derivation

In this paper, the underlying model of multivariate multiple
linear profiles considered by Eyvazian et al. [35] is used. The
model is expressed as follows for sample j with fixed values of
independent variables x and n observations of (x;1,X;2, .. .,X;g,
YVitjYi2js - >Vipj):

Y;=XB;+E; (1)

For the jth sample, Y; is n*p matrix of response variables
in which p is the number of correlated profiles, B; is (g+1)xp
matrix of profile coefficients, and E; is nxp matrix of corre-
lated error terms containing n vectors of p-variate elements
which have normal distribution with the mean vector 0 and p x

oun o012 Ut Ol
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p varlance-covariance matrix of X = . . . :‘D
Onpl Op2 77 Opp

Also, X is nx(g+1) matrix of independent variables.

When p=1, the model of multivariate multiple linear pro-
files in Eq. (1) collapses to a multiple linear profile. Also when
both p=1 and g=1, the structure of Eq. (1) reduces to a simple
linear profile. Hence, multiple and simple linear profiles are
special cases of multivariate multiple linear profiles.
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To derive the proposed change point estimator, it is as-
sumed that there are no any changes in the covariance matrix
of observations. Mean of response variables is in-control
before an unknown time, 7; hence, (XB);=(XB) for j=1,2,

..,T. The focus of this paper is on Phase II, hence the matrix
of B is known; with the assumption of fixed x values, the
matrix of (XB) which is nxp matrix is known.

It is assumed that monotonic change occurs in the mean of
response variables such that (XB),.;>(XB), (XB);>(XB);-,
for j=7+2, 7+3,...,T, where (XB);, for j=7+1,7+2,7+3,...,
7, is obtained from the following equation:

(XB), = XB, = X [(XTX)_IXTYJ} 2)

Each element of design matrix of X can be either positive
or negative. If all elements of X are positive, monotonic
change in each elements of Bj can be concluded from the
monotonic change in each element of (XB);, or vice versa.

LalL(r. (XB), Y. )]

Otherwise, if at least one element of X is negative, a mono-
tonic change in each element of (XB); may result from an
increase in some elements and decrease in some other ele-
ments of B;.

T is the time of the last subgroup at which a control chart
shows an out-of-control (OC) signal. The likelihood function
is given by the following equation:

T n 1 1 E '
L(7, (XB);_ Y, X) = ~2(vixB) 2 (v xB)
(r (XB)r¥.X) = 1 11 -2 e
T n 1 1 N !
X H 7[?()’4”"'3/')2 (yi’7XiB’f) ’ (3)

I1 2
jortl =1 (2m)E|S

where x; and y;; are the ith rows of the X and Y; matrices,
respectively. Taking a natural logarithm of the likelihood
function leads to

Z Z (yu Xi ) Zil (Y,z‘f X; ) 5 Z Z |:yl] —X;B, }Zil [y;'j_xiB_i:|Tv (4)

jT+111

where U is constant. The following equation is always true
in vector and matrix equations:

n

3 v xB)Y v xB) =0

[(Y—XB)E“ (Y—XB)T} (5)
i=1

Ln[L(7,(XB);_.|Y,X)]

v-5 3 ol

o |

)= (Yf(XB))T} —21 >

where #{(Y-XB)L '(Y-XB)"] is the trace of the
matrix of (Y-XB)Y. '(Y-XB)". Hence, Eq. (4) can
be rewritten as follows:

T

o] (v oxm), ) S0 (v xm) ) | 9

J=7+1

The proposed change point estimator is expressed as
follows:

T

g {30 o)) 3 (8 () "’

j=1

Jj=t+1

In order to evaluate 7 , ()21\3) ~ must be found. For this
j

purpose, an initial estimate of each element of mean matrix is
required.

if [(XB) j] > (XB)

(xB), if [(xB)]

J < (XB)lu

iu
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The subscript iu stands for the element of ith row
and uth column of the matrix of interest. Now we can

Maximize {—% T r [(YJ_XB) Zil (Y,~XB) T} _% ZT

Br =1 j=r+1

subject to (}Zﬁ) > ()Zﬁ) for j=7+1,7+2,...,T
J1

J

estimate ()21\3) by solving the following convex
program:

To find (@) , we use fitting isotonic regression as

T-7

Perry et al. [9] to each element of the matrix of ()’(T;) o

()], =o(108),],) wri=r2e

nand u=1,2,....,p

Among the isotonic regression algorithms, the pool adja-
cent violators (PAV) algorithm described by Best and
Chakravarti [37] is used in this paper. PAV algorithm must

be applied for each element of )/(TSPT matrix, i.e., 7 X p times.

3 Monitoring method

In Phase II, Eyvazian et al. [35] proposed four methods to
monitor multivariate multiple linear profiles, one of which is
combined MEWMA and chi-square control charts. In this
paper, the proposed maximum likelihood estimator of the
change point is applied after getting an out-of-control signal
from combined MEWMA and chi-square control charts. For
the jth random sample, the MEWMA statistic is as follows:

T
zj=Ae, + (1 Nz, j=1.2,... (11)

where z, is a p x 1 vector of zeros. The average error vector
g = (51‘;'7 €9/, ...,Epj) has a p-variate normal distribution with
mean vector zero and known covariance matrix of Xz= n ' %

n L
in which g, = @, for u=1,2,..,p . Equation (12)
shows a covariance matrix of the MEWMA statistic.

A A
Zz: ﬁZE (2N Z (12)

Finally, the following statistic is used for MEWMA control
chart:

=2y 'z, j=12,... (13)

The upper control limit (UCL) of MEWMA control chart
must be chosen to achieve the specified in-control (IC) ARL.
Chi-square statistic is also expressed as follows:

n

DI CHI (14)

i=1

ij has a chi-square distribution with np degrees of free-
dom. Hence with a given o, UCL of the chi-square control
chart is X%lp,a-

4 Performance evaluation of the proposed estimator

In this section, Monte Carlo simulation with 5,000 replica-
tions is used to evaluate the performance of the proposed
estimator. We also compare the performance of the proposed
estimator to the step and linear drift change point estimators
suggested by Kazemzadeh et al. [38] (see Appendixes 1 and 2)
with the only difference that, in this paper, shifts occur in the
mean matrix of response variables, i.e., XB, instead of the
parameter matrix of B. Hence, the elements of B matrix do not
have any restrictions of changing monotonically. If all ele-
ments of X are positive and monotonic changes take place in
XB elements, the elements of B also change monotonically
and vice versa. In simulation and case study sections of this
paper, the elements of design matrix X are positive, so we
consider three types of increasing changes, i.e., single step
change, multiple step changes, and linear drift disturbance for
the elements of B leading to increasing changes of XB ele-
ments. But if matrix of X has at least a negative element,
increasing changes in the elements of B may cause a decrease
in some elements of XB, which is not the case in this paper.
Comparisons are carried out after getting an out-of-control
alarm from combined MEWMA (with A=0.2) and chi-square
control charts and when process mean, XB, is subject to a
monotonic change. To conduct our simulation study, we deal
with false alarms as mentioned by Perry et al. [8] and
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Pignatiello and Samuel [5]. The MEWMA control chart in-
corporates previous data; hence, several observations may be
combined together to produce a false alarm. So, all samples
prior to false alarms are eliminated and the first sample after a
false alarm is considered as the first sample. Subsequently, the
out-of-control samples under different shift types in XB ele-
ments will be generated until the combined MEWMA and chi-
square method signals an out-of-control condition. At this
point, change point estimators are applied to estimate a time
of change. For simulation studies, we consider the overall in-
control ARL of200. Hence, the UCL of the MEWMA control
chart must be chosen to achieve the specified in-control ARL
0f 400. In this paper, upper control limit of MEWMA control
chart is obtained using 50,000 simulation runs. We also con-
sider «=0.0025 leading to in-control ARL of 400 for the chi-
square control chart.

The accuracies and precisions of the proposed estimator are
reported in Tables 1, 2, 3, 4, 5, 6, and 7. E(7) is the average
time to observe a signal from the combined MEWMA and
chi-square control charts, so estimated average run length

(AIA{L ) would be equal to E(7)—7. Each table consists of
two sections: one for accuracy and the other for precision of
the change point estimators. In the section of accuracy perfor-
mances, standard errors of the estimators are shown in the
parentheses. In precision performances section, 130 =p
(7=l =0), P =p(i7=7| = 1) , Py = p([7~7 = 3) , P;
=p(F=7[=5) , Pr=p(F—7/=7) , and Pyp=p
(77| = 10) show precisions of the estimators. Precisions
of step, linear drift, and monotonic maximum likelihood esti-
mators are shown in the first, second, and third rows,
respectively.

First, we consider the multivariate multiple linear profiles
model. Accuracy and precision of the change point estimators
are given in Tables 1, 2, and 3. The following in-control model
considered by Eyvazian et al. [35] is used here:

Y1=342x1+x4+¢€1, Yo=24x1+x+e (15)

Independent variables (x; and x,) have fixed values of (2,
1), (4,2), (6, 3),and (8, 2). The vector of (¢, 62)Thas bivariate
normal distribution with mean vector zero. Covariance matrix

of Y= [&5 Of} is also considered to conduct the simu-

lations. Values of 11.1 and 23.7745 are set for the upper
control limits of MEWMA and chi-square control charts,
respectively.

If single increasing step change is imposed to the parame-
ters, we consider a matrix, entitled K, with the same dimen-
sion of B as follows:

B,=B+K, for j=7+1,74+2,....,T (16)

@ Springer

501/' 502/‘ 50pj Bor B ﬂop

51.1,' 51'2/‘ ﬁ;pj @11 5_12 ﬁ_lp
Baj Bej ™ DBay Ba Be = By
koo ko - kop
S
kg ke kg

(17)

ko1, k11,...,kg1 are magnitudes of change in the parameters

of Bo1, 511, ..., 541, respectively. Also, ko», k12, ...,k,» are mag-
nitudes of change in the parameters of the second profile, and
SO on.

The following equation is concluded from Eq. (16):

(XB), =XB+XK, for j=7+1,7+2,...,T  (I8)

For three increasing step changes, three change points are
T1=25,17=35, and 13=45, respectively. Matrixes of K;, K5,
and K; (K5;>K,>K,) are with the same dimension of B.
Changes are defined as follows:

B,=B+K;, so (XB),=XB+XK,, for j=2627,...35
B,=B+K, so (XB),=XB+XK,, for j=36,37,...45
B, =B+K;, so (XB), =XB+XKs, for j=46,47,....T

(19)

We also investigate performance of the estimators under
increasing drift changes in the parameters. The change is
defined using following equation:

B, =B+ (j7)K, so (XB);

=XB+ (j-7)XK, for j=74+1,74+2,...,T (20)

Results of Table 1 show that when single step shift is
exposed to the elements of XB, the proposed monotonic
estimator has superior performance in small to moderate shift
sizes. But in moderate to large shifts, the step estimator has
better performance, because it obtains under the assumption of
step change. The drift estimator has an acceptable uniform
performance from small to large shifts.

From Table 2, it is clear that the performance of monotonic
estimator is much better than step and drift estimators under
three step changes in small to moderate changes. The perfor-
mance of the step estimator improves as the magnitude of
shifts increases. But the performance of the drift estimator is
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Fig. 1 Effect of smoothing
constant on ARL of the combined
MEWMA-chi® control charts
under three increasing step
changes in the mean of
multivariate linear profiles

ARL

A=0.1
—— =02
—— =03
—F— A=05 H

not acceptable, and it deteriorates when shift sizes become
larger.

When linear drift changes occur in the elements of
XB, results of Table 3 show that the drift estimator has
superior performance, because it is derived under the
assumption of the linear drift change. Monotonic esti-
mator performs well in small to moderate shifts. Also,
step estimator performs well and has better performance
compared to monotonic estimator in moderate to large
shifts.

The performance of the estimators is also investigat-
ed for multiple and simple linear profiles which are the
special cases of multivariate multiple linear profiles.
Results of the increasing drift changes are only report-
ed for the multivariate profiles model and not reported
here for the special cases because of identical
consequences.

VK2 VK3 VK4 VK5 VK6
Magnitudes of shifts

The following model is considered for the in-control mul-
tiple linear profile using (2, 1), (4, 3), (6, 2), (8, 4), (4, 4), (3,
2), (1, 3), and (4, 1) as the fixed values of (x; and x;). The
error term is a normal random variable with mean 0 and
variance 1.

Y =342 +x+¢ (21)

Values of 8.3 and 23.7745 are considered for the upper
control limits of MEWMA and chi-square control charts, re-
spectively. Simulation results are presented in Tables 4 and 5.

Tables 4 and 5 have predictable results that a step estimator
has better performance with the existence of single step shifts;
also, monotonic estimator performs well when three step shifts
occur. Results are the same as multivariate profiles in Tables 1,
2, and 3.

Fig. 2 Accuracy of the proposed 38
change point estimator under
three increasing step changes in
the mean of multivariate linear
profiles for different values of
smoothing constant

Estimated T

20

A=0.1
—— =02
—6— 2=0.3 ||
—%— A=0.5 H

| o —

VK1
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VK2 VK3 VK4 VK5 VK6
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Finally, the underlying in-control model for a simple linear
profile discussed by Kang and Albin [16] is considered for
simulation study. The model is as follows:

Y=3+2x+¢ (22)

Fixed values considered for variable x are 2, 4, 6, and 8, and
follows a normal distribution with mean of 0 and variance of 1.
Values of 8.2 and 16.4239 are also considered for the upper
control limits of MEWMA and chi-square control charts, respec-
tively. Results are shown in Tables 6 and 7 which report identical
consequences to the multivariate and multiple linear profiles.

5 Effect of smoothing coefficient on ARL and the proposed
change point estimator performance

In Section 4, the value of 0.2 was used for smoothing constant,
A, which is consistent with the approach of Kim et al. [20]. In
general, smaller A is used for quick detection of small shifts
and larger A leads to a rapid detection of large shifts (see
references [39] and [40]). In this section, the effect of smooth-
ing constant on the control chart ARL and performance of the
proposed change point estimator is investigated.

Upper control limits of the MEWMA control charts for
different values of A are chosen by 50,000 simulation runs to
give approximately ARLs of 400, leading to an overall in-
control ARL of 200 with combination of chi-square control
chart. Hence, the values of 10.12, 11.1, 11.4, and 11.65 are set
for the upper control limits of MEWMA control charts with
A=0.1, 0.2, 0.3, and 0.5, respectively. To conduct simula-
tions, three increasing step changes in the mean of response
variables in multivariate multiple linear profiles are

considered. For this purpose, six values are used for K;, K,
and K3, the same as Table 2 shown by VK1, VK2, VK3, VK4,

VKS, and VK6 in Table 2. For example, VK1 contains K;

02 0 03 0 04 0
= 0 O 5 K2 = 0 O . and K3 = O O .
0 0 0 0 0 0

14 0
and also VK6 consists of K; = [ 0 0] , Ko =
0 0

0 0 0 0
simulation runs with 7=25, 7=35, and 73=45 are used.
Results are reported in Figs. 1, 2, and 3.

Since three increasing step changes are exposed to re-
sponse variables mean based on Eq. (19), the combined con-
trol charts cannot issue a signal before sample 46; hence,
ARLs in Fig. 1 are equal or greater than 21. Figure 1 confirms
that the smaller A, the better detection of small shifts. Finally,
Figs. 2 and 3 show the effect of A values on the performance of
the proposed monotonic change point estimator. From Fig. 2,
it can be concluded that when )\ increases, the performance of
monotonic estimator in estimating the change point becomes
worse in small shifts and better in large shifts. Effect of A
values on mean square error of the proposed estimator is also
the same, i.e., smaller values of A perform better in small shifts
and larger values of A perform better in large shifts.

1.6 0 1.8 0
0 O] ,andKs;=1| 0 O] .In this section, 5,000

6 A real case

A calibration case of an electrical torqometer measuring
torque required to fasten twins at Irankhodro Corporation is

Fig. 3 Mean square error of the 350
proposed change point estimator 2=0.1
under three increasing step 300 2=02 [
changes in the mean of :
multivariate linear profiles for & 250 —<— =03 ||
different values of smoothing E’ % =05
constant =
£ 200 1
5]
o \
% 150 1
g
S 100 .
50 *
— 3
0 | | | |
VK1 VK2 VK3 VK4 VK5 VK6

Magnitudes of shifts
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Fig.4 Comparison of the change
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considered here to show the application of the proposed
change point estimator. Three different connection types of
fastening twins which are hard, semihard, and soft were used.
Fixed values of torque are set to be measured by torqometer
on the three connection types. Magnitudes of torque measured
on the three types of connection are correlated because of
measuring using the same torqometer. Hence, it can be
modeled using three-variate simple linear profiles.

At first, normality assumption of each profile per
sample was tested using Jarque-Bera test confirming
there is no violations in the normality assumption.
There is also a high correlation between measurements
on three connections. Ten samples were obtained from
the process, all of which are in-control. (Data are avail-
able in Table 9 in Appendix 4). An in-control model
fitted on stable data with fixed x values of 20, 25, 30,
35, and 40 is as follows:

y; = 1.0696 + 0.9881x + ¢
Yy =—0.3758 +0.9534x + &,
y3 = —=3.0574 +1.0340x + &3

Also, the vector of (g,6,,63) has three-variate normal
distribution with mean vector zero and covariance matrix of

R 0.8514 —0.5728 —0.4667
> = [-0.5728 4.0003 3.6758 | ,calculated using the
—0.4667 3.6758  3.6971

following formulas with the assumption of having m stable
samples:

—~

DDV
Z./

m T
AN A
- (YJ—XBj) .(Yj—XBj)
y = =12,
J n—q—

M.

)

Lm

@ Springer
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Upper control limits of MEWMA and chi-square
control charts are 13.36 and 34.9496, respectively.
Twenty-five samples from underlying in-control model
is generated and then three step shifts are exposed to
the elements of XB as follows:

0 0 0.005
K= {o 0.005 0 ] K.
~[o 0 0.0075] [0 0 001
~ 10 0.0075 o | 7o 001 o0

Combined MEWMA and chi-square control chart method
alarms an OC condition at sample 46. Hence, the change point
estimators can be applied. Figure 4 and Table 8 (see Appendix
3) show that monotonic, step, and drift estimators have esti-
mated the first out-of-control 29th, 32nd, and 22nd samples,
respectively. The result also emphasizes on the effective per-
formance of monotonic estimator with the existence of multi-
ple step changes which is a case of monotonic change.

7 Conclusion

In this paper, we used the MLE method to estimate a
monotonic change point in the mean of response vari-
ables in multivariate linear profiles. Simulation results
showed that the proposed monotonic MLE performs
well in small to moderate shifts over all kinds of in-
creasing changes. Comparisons of the proposed estima-
tor to the step change estimator described that under a
single step change, the proposed estimator has superior
performance in small to moderate shifts, but when the
magnitude of shift increases, the performance of the
step estimator becomes better. Also, under linear drift
change, the proposed estimator has acceptable
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performance in small to moderate shifts. The perfor-
mance of the drift estimator is acceptable when step
and linear drift changes exposed to response variable
mean, but the drift estimator performance deteriorates in
three increasing step changes. The effect of smoothing
coefficient was also evaluated on the performance of the
proposed estimator which led to the results with better
performance in small shifts under a small smoothing
parameter. Also, the performance of the proposed esti-
mator becomes better in large shifts when the smoothing
parameter is large.

Ln(L(ﬂK)Y,X)):U Ly

J=|

o[ (viXB)Y " (Y;xB)]
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Appendix 1: Derivation of the linear drift estimator

The logarithm of likelihood function for drift estimator
is as follows (see Kazemzadeh et al. [38] for more
details):

where U is a constant value and #[
the matrix of W. Taking a derivative of the aforemen-
tioned function with respect to the matrix of XK to
estimate the slope of the changes and solving for XK
leads to

oLn (L (7‘, K‘Y, x))

XK

T
= > [V XB(XK)Y ] (24)
=7+1

j=

W] is the trace of

0<t<T-1

TLp = arg max {— Eg [ ~XB) Z (Yj_XB)T:|—

_ % ,Z; r [ [Y;—XB—(j—7)XK] Z_l [Y~XB~(j-)XK] T}
(23)
oLn (L (;;:I(JY’ X)) =0, so XK
[ o) 2

D)

Finally, the change point estimator is as follows:

T

% 3 { ¥, ~XB-(j-m)XK| Y~ [V, -XB~(-7)XK] T} }

j=tt1

(26)

For the special cases of multivariate linear profiles, i.e.,

multiple and simple linear profiles, the only difference is that
in the above equations, matrixes of Y;, B, and K reduce to

vectors of y;, 3, and k, respectively.

T

La(L(r.Bi|Y,X)) = U—%Z o (YXB)= (Y,XB)"| -

J=1

Appendix 2: Derivation of the step change estimator

The logarithm of the likelihood function with the assumption
of step change yields

LS v om), = - (xm) )] @)

J=7+1
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U is constant, so the derivative of the logarithm of the

likelihood function with respect to (XB); is

OLn(L(T,B1|Y, {
- (Lg(xl;)‘:{ ) :j;ﬂ [(v-(xB),)="]

(28)

t
~ 1
Tsc = arg max - = E tr
gosrsr—l 2 =

[(vXB)>" " (V,xB)"] —% S o

Also, the maximum likelihood estimator of (XB); is

T

j=1+1

j:T+1Yj:|

) -

(T=7)

[ (915 o (9) )

(29)

For multiple and simple linear profiles, the matrixes of Y;
and B reduce to vectors of y; and [3, respectively.

Appendix 3: Computations of the proposed change point

estimators

Table 8 Computations of change point estimators for torqometer calibration case study at Irankhodro Corporation. The first out-of-control sample

occurs on the 26th sample (7;=25)

Sample number Ln Lytonotonic Ln Lge LnL,p Sample number Ln Lytonotonic Ln Lgc LnL,p

1 —358.586 —345.898 —341.912 24 —349.001 —341.178 -339.519
2 —359.222 —345.436 —341.751 25 —348.573 —339.841 —339.558
3 —358.87 —345.351 —341.585 26 —348.208 —341.066 —339.748
4 —357.498 —345.147 —341.392 27 —347.888 —341.509 —339.849
5 —357.184 —344.157 —341.185 28 —346.181 —341.168 —339.939
6 —355.759 —344.836 —341.013 29 —345.317 —340.561 —340.004
7 —354.384 —344.127 —340.811 30 —345.9 —339.266 —340.136
8 —355.32 —342.995 —340.656 31 —345.875 —338.609 —340.424
9 —354.231 —342.904 —340.56 32 —345.768 —338.218 —340.862
10 —351.394 —342.756 —340.433 33 —34591 —339.393 —341.291
11 —351.347 —342.276 —340.313 34 —345.906 -339.411 —341.686
12 —350.302 —341.273 —340.222 35 —345.788 —341.322 —342.034
13 —351.042 —341.601 —340.196 36 —346.306 —344.216 —342.155
14 —351.991 —341.444 —340.177 37 —347.046 —344.904 —341.927
15 -352.617 —342.699 —340.171 38 —347.379 —344.894 —341.419
16 —352.044 —342.15 —340.125 39 —347.213 —344.672 -34091
17 —352.589 —343.224 —340.094 40 —346.373 —342.125 —340.388
18 —352.763 —344.439 —340.004 41 —346.095 —340.881 —340.468
19 —352.323 —343.703 —339.799 42 —345.894 —340.5 —340.93
20 —351.899 —342.423 —339.63 43 —345.998 —340.762 —341.853
21 —349.631 —342.408 —339.541 44 —346.829 —342.612 —343.363
22 —349.526 —340.366 —339.401 45 —347.873 —344.618 —344.504
23 —348.307 —340.122 —339.436 46 —349.288 —345.624 —345.624
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Appendix 4

Table 9 Data of torqometer calibration case study at Irankhodro
Corporation

Measured torque

Measured torque

Hard Semihard Soft  Hard Semihard Soft
Actual torque First sample Sixth sample
20 20.83  19.77 19.56  20.66  20.49 19.25
25 25.09 22046 21.89 2543  23.04 2222
30 30.9 25.64 26954 3273 2573 26.65
35 34.65 3223 3258 343 32 32.65
40 4038  39.78 39.35 402 39.33 40.2
Second sample Seventh sample
20 2025 20416 1941 214 20.76 19.33
25 2428  23.02 21.44 2538 2293 22.33
30 325 26.72 25.616 31.8 26.47 26.58
35 35.1 32.22 3251 35 322 3233
40 40.13  39.58 40.04 4093 39.98 39.25
Third sample Eighth sample
20 20.89 20599 194 2099  20.66 19.12
25 2547 2292 21.623 254 22.59 22.49
30 31.7 25.86 26.057 3043 265 2691
35 36.71  32.11 31.84  36.7 323 319
40 40.5 39.95 3991 40.84  39.15 39.87
Fourth sample Ninth sample
20 21.16 204 19.42  20.73  20.58 19.85
25 2534 22.835 2138 2617 @ 23.1 21.95
30 30.5 259 26.09 3132  25.88 25.73
35 33.8 323 326 358 32.44 32.6
40 40.2 39.16 40.8  40.33 39.29 39.99
Fifth sample Tenth sample
20 20.07  20.36 193 203 20.49 19.48
25 26.11 2235 21.56 2639 227 21.42
30 29.99 2693 2551 3258 2593 25.79
35 36.9 32.1 3274 351 32.1 3223
40 41.1 39.68 40.34 402 39.73 40.02
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