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Abstract The hybrid flow shop with parallel batching
(HFSPB) is a kind of flow shop production system wherein
some stages may be populated by parallel processors that
simultaneously process groups of jobs. This paper addresses
the makespan minimization problem for a HFSPB system
whose machines are characterized by both capacity and eligi-
bility restrictions. Firstly, a mixed integer linear programming
model concerning the proposed problem is presented. Then, a
specific genetic algorithm (GA) that makes use of a permuta-
tion encoding scheme as well as a crossover operator specif-
ically designed for effectively managing the batch processing
is discussed. The relevant parameters of the developed algo-
rithm were calibrated by means of a full factorial design of
experiments, and an extensive comparison campaign has been
carried out with the aim to statistically assess the performance
of the proposedGAwith respect to five alternative procedures,
four of which arisen from the relevant literature. The obtained
results, also supported by a properly developed ANOVA
analysis, demonstrate the effectiveness of the proposed GA-
based metaheuristics in tackling the HFSPB problem investi-
gated, under both quality of solutions and computational
burden viewpoints.

Keywords Hybrid flow shop . Batch processors . Parallel
batching . Genetic algorithm . Linear programming

1 Introduction

In the last decades, several variants of the regular scheduling
problems have been studied by the body of literature, with the
aim of improving the applicability level of such research

findings to the real industrial environment. One of the research
topics which better interprets this trend consists in the study of
hybrid configurations of flow shop manufacturing systems
wherein production stages may be composed by multiple
machines in parallel, such as flow shops with multiple pro-
cessors (FSMP), flexible flow lines (FFL), and hybrid flow
shops (HFS). According to what was stated by Ruiz and
Vázquez-Rodríguez [1], these theoretical models have in
common the following features:

& the number of processing stages I is greater than or equal
to 2;

& each stage i has Mi≥1 parallel machines, and at least one
stage ihas Mi> 1 ;

& all jobs follow the same unidirectional production flow,
from stage 1 to stage I.

In the FSMP problem, all machines pertaining to a certain
stage are assumed to be identical. FFL systems entail identical
machines as well, but are also characterized by missing oper-
ations, i.e., some jobs may be allowed to skip one or more
production stages. The HFS problem is instead a more com-
plex variant of the regular flow shop, as it entails unrelated
parallel machines at each stage. One of the first researches
dealing with these hybrid configurations of flow shops was
performed by Gupta [2], who demonstrated as FSMP problem
is NP-Hard even in the case of only two production stages,
one of them containing just one machine. The complexity of
flow shops with parallel machines has also been addressed by
Gourgand et al. [3], who stated that the total number of
solutions of a hybrid flow shop problem can be calculated as
N!(∏i=1

I Mi)
N, being N the number of jobs to be processed

through I manufacturing stages, each one populated by Mi

machines. In light of the computational complexity connected
to these variants of the regular flowshop problem, most of the
literature focused its efforts on the development of heuristic
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methods as well as metaheuristic algorithms. Nevertheless,
some exact approaches, mainly oriented to small-sized in-
stances, can be found in literature [4–6].

Heuristic methods are often needed to deal with tricky
scheduling problems as they can provide a quick solution
without affecting the computational burden. However, they
may suffer under the robustness viewpoint since obtained
solutions may be drastically far from the global optimum.
Guinet and Solomon [7] studied a flexible flow line with the
aim of minimizing makespan and maximum tardiness; they
developed a set of heuristics and used a benchmark based on
1,920 test instances to compare them with a set of specific
lower bounds. Brah and Loo [8] investigated the effectiveness
of five heuristics for solving a flow shop with multiple pro-
cessor scheduling problem, in terms of both makespan and
mean flow time minimization; at the end of their analysis, two
remarkable methods have been identified. Botta-Genoulaz [9]
tackled a FSMP problem with precedence constraints, time
lags, and due dates by six heuristic methods that were com-
pared over three different problem benchmarks to minimize
both maximum lateness and mean completion time. More
recently, Yang [10] addressed the problem of minimizing the
total completion time on a two-stage flow shop with one only
machine at stage 1 and two dedicated machines at stage 2. The
same author developed three different heuristics and measured
their performances against worst case bounds on relative
errors. The use of heuristics in hybrid flow shops with dedi-
cated machines has also been investigated by Wang and Liu
[11] that proposed four constructive heuristics and a procedure
based on branch and bound (B&B) algorithm for minimizing
makespan. An extensive comparison campaign involving
problems up to 100 jobs demonstrated the effectiveness of
the B&B-based approach.

Differently from heuristic methods, metaheuristic algo-
rithms can ensure a higher performance in finding near-
optimal solutions of NP-Hard problems. Nevertheless, they
often need a previous design phase aiming to select the most
appropriate encoding/decoding schemes necessary to describe
the real problem under investigation and to compute the
objective function to be optimized, respectively. One of the
first works concerning the use of metaheuristic algorithms for
addressing flow shop systems with parallel machines is as-
cribable to Xiao et al. [12], who proposed a permutation
encoding-based genetic algorithm (GA) for minimizing
makespan in a FSMP problem. They tested the effectiveness
of the proposed metaheuristics with respect to a random
sampling procedure and a heuristic method arisen from liter-
ature. The ability of genetic algorithms in addressing hybrid
configurations of flow shops has also been investigated by
Ruiz and Maroto [13], who developed a GA for the makespan
minimization of a HFS problem with sequence-dependent
setup times and machine eligibility constraints. There, a single
permutation encoding scheme was employed, together with

an early finish machine decoding policy that assigns a given
job to the machine able to earlier complete it. Authors carried
out an extensive comparison campaign involving 10 alterna-
tive procedures arisen from literature and properly adapted to
the problem in hand. A factorial design with 1,320 test prob-
lems confirmed the superiority of the proposed algorithm.
Some years later, Yaurima et al. [14] employed a similar GA
to cope with a HFS problem concerning a real production
environment with sequence-dependent setup times, machine
availability constraints, and limited buffers.

Apart from genetic algorithms, many other metaheuristic
procedures have been devised for solving hybrid configura-
tions of the regular flow shop scheduling problem. Wardono
and Fathi [15] implemented a tabu search (TS) algorithm with
the aim of minimizing makespan in a FSMP problem with
limited buffer capacities. They equipped the proposed TS by
both a permutation encoding scheme and a decoding proce-
dure able to run the inter-operational buffer saturation. Engin
and Döyen [16] dealt with the problem of minimizing
makespan in a flow shop containing identical parallel ma-
chines at each stage through an artificial immune system
(AIS) algorithm, inspired to clonal selection principles and
affinity maturation mechanisms widely studied in theoretical
immunology. Further, they carried out a comparison with
lower bounds provided by a B&Bprocedure over a formalized
benchmark of instances. Ying and Lin [17] faced a flow shop
with multiprocessor tasks by means of an ant colony system
(ACS) algorithm. They tested the performances of the pro-
posed technique against a genetic algorithm and a tabu search
from the relevant literature over two well-known benchmark
datasets. A similar problem was studied by Tseng and Liao
[18], who merged a particle swarm optimization (PSO) algo-
rithm and a proper local search procedure, inspired to the
flocking behavior of birds. In order to assess the effectiveness
of such method, authors performed a comparison with three
existing metaheuristics over a set of problems arisen from
literature. A PSO approach for solving flow shops with par-
allel machines was also investigated by Singh and Mahapatra
[19], who studied the makespan minimization problem for a
FSMP production system. The authors employed a real
number-based encoding scheme and used a chaotic number
generation mechanism. A set of lower bounds formerly pre-
sented in literature was taken as reference for the final perfor-
mance evaluation. A memetic algorithm (MA) combined with
a local search engine was proposed by Tavakkoli-
Moghaddam et al. [20] for minimizing the total completion
time on an unbuffered flexible flow line with processor
blocking. In this case, an encoding structure based on a matrix
along with a vector was used to represent the problem solu-
tion. Then, a local search engine called nested variable neigh-
borhood search (NVNS) was implemented to speed up per-
formance of the MA algorithm. The obtained results were
compared with those achieved by a classical genetic
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algorithm, as to prove the effectiveness of the devised ap-
proach. Mirsanei et al. [21] developed a simulated annealing
(SA) algorithm for minimizing makespan in a flow shop
system with identical parallel machines at each stage and
sequence-dependent setup times. Such method employs a
permutation encoding scheme, joined with an effective
decoding procedure inspired to the so-called shortest process-
ing time cyclic heuristic (SPTCH) developed by Kurz and
Askin [22]. Successively, SAwas compared with a GA and an
immune algorithm (IA) over three benchmarks of problems
including small-, medium-, and large-sized instances, respec-
tively. A biogeography-based optimization (BBO) procedure
was recently proposed by Attar et al. [23] for minimizing
makespan in a HFS problem with limited waiting times in
inter-stage buffers and ready time of jobs. The authors dem-
onstrated the superiority of the proposed approach against an
imperialist competitive algorithm (ICA) and a population-
based simulated annealing (PBSA) on a benchmark of 36 test
problems including 20-, 50-, and 100-job instances.

Similarly to the hybrid flow shop manufacturing system
topic, the research area connected with batch processing re-
ceived many contributions during the last few decades, prob-
ably due to its ability in fitting the real-world production
environments. Indeed, batch scheduling theory is quite com-
mon to be found in several manufacturing firms, as it allows
both job setups and processing time reduction as well as
benefits under the material handling viewpoint. As pointed
out by Mathirajan and Sivakumar [24], a sharp distinction
needs to be made between serial batching and parallel
batching. In serial-batching problems, jobs that need the same
setup operation on a given machine are grouped and then they
are sequentially processed one-by-one by each processor
[25–27]. In parallel-batching problems, a batch processor
simultaneously processes all jobs grouped within the same
batch. Batch processing time is equal to the highest processing
time among jobs included in the batch. Such problem is also
known in literature as scheduling of batch processors (SBP) or
scheduling of batch processing machines. One of the first
works dealing with the SBP problem is due to Azizoglu and
Webster [28], who adopted a branch and bound procedure
able to minimize the total weighted completion time on a
batch processing machine with incompatible job families. In
words, only jobs belonging to the same family (i.e., having
identical processing times) can be processed in the same
batch. Chang and Wang [29] addressed the problem of sched-
uling semiconductor burn-in operations on a batch processing
machine able to simultaneously process different jobs within
its capacity limit. The authors proposed a new heuristic algo-
rithm to be employed for minimizing the total completion
time.

Mathirajan et al. [30] analyzed a production process
entailing heterogeneous batch processors and incompatible
job families with the aim of maximizing machines’ utilization.

Mönch et al. [31] combined a genetic algorithm with both
dispatching and scheduling rules for minimizing the total
weighted tardiness on a production system characterized by
parallel batch processors with incompatible job families and
unequal ready times of jobs.

The study of hybrid configurations of flow shops including
batch processors has recently started to be dealt as well,
basically due to the affinity of this theoretical model to real
production processes belonging to the microelectronics
manufacturing industry. Amin-Naseri and Behesti-Nia [32]
developed a three-dimensional genetic algorithm for minimiz-
ing makespan in a flow shop involving parallel identical batch
processors. More recently, Costa et al. [33] investigated the
effectiveness of a double-encoding metaheuristic procedure
for tackling a constrained HFS problem with job overlapping
under the makespan minimization viewpoint.

This paper focuses on the problem of scheduling incom-
patible job families into a hybrid flow shop production system
equipped with unrelated parallel batch processors, these last
being characterized by having both capacity and eligibility
restrictions. It is worth pointing out that, to the best of our
knowledge, the body of literature never addressed such a kind
of scheduling problem so far.

Firstly, a mixed integer linear programming (MILP) model
concerning the problem in hand has been devised. Then, a
novel genetic algorithm for the makespan minimization was
developed and an extensive experimental analysis has been
performed with the aim of highlighting the effectiveness of the
proposed optimization approach.

The remainder of the paper is organized as follows. The
next section deals with the problem statement: in Section 3,
MILP model is reported. Section 4 illustrates the proposed
genetic algorithm; in Section 5, the outcomes of a calibration
campaign needed to properly set the most relevant parameters
of the developed GA are presented; in Section 6, a comparison
campaign involving several optimization techniques arisen
from literature and adapted to the problem in hand is present-
ed. Finally, Section 7 concludes the paper.

2 Problem description

This paper focuses on the makespan minimization problem in
a hybrid flow shop production system with unrelated batch
processors at each stage, incompatible job families, and ma-
chine eligibility restrictions. In the regular HFS scheduling
problem, a set of N jobs has to be processed through I
manufacturing stages; each stage i (i=1, 2,…, I) entails a set
of Mi unrelated parallel machines. Every job j (j=1,2,…, N)
has to pass through all I stages following the same production
flow, i.e., stage 1, stage 2, …stage I, being processed by
exactly one machine at each stage. No precedence relationship
exists among jobs. Pre-emption is not allowed, i.e., once a job
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processing starts, it must be completed without any interrup-
tion. All jobs are ready to be worked at the beginning of the
scheduling period, i.e., their release time is equal to zero.
Machines are continuously available during the whole pro-
duction session. Furthermore, setup times are assumed to be
sequence-independent and included into processing times.

In addition to what was stated before, the following three
features characterize the proposed research.

1. Batch processors. Parallel machines within each produc-
tion stage have to be considered as batch processors with
limited capacity, i.e., they may simultaneously work dis-
tinct batches of jobs instead of single jobs. The maximum
size of each batch, expressed in terms of number of jobs to
be processed together, is a priori known and depends on
the selected processor, as machines are assumed to be
unrelated.

2. Incompatible job families. The set of jobs to be processed
may be partitioned into smaller subset, referred to as
families. Jobs belonging to the same family are assumed
to be identical, i.e., they have the same processing times
for eachmachine of the whole manufacturing system. The
batching option is allowed only for identical jobs; thus, a
machine may simultaneously process several jobs at a
time only if they belong to the same family. The batch
processing time corresponds to the processing time of a
single job pertaining to that batch.

3. Machine eligibility constraints. For each job j and for each
production stage i, a set Rji of eligible machines is defined;
each job visiting a given stage can be processed only by
an eligible machine. In addition, it must be 1≤ |Rji|≤Mi,
being Mi the total number of machines included into the
ith stage. Whether j and k are identical jobs of a given job
family, it must be Rji=Rki.

It is worth noting that the proposed problem is the gener-
alization of a scheduling issue truly observed in the backend
assembly and test (BAT) area of a semiconductor manufactur-
ing firm, where burn-in operations on IC chips have to be
performed by means of batch processing ovens able to simul-
taneously process groups of identical jobs loaded onto boards.

3 MILP model

In the present section, a mixed integer linear programming
formulation of the proposed HFS problem is given.

Minimize Z=Cmax

s.t

XMi m∈Rjið Þ

m¼1

Y jim
¼ 1 j ¼ 1; 2;…;N i ¼ 1; 2;…; I ð1Þ

C j1≥
X

m¼1

M1

Y j1m⋅Pj1m j ¼ 1; 2;…;N ð2Þ

Cji−C j i−1ð Þ≥
X

m¼1

Mi

Y jim⋅Pjim j ¼ 1; 2;…;N i ¼ 2; 3;…; I

ð3Þ

Cji≤Cki−
X

m¼1

Mi

Y kim⋅Pkim þ B⋅ 1−Qjki

� �
j; k ¼ 1; 2;…;N

j ≠ k i ¼ 1; 2;…; I ð4Þ

Cji≤Cki þ B⋅ 1−Wjki

� �

Cki≤Cji þ B⋅ 1−Wjki

� �
(

j ¼ 1; 2;…;N k ¼ jþ 1;

jþ 2…;N i ¼ 1; 2;…; I
ð5Þ

Qjki þ Qkji þWjki≥1−B⋅ 2−Y jim−Ykim

� �

j ¼ 1; 2;…;N k ¼ jþ 1; jþ 2…;N

i ¼ 1; 2;…; I m ¼ 1; 2;…;Mi

ð6Þ

XN k∉S jð Þ

k¼ jþ1

Wjki ¼ 0 j ¼ 1; 2;…;N i ¼ 1; 2;…; I ð7Þ

Xj−1

k¼1

Wkji þ
X

k¼ jþ1

N

W jki þ 1≤
X

m¼1

Mi

BSim⋅Y jim

j ¼ 1; 2;…;N i ¼ 1; 2;…; I

ð8Þ

Cmax≥CjI j ¼ 1; 2;…;N ð9Þ

Y jim∈ 0; 1f g j ¼ 1; 2;…;N i ¼ 1; 2;…; I

m ¼ 1; 2;…;Mi

ð10Þ

Qjki∈ 0; 1f g j; k ¼ 1; 2;…;N j ≠ k i ¼ 1; 2;…; I

ð11Þ

Wjki∈ 0; 1f g j ¼ 1; 2;…;N k ¼ jþ 1; jþ 2…;N

i ¼ 1; 2;…; I ð12Þ

Constraint (1) ensures that each job is processed by one
machine per stage, selected among those eligible. Constraint
(2) imposes that the completion time of a given job at the first
stage must be greater than or equal to its corresponding
processing time. Constraint (3) defines the relationship
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between completion times of each job for two adjacent stages.
Through constraint (4), it is imposed that if jobs j and k are
worked by the same machine at stage i and j precedes k, job j
must be completed before job k starts. Constraint (5) runs
batch processing; it states that if job j and k are assigned to
the same batch to be worked by a certain machine pertaining
to stage i, their completion times must be the same. Constraint
(6) establishes that for each couple of jobs j and k assigned to
the same machine at a given stage, one condition among the
following three must be fulfilled: j precedes k, k precedes j, j
and k are simultaneously worked within the same batch.
Constraint (7) ensures that batch processing is allowed only
for identical jobs. Constraint (8) states that the total amount of
jobs worked within the same batch of job j must not exceed
the allowed maximum batch size. Constraint (9) forces
makespan to be equal or greater than any job completion time
at the last stage. Finally, constraints (10), (11), and (12) define
the binary variables.

4 The proposed genetic algorithm

Genetic algorithms [34] are computational methods inspired
by the process of natural evolution, which have largely been
used to solve scheduling problems. Generally, a GA works
with a set of problem solutions called population. At every
iteration, a new population is generated from the previous one
by means of two operators, crossover andmutation, applied to
solutions (chromosomes) selected on the basis of their fitness,
i.e., the objective function value; thus, best solutions have
greater chances of being selected. Crossover operator gener-
ates new solutions (offspring) by coalescing the structures of a
couple of existing ones (parents), while mutation operator
brings a change into the scheme of selected chromosomes,
with the aim to avoid the procedure to remain trapped into
local optima. The algorithm proceeds by letting the population
evolve through successive generations until a given stopping
criterion is reached.

Whenever a real problem is addressed through an evolu-
tionary algorithm, the choice of a proper encoding scheme
(i.e., the way a solution is represented by a string of genes)
plays a key role under both the quality of solutions and the
computational burden viewpoints. In addition, a valid
decoding procedure able to transform a given string into a
feasible solution has to be provided.

In the following subsections, a detailed description of the
proposed GA, named SGA, properly developed for solving
the proposed HFSBP problem is reported.

4.1 Overview of the encoding/decoding strategy

Usually, the hybrid flowshop scheduling problem needs a
specific encoding, which separately runs the job permutation

and the assignment of jobs to machines at every stage [4, 35].
Nevertheless, it has recently been demonstrated how a simple
permutation encoding scheme, linked to an effective decoding
procedure, can drive metaheuristic methods to efficiently
solve the HFS problem [13, 21].

In the present work, such a kind of encoding strategy has
been adopted since the proposed genetic algorithm operates
by means of N integers, where N is the number of jobs to be
scheduled. As far as the decoding procedure is concerned, a
method inspired to the SPT cyclic heuristic (SPTCH) pro-
posed by Kurz and Askin [22] has been adopted. In fact, the
permutation string of jobs drives the job allocation within the
first stage while, as concerns the subsequent stages, jobs are
processed according to an ERT (earliest release time) criterion,
i.e., the job with the smallest completion time is the first job to
be processed in the current stage and so on. At every stage,
each job is assigned to the machine wherein it may be com-
pleted at the earliest time. The proposed method, differently
from previous studies, is able to contemporarily run the batch
processing issue (by assigning a set of identical jobs on a
given workstation) as well as the machine eligibility restric-
tions. In the following paragraphs, a detailed description of the
decoding procedure is provided.

Let a permutation π of N integers be the current solution of
a hybrid flow shop problem with N jobs to be scheduled
through I successive stages, each one made of Mi unrelated
parallel machines (i=1, 2,…, I); πi indicates the sequence of
jobs to be scheduled at stage i; l denotes a general position
within the sequence (l=1, 2,…, N) and πi(l) indicates the lth
job of the sequence πi which relates to stage i. The construc-
tion of a feasible schedule associated with a solution π occurs
through the following steps:

For stage 1,

1. Set π1=π.
2. For l=1 to N,

(a) Let bestmc=1.
(b) For m=1 to M1|m eligible for processing job π1(l),

i. Detect the last job γ worked by machine m.
ii. If job γ is identical to job π1(l) and machine m has

enough capacity, then place job π1(l) within the
same batch of job γ , else place job π1(l) after job γ

iii. Calculate completion time of job π1(l).
iv. If completion time of job π1(l) is less on machine m

then on machine bestmc, then let bestmc=m.
(c) Assign job π1(l) to machine bestmc.

For each stage, i=2,…, I:

1. Update the ready times in stage i to be the completion
times in stage i–1.

Int J Adv Manuf Technol (2014) 75:833–847 837



2. Generate πi by arranging jobs in ascending order of ready
times.

3. For l=1 to N,

(a) Let bestmc=1.
(b) For m=1 to Mi|m eligible for processing job πi(l),

i. Detect the last job γ worked by machine m.
ii. If job γ is identical to job πi(l), machine m has

enough capacity and job πi(l) is ready to be worked
when job γ starts, then place job πi(l) within the
same batch of job γ , else place job πi(l) after job γ .

iii. Calculate completion time of job πi(l).
iv. If completion time of job πi(l) is less on machine m

then on machine bestmc, then let bestmc=m.
(c) Assign job πi(l) to machine bestmc.

In order to clarify how the aforementioned decoding pro-
cedure works, an illustrative example consisting of five jobs
(N=5) to be scheduled on a hybrid flow shop system with two
stages (I=2) and two machines per stage (M1=M2=2) has
been reported. For each job j, Table 1 shows processing times
(Pjim) as both i (index of stages) and m (index of machines
within each stage) change.

It can be noticed that machine 2 at stage 1 is not eligible to
process jobs 1 and 2; similarly, job 5 cannot be processed by
machine 1 at stage 2. Jobs 1 and 2 are assumed to be identical
as well as jobs 3 and 4; identical jobs have the same process-
ing times through the whole manufacturing system, and they
can be simultaneously worked within the same batch on a
given eligible machine. Table 2 shows the maximum batch
sizes allowed by each machine m pertaining to each stage i
(BSim).

Now, let us suppose to have solution π={3, 1, 4, 2, 5}.
Table 3 summarizes the proposed decoding procedure applied
to π. For each stage i, a new sequence πi is generated. In
particular, πi(l) indicates the job to be scheduled at the current
iteration l. ECπi lð Þ;i;m denotes the expected completion time of

job πi(l) whether it has to be scheduled on machine m at stage
i, while bestmc indicates the machine selected to process a job
πi(l) (i.e., the machine able to complete that job before the
others). Cπi lð Þ;i denotes the actual completion time of job πi(l)

at stage i. Figure 1 illustrates the Gantt chart obtained by
decoding π through the proposed procedure.

With reference to machine 1 at stage 1, it can be noticed that
both jobs 1 and 2 are separately processed, though they are
identical, since that machine can process no more than one job
at a time, being BS11=1; thus, it cannot allow any kind of batch
processing. On the other hand, jobs 3 and 4 are simultaneously
worked in both stages, since machine 2 at stage 1 and machine
1 at stage 2 can ensure an adequate batch capacity.

According to this modus operandi, whenever in a given
solution π two identical jobs are close to each other, both of
themwill be assigned to the same batch as to be worked by the
same machine on the first stage, supposing that such machine
has enough capacity to work them together. In such case, those
identical jobs will have the same first-stage completion time,
and they will be placed again in adjacent positions within the
sequence π2, which runs the assignment of jobs to machines in
the second stage. Following the same fashion, those identical
jobs have a greater chance to be placed into the same batch and
to be worked by the same machine in the successive produc-
tion stages. It is quite clear that such a kind of decoding
strategy should lead to the total completion time reduction.

4.2 Genetic operators

Psize individuals compose the initial population of the pro-
posed SGA. Psize–1 permutation strings are randomly

Table 1 Processing
times for the HFS
example

Pjim i=1 i=2

m=1 m=2 m=1 m=2

j=1 2 – 2 5

j=2 2 – 2 5

j=3 4 1 3 4

j=4 4 1 3 4

j=5 3 2 – 2

Table 2 Maximum
batch sizes for the HFS
example

i=1 i=2

m=1 m=2 m=1 m=2

BSim 1 2 2 1

Table 3 Proposed decoding procedure for π ={3, 1, 2, 4, 5}

i l πi(l) ECπi lð Þ;i;m bestmc Cπi lð Þ;i

m=1 m=2

i=1→π1={3, 1, 4, 2, 5}

1 1 3 4 1 2 1

1 2 1 2 – 1 2

1 3 4 6 1 2 1

1 4 2 4 – 1 4

1 5 5 7 3 2 3

i=2 → π2={3, 4, 1, 5, 2}

2 1 3 4 5 1 4

2 2 4 4 5 1 4

2 3 1 6 7 1 6

2 4 5 – 5 2 5

2 5 2 6 10 2 6
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extracted, while the missing individual is generated by apply-
ing the regular SPT rule just considering the job processing
times related to the first stage. Indeed, this dispatching rule
allows jobs belonging to the same family to be placed in
adjacent positions, thus increasing the chances of both pro-
cessing them through the same batch processor and reducing
the total completion time.

As regards the selection mechanism, the well-known rou-
lette-wheel scheme [36] has been adopted, thus assigning to
each solution a probability of being selected inversely propor-
tional to the makespan value.

A properly developed variant of the regular order crossover
[37], hereinafter called enclosed order crossover (EOX), has
been employed as crossover operator. According to such
procedure, two cut points are randomly chosen for each cou-
ple of selected parents, with a restriction on their relative
distance, which must be greater than two genes and lower
than or equal to an a priori fixed value, hereinafter called
MAXdist. In such a way, a substring of genes to be rearranged,
i.e., those positioned between the cut points, is identified for
each parent; these genes are copied in the corresponding
child according to the order in which they appear within
the chromosome structure of the other parent. The remain-
ing genes, which do not belong to the selected substring,
are instead copied into the offspring without any change
in their position as well as in their relative order. Figure 2
reports an example of EOX referred to an instance in
which N=10.

Basically, the effectiveness of the proposed crossover strat-
egy would consist in keeping unchanged as much as possible
any block of identical jobs, thus yielding a significance reduc-
tion of the total completion time. This circumstance has been
confirmed by a preliminary test campaign, according to which
a GA equipped with the proposed EOX crossover sensibly
outperformed the same optimization algorithm powered by a
regular position-based crossover. For the sake of brevity,
such comparison analysis has not been included in the
present paper.

As concerns the mutation operator, a simple shift operator
[38] has been employed. A randomly selected gene is moved
forward or backward along the sequence, on the basis of a
randomly chosen number of positions. The maximum number
of positions a single gene can be shifted is denoted as
MAXshift.

Finally, a proper elitism procedure, which preserves the
best two individuals of each generation from any distortion
caused by crossover or mutation operators, has been embed-
ded within the proposed SGA.

5 Statistical calibration of genetic parameters

A proper calibration phase has been carried out, with the aim
of selecting a suitable set of genetic parameters. To this end, a
benchmark of 48 classes of large-sized problems has been
arranged by combining in a full factorial design: four scenar-
ios for the number N of jobs, three scenarios for the number I

Fig. 1 Gantt chart obtained for
π={3, 1, 4, 2, 5}

Fig. 2 Enclosed order crossover
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of stages, two scenarios for the numberMi of machines in each
stage I, and two further scenarios concerning the batch pro-
cessing capacity BSim of each machine m within each stage i.
Table 4 shows the structure of the calibration campaign, where
symbol U[a, b] refers to a value extracted by a uniform
distribution between a and b.

One instance has been generated for each class of problem.
For each instance, the whole set of jobs has been partitioned
into small subsets of identical jobs, each one made up of five
elements at most. For each subset of identical jobs, processing
times have been generated from a uniform distribution in
the range [1, 99]. Eligibility restrictions have been taken
into account by considering, for each machine, a 25 %
probability of being ineligible for each subset of identical
jobs. However, all instances have been generated as to
ensure the eligibility of one machine per stage for the
whole set of jobs, at least.

The devised benchmark aims to drive the tuning analysis
on the following five parameters characterizing the developed
SGA, i.e., Psize, pcross, pmut, MAXdist, and MAXshift. For each
parameter, three different levels have been taken into account,
as illustrated in Table 5, as to generate a total of 35=243
different configurations of the proposed metaheuristic algo-
rithms. For each instance, all the provided algorithm configu-
rations have been tested; therefore, a total of 48*243=11,664
runs have been considered. In order to identify the best com-
bination of values for the aforementioned parameters, an
ANOVA analysis [39] has been performed by means of De-
sign Expert® 7.0.0 version commercial tool. The response

variable studied was the relative percentage deviation
(RPD), calculated according to the following formula:

RPD ¼ 100⋅
SGAsol‐BESTsol

BESTsol
ð13Þ

where SGAsol is the makespan solution found by an algorithm
with a specific configuration in terms genetic parameters, and
BESTsol is the best solution over the whole set of results
concerning the same instance. The proposed SGA has been
coded inMATLAB® language and executed on a 2-GB RAM
virtual machine embedded on a workstation powered by two
quad-core 2.39-GHz processors. Stopping criterion was set to
a total of 10,000 makespan evaluations.

Figures 3, 4, 5, 6, and 7 show the means plots with LSD
intervals at 95 % confidence level obtained for each one of the
tuned genetic parameters.

Figure 3 shows that a population size (Psize) equal to 20 is
the best parameter among the tested values. Probability of
crossover (pcross) should be set to 0.95, as confirmed by
Fig. 4. The statistically significant difference highlighted in

Table 4 Structure of the benchmark for the calibration campaign

Factor Notation No. of
levels

Levels

Number of jobs N 4 (50, 100, 150, 200)

Number of stages I 3 (3, 5, 10)

Number of machines
in stage i

Mi 2 (U[1, 3], U[3, 5])

Maximum batch size allowed
on machine m at stage i

BSim 2 (U[1, 3], U[3, 5])

Table 5 Experimental calibration of proposed SGA

Parameter Notation No. of
levels

Levels

Population size Psize 3 (20, 50, 100)

Crossover probability pcross 3 (0.65, 0.8, 0.95)

Mutation probability pmut 3 (0.05, 0.1, 0.2)

Maximum relative distance
between cut points (EOX
crossover)

MAXdist 3 (3, 5, 10)

Maximum shift width (mutation) MAXshift 3 (N/2, N/3, N)

Fig. 3 Means plot with 95 % LSD intervals obtained for Psize parameter

Fig. 4 Means plot with 95 % LSD intervals obtained for pcross parameter
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Fig. 5 indicates pmut equal to 0.05 as the most effective choice
for the proposed SGA. Figure 6 shows the statistical results
related to theMAXdist parameter, which characterizes the EOX
crossover. The best performance should be achieved by
adopting MAXdist equal to 3. In light of the obtained results,
it is worth pointing out that a frequent genetic recombination
(pcross=0.95) applied onto a small portion of chromosome
(MAXdist=3)may represent a valid strategy to preserve blocks
of identical jobs and, at the same time, to enhance the perfor-
mance of the SGA in terms of makespan minimization. Final-
ly, means plot reported in Fig. 7 highlights as the best value for
the maximum gene shift allowed in mutation operator, namely
MAXshift, is equal to N.

6 Numerical examples and computational results

In order to obtain an exhaustive evaluation regarding the
effectiveness of the proposed SGA in solving the proposed
HFSPB problem, an extensive comparative campaign has
been performed, with the aim of assessing the proposed

metaheuristic procedure with respect to a set of methods arisen
from the relevant literature. A brief analysis of these methods
is reported in the following paragraphs.

– The three-dimensional genetic algorithm (hereinafter
coded as 3DGA) proposed by Amin-Naseri and
Behesti-Nia [32] for solving the problem of minimizing
makespan in a FSMP system with parallel-batching ma-
chines. Such method exploits a three-dimensional
encoding that allows defining, for each stage of the pro-
duction system and for each machine within a given
stage, the exact scheduling sequence of jobs to be proc-
essed. The algorithm starts with an initial population
partially composed by individuals obtained from properly
developed heuristics; then, it employs a parameterized
uniform crossover and two different mutation techniques,
named swap and reverse operators, for the regular evolu-
tionary path.

– The genetic algorithm (hereinafter coded as GAR) devel-
oped by Ruiz and Maroto [13] for minimizing makespan
in a HFS problem with sequence-dependent setup times
and machine eligibility. It exploits a single permutation
encoding and an early finish machine decoding policy.
Conforming to what was suggested by the authors, a
block 2-point crossover and a regular shift-insertion

Fig. 5 Means plot with 95 % LSD intervals obtained for pmut parameter

Fig. 6 Means plot with 95 % LSD intervals obtained for MAXdist

parameter

Fig. 7 Means plot with 95 % LSD intervals obtained for MAXshift

parameter

Table 6 Proposed benchmark of small-sized instances for the compari-
son campaign

Factor Notation No. of
levels

Levels

Number of jobs N 3 (10, 15, 20)

Number of stages I 3 (3, 5, 10)

Number of machines in stage i Mi 2 (U[1, 3], U[3, 5])

Maximum batch size allowed
on machine m at stage i

BSim 2 (U[1, 3], U[3, 5])
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operator have been employed as crossover and mutation
operators, respectively.

– The novel simulated annealing (hereinafter NSA) elabo-
rated by Mirsanei et al. [21] for scheduling jobs in a flow
shop with multiple processors and sequence-dependent
setup times with the aim of minimizing makespan. Sim-
ilarly to the proposed SGA, such algorithm works with a
single permutation solution encoding, also adopting a
decoding scheme derived from the SPT cyclic heuristic
(SPTCH) developed by Kurz and Askin [22]. Due to the
modifications required by the SPTCH to satisfy both

batch processing and eligibility restrictions characterizing
the proposed HFSBP problem, it is worth pointing out
that such a modified SPTCH decoding method coincides
with the decoding scheme adopted by SGA. Finally,
conforming to what was developed by the authors, a
combination of two different local search techniques
(pairwise interchange moving and inverse moving, re-
spectively) has been embedded in the NSA algorithm.

– The tabu search devised by Wardono and Fathi [15] for
addressing the makespan minimization in a FSMP prob-
lem with limited buffer capacity (hereinafter called as

Table 7 Average RPD values for
small-sized instances Class N I Mi BSim SGA 3DGA GAR NSA TSW RND

1 10 3 U[1, 3] U[1,3] 3.462 2.320 1.654 3.462 7.551 3.462

2 10 3 U[1,3] U[1,5] 0.977 1.023 3.042 0.977 6.004 0.977

3 10 3 U[1,5] U[1,3] 4.907 6.340 5.144 4.907 7.182 4.907

4 10 3 U[1,5] U[1,5] 1.074 1.887 1.341 1.074 3.805 1.074

5 10 5 U[1,3] U[1,3] 6.222 11.579 5.983 6.222 9.568 6.222

6 10 5 U[1,3] U[1,5] 1.082 6.697 8.059 1.082 9.952 1.082

7 10 5 U[1,5] U[1,3] 4.210 12.087 3.705 4.210 7.904 4.210

8 10 5 U[1,5] U[1,5] 4.886 5.438 5.797 4.886 6.150 4.886

9 10 10 U[1,3] U[1,3] 4.842 12.907 5.301 4.842 7.228 4.877

10 10 10 U[1,3] U[1,5] 5.843 15.719 11.643 5.843 11.061 5.843

11 10 10 U[1,5] U[1,3] 4.651 5.469 4.370 4.651 6.407 4.651

12 10 10 U[1,5] U[1,5] 7.307 9.191 9.375 7.307 8.948 7.307

13 15 3 U[1,3] U[1,3] 0.925 7.791 2.144 1.028 3.089 1.395

14 15 3 U[1,3] U[1,5] 0.000 6.073 5.497 0.000 8.563 2.044

15 15 3 U[1,5] U[1,3] 0.582 13.974 2.424 0.582 5.942 0.582

16 15 3 U[1,5] U[1,5] 0.614 5.527 1.817 0.614 4.947 0.614

17 15 5 U[1,3] U[1,3] 0.111 12.972 5.079 0.367 4.975 1.660

18 15 5 U[1,3] U[1,5] 0.218 10.816 8.505 0.000 12.511 10.543

19 15 5 U[1,5] U[1,3] 1.260 18.553 6.434 1.036 10.686 1.475

20 15 5 U[1,5] U[1,5] 0.040 5.450 3.162 1.616 4.800 1.616

21 15 10 U[1,3] U[1,3] 1.288 11.871 2.866 1.433 4.429 2.414

22 15 10 U[1,3] U[1,5] 0.037 12.919 7.392 1.283 13.002 2.481

23 15 10 U[1,5] U[1,3] 0.082 13.420 5.879 0.000 3.353 0.124

24 15 10 U[1,5] U[1,5] 0.000 8.751 7.265 0.000 2.567 0.074

25 20 3 U[1,3] U[1,3] 0.017 8.460 3.536 0.426 4.860 4.148

26 20 3 U[1,3] U[1,5] 0.000 12.098 11.407 2.476 15.298 11.041

27 20 3 U[1,5] U[1,3] 1.544 24.909 9.177 1.315 7.447 2.208

28 20 3 U[1,5] U[1,5] 0.465 16.854 6.923 1.038 16.094 0.570

29 20 5 U[1,3] U[1,3] 1.194 9.300 3.891 0.259 5.459 4.190

30 20 5 U[1,3] U[1,5] 0.348 14.956 7.724 2.370 14.619 20.381

31 20 5 U[1,5] U[1,3] 0.903 23.089 8.188 0.605 7.313 1.614

32 20 5 U[1,5] U[1,5] 0.000 15.709 7.391 1.110 9.346 1.499

33 20 10 U[1,3] U[1,3] 0.379 9.749 4.463 0.790 4.356 2.796

34 20 10 U[1,3] U[1,5] 0.208 14.588 12.377 1.799 7.307 18.755

35 20 10 U[1,5] U[1,3] 0.348 14.965 9.970 1.030 6.847 1.155

36 20 10 U[1,5] U[1,5] 0.268 14.227 10.014 0.477 3.479 0.596

g_ave 1.675 11.047 6.082 1.975 7.585 3.985
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TSW). It employs a single permutation encoding scheme
and a decoding procedure based on the first available
machine rule for generating a feasible schedule from
every coded solution. As proposed by the authors, a
shift-insertion operator has been adopted to generate the
neighborhood of the current solution, and a proper
exploration/exploitation strategy has been implemented
with the aim of enhancing the searchmechanism through-
out the solution space as well as intensifying the exami-
nation of the most promising areas.

In addition to the aforementioned algorithms, a simple
random sampling algorithm (hereinafter named RND) has
been included within the set of alternative methods to be
compared with the proposed SGA. It is worth pointing out
that such procedure exploits the same encoding/decoding
strategy adopted by SGA. According to a regular random
sampling mechanism, it starts with an initial randomly gener-
ated seed solution and then iteration by iteration, a new
solution is obtained from the current one by applying the
mutation operator used by SGA. Every time a new solution
outperforms the current one, it assumes the role of a new seed
solution.

The comparison campaign has been performed making use
of two separate benchmarks, involving small- and large-sized
instances, respectively. Parameters considered for generating
small-sized problems are illustrated in Table 6, while the
benchmark used for large-sized problems has been created
similarly to what was done in the calibration campaign, whose

parameters are reported in Table 4. On the whole, a total of 36
small-sized and 48 large-sized classes of problems have been
created. For each class of problem, 10 different instances have
been generated, following the same method adopted in the
calibration phase wherein subsets of identical jobs, processing
times, and machine eligibility restrictions have been config-
ured. Thus, 36*10+48*10=840 instances have been generat-
ed. The overall set of instances has been solved by means of
the six optimization procedures to be compared, namely SGA,
3DGA, GAR, NSA, TSW, RND. Therefore, a total of 840*6=
5,040 runs have been taken into account. Stopping criterion
was set to 10,000 makespan evaluations.

The following subsections report the obtained results with
reference to both small- and large-sized problems,
respectively.

6.1 Comparison analysis for small-sized problems

With reference to small-sized problems, 360 different in-
stances have been considered for carrying out a comparison
between the proposed SGA and the optimization procedures
selected from relevant literature. In particular, for 120 in-
stances of the benchmark (i.e., those having number of jobs
N=10), the corresponding global optima have been obtained
by means of the MILP model provided in Section 3. To this
aim, an ILOGCPLEX® 12.0 64 bit platform installed within a
workstation powered by two quad-core 2.39-GHz processors
and with 24-GB RAM was used.

For each instance, and with reference to each
metaheuristics, the relative percentage deviation from the best
solution was calculated according to

RPD ¼ 100� ALGsol‐BESTsol

BESTsol
ð14Þ

where ALGsol is the solution provided by a given algorithm
with reference to a given instance, while BESTsol is the
optimal solution obtained through the proposed MILP model.
In case N>10, BESTsol is equal to the lowest makespan
among those obtained by the different algorithms. Table 7
illustrates for each class of problems the average values of
RPD obtained by each algorithm, denoting in boldface the
corresponding BESTsol value.

The obtained results highlight the effectiveness of SGA in
solving small instances of the HFS problem in hand. The
proposed SGA algorithm reaches the lowest average RPD
value in 26 out of 36 classes of problems, also outperforming
the other competitors under the RPD grand average view-
point. NSA and RND reach the lowest average RPD values
in 18 and 9 classes of problems, respectively. The fair result
achieved by RND can be considered as a proof about the
effectiveness of the single permutation encoding scheme

Fig. 8 Means plot with 95 % LSD intervals for small-sized instances

Table 8 Average CPU times (in seconds) for small instances

N SGA 3DGA GAR NSA TSW RND

10 73.5 55.3 68.9 76.6 75.7 78.8

15 105.7 82.3 101.4 110.5 109.5 112.8

20 139.7 105.9 135.6 146.7 144.8 148.8

Average 106.3 81.2 102.0 111.3 110.0 113.5
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Table 9 Average RPD values for
large-sized instances Class N I Mi BSim SGA 3DGA GAR NSA TSW RND

1 50 3 U[1,3] U[1,3] 0.014 11.690 3.468 2.276 3.188 12.970

2 50 3 U[1,3] U[1,5] 0.156 14.392 3.241 2.234 2.910 18.690

3 50 3 U[1,5] U[1,3] 0.800 15.243 3.249 2.442 3.661 11.644

4 50 3 U[1,5] U[1,5] 2.069 26.517 8.077 6.427 10.557 10.907

5 50 5 U[1,3] U[1,3] 1.313 18.516 7.927 4.257 8.880 11.239

6 50 5 U[1,3] U[1,5] 0.239 19.997 10.155 3.251 7.028 6.445

7 50 5 U[1,5] U[1,3] 0.000 16.222 7.526 9.718 33.254 66.995

8 50 5 U[1,5] U[1,5] 0.000 16.094 8.950 9.131 23.156 63.745

9 50 10 U[1,3] U[1,3] 0.000 17.344 7.161 8.411 13.926 57.713

10 50 10 U[1,3] U[1,5] 0.000 30.407 10.087 13.541 50.968 53.822

11 50 10 U[1,5] U[1,3] 0.000 28.401 15.310 14.529 27.467 31.655

12 50 10 U[1,5] U[1,5] 0.302 25.567 14.361 8.426 22.065 27.403

13 100 3 U[1,3] U[1,3] 0.167 5.257 1.593 4.034 13.978 29.787

14 100 3 U[1,3] U[1,5] 0.589 7.950 2.404 4.734 14.897 22.392

15 100 3 U[1,5] U[1,3] 4.156 17.690 3.396 8.250 17.076 22.288

16 100 3 U[1,5] U[1,5] 0.606 21.680 11.426 10.409 24.049 22.855

17 100 5 U[1,3] U[1,3] 0.358 22.356 10.932 8.389 21.114 20.745

18 100 5 U[1,3] U[1,5] 1.633 19.987 8.679 4.445 10.117 8.624

19 100 5 U[1,5] U[1,3] 0.038 10.097 3.805 5.547 55.966 85.335

20 100 5 U[1,5] U[1,5] 1.424 12.988 3.970 9.994 70.491 103.699

21 100 10 U[1,3] U[1,3] 0.196 13.760 4.757 8.880 57.547 93.224

22 100 10 U[1,3] U[1,5] 0.000 24.442 9.135 10.445 76.347 76.572

23 100 10 U[1,5] U[1,3] 0.000 21.555 12.692 10.381 57.798 61.016

24 100 10 U[1,5] U[1,5] 0.000 19.237 16.630 10.636 56.870 55.118

25 150 3 U[1,3] U[1,3] 0.346 7.558 1.552 4.237 14.764 20.641

26 150 3 U[1,3] U[1,5] 1.082 9.290 1.422 4.147 19.185 25.854

27 150 3 U[1,5] U[1,3] 2.444 9.688 1.588 4.445 10.634 10.013

28 150 3 U[1,5] U[1,5] 0.000 22.399 10.848 11.766 37.484 39.753

29 150 5 U[1,3] U[1,3] 0.294 17.891 9.886 9.012 24.015 26.185

30 150 5 U[1,3] U[1,5] 0.376 15.915 9.423 6.731 21.158 19.259

31 150 5 U[1,5] U[1,3] 0.195 8.184 1.460 5.657 100.431 120.425

32 150 5 U[1,5] U[1,5] 0.293 11.679 3.423 6.651 108.273 131.338

33 150 10 U[1,3] U[1,3] 0.207 11.415 4.411 8.224 99.735 112.116

34 150 10 U[1,3] U[1,5] 0.000 16.979 11.298 13.128 109.914 112.294

35 150 10 U[1,5] U[1,3] 0.000 19.977 11.316 12.820 93.191 92.266

36 150 10 U[1,5] U[1,5] 0.000 18.771 11.849 8.524 74.281 72.358

37 200 3 U[1,3] U[1,3] 1.630 6.452 2.208 5.303 33.018 36.855

38 200 3 U[1,3] U[1,5] 1.040 7.686 1.409 1.944 14.478 15.362

39 200 3 U[1,5] U[1,3] 1.468 8.773 1.208 2.032 6.560 7.435

40 200 3 U[1,5] U[1,5] 0.261 11.559 6.664 7.480 25.463 25.101

41 200 5 U[1,3] U[1,3] 0.349 18.597 9.505 8.519 26.703 25.919

42 200 5 U[1,3] U[1,5] 1.158 12.703 8.002 5.580 17.015 15.427

43 200 5 U[1,5] U[1,3] 0.289 11.046 1.588 4.459 121.572 129.520

44 200 5 U[1,5] U[1,5] 0.166 8.658 2.636 6.837 115.519 122.766

45 200 10 U[1,3] U[1,3] 0.821 11.867 2.628 8.531 101.831 106.480

46 200 10 U[1,3] U[1,5] 0.000 21.755 9.073 10.792 126.768 130.429

47 200 10 U[1,5] U[1,3] 0.000 16.087 7.842 8.547 100.610 101.764

48 200 10 U[1,5] U[1,5] 0.000 13.633 8.815 8.968 79.681 80.035

g_ave 0.552 15.749 6.854 7.398 45.117 53.218
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combined with the SPTCH-based decoding rule in ap-
proaching the HFSBP problem with machine eligibility
restrictions.

In order to infer some statistical conclusion over the
difference observed among the tested algorithms, an
ANOVA analysis has been performed through Design
Expert® 7.0.0 version commercial tool, calculating LSD
intervals at 95 % confidence level for the RPDs connected
to each optimization procedure. The corresponding chart
is reported in Fig. 8.

The chart clearly shows as both SGA and NSA outperform
the other algorithms in a statistically significant manner. Nev-
ertheless, no conclusion can be drawn with reference to the
difference observed between such algorithms, though SGA
reports a lower average RPD. On the other hand, the narrow
difference of performance between the two algorithms should
depend on the small number of solutions characterizing the
solution domain.

In order to evaluate the computational efficiency of the
algorithms to be compared, the CPU time required by each
method has been measured. Numerical results are reported in
Table 8 and, for the sake of brevity, they are grouped accord-
ing to the number N of jobs, which is clearly the most influent
parameter affecting the computational burden. Due to its
simple decoding procedure, the quickest metaheuristics is
3DGA, whose CPU times result quite smaller than the other
competitors. Nevertheless, 3DGA seems to be the less effec-
tive procedure for solving the HFSBP problem at hand, as
shown in Table 7 and Fig. 8. With reference to the other
methods, no significant difference can be noticed in terms of
time to convergence. However, it should be stated that SGA is
on average faster than NSA, which represents the main com-
petitor under the quality of solutions viewpoint.

6.2 Comparison analysis for large-sized problems

As for large-sized instances, the comparison between the
proposed SGA and the alternative procedures has been

performed on the basis of a benchmark composed by 48
classes of problems, which include 480 different instances.
Differently from the previous analysis, four levels (50, 100,
150, 200) have been considered for the number N of jobs, in
order to better fit with the real-world manufacturing context.
The key performance indicator to compare the alternative
metaheuristics is the relative percentage deviation from the
best (See Eq.14), where BESTsol is the lowest makespan value
among those gaining from every optimization procedure.
Table 9 reports the average RPD values, highlighting in bold-
face the best results for each class of problem.

Numerical results reported in Table 9 clearly show the
superiority of SGA in solving the large-sized instances of
the HFSBP problem under investigation. The proposed algo-
rithm ensures the best average RPD in 45 out of 48 classes of
problems, and the grand average indicator (g_ave) further
confirms the outperformance of the proposed SGA. It is also
worth noting that for 15 classes of problems, the average RPD
obtained by SGA is equal to zero, thus confirming the ability
of the proposed SGA in achieving the best makespan among
the overall set of tested procedures.

An ANOVA analysis has been carried out with the aim of
defining LSD intervals at 95 % confidence level for RPDs
obtained by each algorithm. Figure 9 related chart confirms
the effectiveness of the proposed SGA, which statistically
outperforms the other algorithms. As concerns the alternative
optimization methods, an evident performance decrease of
RND can be observed in Table 9 with respect to the small-
sized instances, though it makes use of the same encoding/
decoding strategy adopted by SGA. On the other hand, GAR
significantly improves its performance in terms of quality of
solutions, thus reaching a comparable efficacy with respect to
the NSA method.

Under the computational burden perspective, Table 10 puts
in evidence the average CPU times needed by each procedure,
expressed in seconds and grouped by the number of jobs N.
3DGA is still the fastest method, while SGA gets slightly
worse if compared to the case of small-sized instances.
Whether SGA and GAR should be compared in terms of
CPU times, the average advantage of the latter algorithm
should be equal about to 10 %, regardless of any class of
problems, as confirmed by Table 10. In fact, the CPU time

Fig. 9 Means plot with 95 % LSD intervals for large-sized instances

Table 10 average CPU times (in seconds) for large instances

N SGA 3DGA GAR NSA TSW RND

50 382.0 321.2 342.6 361.0 372.2 358.0

100 779.5 635.3 712.1 736.0 819.8 730.9

150 1,184.5 959.6 1,088.4 1,116.6 1,203.9 1,112.4

200 1,618.0 1,321.5 1,488.4 1,524.2 1,613.9 1,539.3

Average 991.0 809.4 907.9 934.5 1,002.5 935.2
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difference between SGA and GAR goes from less than 1 min
(39 s for N=50) to about 2 min (130 s for N=200). In
conclusion, it could be argued that the slight CPU time differ-
ence between SGA and the other algorithms may be ignored
in light of the significant performance improvement that SGA
assures in terms of makespan.

7 Conclusions

In this paper, a properly developed smart decoding-based
genetic algorithm (SGA) has been employed for minimizing
makespan for a hybrid flow shop scheduling problem with
unrelated batch processors, limited machine capacity, and
machine eligibility restrictions. The proposed technique
makes use of a single permutation encoding scheme that,
through a proper decoding procedure inspired to earlier liter-
ary works, can simultaneously manage job sequencing and
allocation, batching of identical jobs, and machine eligibil-
ities. The proposed SGA procedure was equipped with a
properly developed crossover operator named enclosed order
crossover (EOX), which tends to keep unchanged any set of
identical jobs included in a given solution to be perturbed.

After an extensive calibration phase, the best combination
of genetic parameters for the proposed algorithm has been
selected. Then, a comparison campaign based on two separate
benchmarks involving both small- and large-sized problems
has been fulfilled in order to test the performance of SGAwith
respect to four different metaheuristics presented in literature
and a regular random sampling algorithm. To this aim, an
ANOVA analysis focusing on a statistical validation of the
obtained outcomes has been performed. Numerical results
highlighted the effectiveness of SGA in approaching the
HFSBP problem under both quality of solutions and compu-
tational burden viewpoints. Results coming from the small-
sized benchmark revealed a slight outperformance of SGA
with respect to the alternative procedures. The global optima
retrieved by the devised MILP model for a portion of the
provided instances represented a valid support to the valida-
tion of the proposed metaheuristics. The narrow space of
solutions characterizing the small-sized scenario problems
surely justifies the small difference of performance among
the alternative metaheuristics.

As for large-sized problems, SGA significantly
outperformed the other metaheuristics. A slight gap of SGA
under the CPU time perspective can be ignored whether the
significant improvement of performance in terms of makespan
reduction is considered.

Further research should involve the application of the
developed SGA to other variants of hybrid flow shop prob-
lem. For instance, the hybrid flow shop problem with stage
skipping or sequence-dependent setup times could be
approached through the proposed algorithm.

8 Nomenclature

Indices

j, k Indices of jobs

i Index of stages

m Index of machines

Parameters/sets

N Number of jobs

I Number of stages

Mi Number of machines at stage i

Sj Set of jobs identical to job j (i.e., belonging to the same
family)

Rji Set of machines pertaining to stage i eligible for processing
job j

Pjim Processing time of job j on machine m at stage i

BSim Maximum batch size allowed on machine m at stage i

B A big number

Binary variables

Yjim 1, If job j is worked on machine m at stage i; 0, otherwise

Qjki 1, If jobs j and k are worked on the same machine at stage i,
with j preceding k; 0, otherwise

Wjki 1, If jobs j and k are worked within the same batch on a given
machine at stage i; 0, otherwise

Continuous variables

Cji Completion time of job j at stage i

Cmax Makespan

SGA decoding notation

π An encoded solution to the problem

πi Sequence of jobs to be processed at stage i

πi(l) lth job of sequence πi
γ Last job worked by a given machine at a certain step of the

decoding phase

bestmc Current best machine for processing a given job

ECπi lð Þ;i;m Expected completion time of job πi(l) on machinem at stage i

Cπi lð Þ;i Actual completion time of job πi(l) at stage i

SGA parameters

Psize Population size

pcr Crossover probability

pm Mutation probability

MAXdist Maximum distance between two cut points for EOX
crossover

MAXshift Maximum gene shift length for mutation
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