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Abstract Supplier selection is one of the most critical activ-
ities of purchasing management in a supply chain because of
the key role of supplier’s performance in achieving the objec-
tives of a supply chain. Supplier selection problem requires a
trade-off between multiple criteria exhibiting vagueness and
imprecision with the involvement of a group of experts. This
paper presents a multiple criteria group decision-making ap-
proach for supplier selection problem in the context of interval
type-2 fuzzy sets. A new method for ranking interval type-2
fuzzy numbers, based on the centroid of fuzzy sets, is pro-
posed and compared with some methods. The proposed rank-
ing method is used for extending complex proportional as-
sessment (COPRAS) method for group decision-making with
interval type-2 fuzzy numbers. The developed method uses a
stepwise procedure for ranking and evaluating the alterna-
tives, in terms of significance and utility degree, and selects
the best solution considering both the positive-ideal and the
negative-ideal solutions. To demonstrate the applicability of
the proposed approach in supplier selection problems, an
illustrative example is presented and the results are analyzed.
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1 Introduction

In the past decades, supply chain management (SCM) and
supplier selection problem have greatly been considered by
researchers in the business management literature and prac-
tice [1–8]. Supply chain management (SCM) encompasses
the management of participants’ transactions in a supply
chain for maximization of total supply chain profitability.
SCM focuses on minimization of overall costs of the supply
chain from side to side and maximization of the revenue
earned from the customer in association with organization
partners. Companies within a supply chain can reach the
stability in competitive advantages through expanding
much closer connections with all corporations. They can
meaningfully decrease time and costs based on the suitable
management of the supply chain as well [9]. In most situa-
tions, SCM appears from several companies that have made
their own supply chain. They have to work with more
capable partners to reach a competitive chain. Manufac-
turers must prefer more cooperative ones among a variety
of available suppliers which are competent to develop long-
period relationships [10]. Hence, one of the most essential
activities of firms is supplier selection. Selecting suitable
suppliers can significantly increase the organization com-
petitiveness by decreasing the purchasing costs [11].We can
classify the supplier selection problems in the multiple
criteria problems category which include both qualitative
and quantitative performance indicators. It is necessary to
make a trade-off between these tangible and intangible
factors, in order to select the desired suppliers [12]. Conse-
quently, a purchasing manager must scrutinize the trade-off
among these criteria. Multiple criteria decision-making
(MCDM) techniques support the decision makers (DMs)
in appraising an assortment of alternatives. Depending on
the purchasing conditions, criteria have varying importance
and the DMs have to weigh them [13].
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In practice, for supplier selection problems, most of the
input information is not known precisely. In these cases, the
theory of fuzzy sets is one of the best tools for handling
uncertainty [14]. In order to deal with the fuzziness in the
real world, the values of criteria are usually represented by
type-1 fuzzy sets proposed by Zadeh [15]. Several methods
have been proposed for dealing with type-1 multiple criteria
decision-making problems [16–18]. Tolga and Kahraman
[19] proposed a modified fuzzy TOPSIS method in the case
of uncertain information which took the form of linguistic
terms, and the developed method was utilized for solving
energy planning problem. Li and Yang [20] presented a
linear programming method in the context of MCDM. Ma
et al. [21] proposed a decision support system based on a
model to increase the level of overall contentment in the
multiple criteria group decision-making. Mohammad et al.
[22] developed a new method to handle the problem of
parametric form of fuzzy numbers and applied it to a case
study of diversion of water. Yeh and Chang [23] introduced
a hierarchical weighting method to appraise weights, and
further developed an algorithm for grouping MCDM to
incorporate criteria weights involving decision makers’
subjective judgments.

Themembership value of type-1 fuzzy set is a crisp number
in [0, 1]. However, we are generally faced with the situations
where it is hard to find out the exact membership function for a
fuzzy set. Utilizing type-1 fuzzy sets is not suitable in these
cases. To handle this issue, Zadeh [24] proposed type-2 fuzzy
as an extension of type-1 fuzzy sets. Type-2 fuzzy sets are
three dimensional and their membership function is represent-
ed by a fuzzy set on the interval [0,1] and delineated by both
primary and secondary membership to provide more degrees
of freedom and flexibility. Hence, type-2 fuzzy sets are more
accurate in the modeling of uncertainty in comparison with
type-1 fuzzy sets. Nevertheless, we are confronted with heavy
computations when type-2 fuzzy sets are employed to solve
problems [25]. To resolve the difficulties in establishing and
handling type-2 fuzzy sets, interval type-2 fuzzy sets are used
by researchers with some representations such as vertical-slice
and wavy-slice representations [26]. The concept of interval
type-2 fuzzy sets is defined by an interval-valued membership
function. Interval type-2 fuzzy sets contain membership
values that are crisp intervals and are extremely advantageous
for theoretical and computational studies of the higher order
fuzzy sets because of their relative simplicity [27]. Some
basic definitions of interval type-2 fuzzy sets were pro-
posed by Mendel et al. [25]. Mitchell [28] and Zeng and
Li [29] suggested methods to estimate the similarity be-
tween interval type-2 fuzzy sets. Wu and Mendel [30]
proposed a new method to reduce the limitations in
methods of Mitchell [28] and Zeng and Li [29] named
vector similarity method (VSM) to transform interval
type-2 fuzzy sets into words more effectively.

The other aspect of interval type-2 fuzzy sets is their
application in MCDM problems. Developing methods for
MCDM problems within the context of interval type-2 fuzzy
sets has been considered by researchers. Chen and Lee [31]
developed an interval type-2 fuzzy technique for order pref-
erence by similarity to an ideal solution (TOPSIS) to deal with
group decision-making problems based on interval type-2
fuzzy sets. Lu et al. [32] proposed an interval-valued fuzzy
linear programming method based on infinite α-cuts and
applied this method to the problem of water resource manage-
ment. Vahdani et al. [33] developed an elimination and
choice-translating reality (ELECTRE) method with interval
weights and data to handle MCDM problems. Vahdani and
Hadipour [34] developed an ELECTRE method based on
interval type-2 fuzzy sets to solve a problem of selecting a
maintenance strategy. Vahdani et al. [35] proposed a method
based on VIKOR and interval-valued fuzzy numbers to solve
MCDM problems. Chen [36] introduced a multiple criteria
group decision-making method with generalized interval-
valued fuzzy numbers under incomplete weight information.
Chen [37] presented a new linear assignment method to
produce an optimal preference ranking of the alternatives in
conformity with a set of criterion-wise rankings and a set of
criterion importance within the context of interval type-2
trapezoidal fuzzy numbers. Wang et al. [38] proposed
multiple-criteria group decision-making methods based on
the ranking values and the arithmetic operations of interval
type-2 fuzzy sets. Chen et al. [39] presented a method to deal
with multiple criteria group decision-making problems based
on ranking interval type-2 fuzzy sets. Chen [40] developed a
method for determining the objective importance of criteria
and handling multiple criteria group decision-making
problems within the context of interval type-2 fuzzy sets.
Hu et al. [41] introduced a new approach based on possi-
bility degree to solve multiple criteria decision-making
(MCDM) problems in which the criteria values take the
form of interval type-2 fuzzy number. Chen and Lee [42]
presented a new method to handle fuzzy multiple criteria
group decision-making problems based on the ranking
values and the arithmetic operations of interval type-2
fuzzy sets. Zhang and Zhang [43] developed a novel
approach to multiple criteria group decision-making under
interval type-2 fuzzy environment. Celik et al. [44] pro-
posed an interval type-2 fuzzy MCDM method based on
TOPSIS and GRA, to evaluate and improve customer
satisfaction in Istanbul public transportation. Chen and
Wang [45] presented a new method for fuzzy multiple
criteria decision-making based on interval type-2 fuzzy
sets, and a new fuzzy ranking method based on the α-
cuts of interval type-2 fuzzy sets. Razavi Hajiagha et al.
[46] suggested an extended form of the complex propor-
tional assessment (COPRAS) method for group decision-
making with interval-valued intuitionistic fuzzy sets.

1116 Int J Adv Manuf Technol (2014) 75:1115–1130



Although a considerable amount of research work has
already been conducted by the past researchers on supplier
selection using different MCDMmethods, there is still a need
to employ a simple and systematic mathematical approach for
handling ambiguity and fuzziness in supplier selection prob-
lems. In this paper, the COPRAS method [47], a new MCDM
method which has been developed to solve multiple criteria
decision-making (MCDM) problems with conflicting and
non-commensurable (different units) criteria, is extended to
propose a new method for dealing with fuzzy multiple criteria
group decision-making problems within the context of inter-
val type-2 fuzzy sets. We present a new method for ranking
interval type-2 fuzzy numbers, based on the centroid [48] of
fuzzy sets, and compare it with some other methods. We also
use an example to describe the application of the proposed
method in supplier selection problems. The proposed method
provides us with a useful way to handle fuzzy multiple criteria
group decision-making problems in a more flexible and
smarter manner and the basis for developing supplier selection
models.

The rest of this paper is organized as follows: in Section 2,
we briefly review the concepts of interval type-2 fuzzy sets. In
Section 3, the arithmetic operations between trapezoidal inter-
val type-2 fuzzy sets are presented. In Section 4, we describe a
method for ranking interval type-2 fuzzy sets. In Section 5, we
present a new method for handling fuzzy multiple criteria
group decision-making problems based on the COPRAS
method and the proposed ranking method. In Section 6, we
use an example to illustrate the application of the proposed
method in supplier selection problems. The conclusions are
discussed in Section 7.

2 Concepts of interval type-2 fuzzy sets

The theory of type-1 fuzzy sets was proposed by Zadeh in
1965 [15]. The membership value in a type-1 fuzzy set is

represented by a real value in the range of 0 to 1. Let eA be a

type-1 trapezoidal fuzzy set, where eA ¼ (a1; a2; a3; a4; H1

(eA); H2 (eA)) and 0≤H1 (eA)≤1 and 0≤H2 (eA)≤1 , as shown
in Fig. 1. If a2=a3, then the type-1 fuzzy set eA becomes a
triangular type-1 fuzzy set.

Type-2 fuzzy sets, described by primary and secondary
membership values, are the extension of type-1 fuzzy sets.

Definition 2.1 [25] A type-2 fuzzy set A
≈
can be represented

by a type-2 membership function, expressed as follows:

A
≈¼ x; uð Þ; μ

A
≈ x; uð Þ

� �
∀x∈X ;j ∀u∈J x⊆ 0; 1½ �; 0≤μ

A
≈ x; uð Þ≤1

n o
;

ð1Þ

where X denotes the domain of A
≈

and μA
≈ denotes the

membership function (secondary membership function) of A
≈

and JX is an interval between zero and one and denotes the

primary membership function. The type-2 fuzzy set A
≈

also
can be represented as follows:

A
≈ ¼

Z
x∈X

Z
u∈ JX

μ
A
≈ x; uð Þ= x; uð Þ; ð2Þ

where Jx⊆[0,1] and∬ denotes the union over all admissible x
and u.

Definition 2.2 [25] For a type-2 fuzzy set A
≈
, if all μ

A
≈

x; uð Þ ¼ 1 , then A
≈

is called interval type-2 fuzzy set. An

interval type-2 fuzzy set A
≈
can be considered as a special case

of type-2 fuzzy set, described as follows:

A
≈ ¼

Z
x∈X

Z
u∈ JX

1= x; uð Þ; ð3Þ

where Jx⊆[0,1].

Definition 2.3 [25] Footprint of uncertainty (FOU) is an
uncertain bounded region for the primary membership func-
tion, which is the union of all primary memberships. FOU is
described by upper membership function (UMF) and lower
membership function (LMF). UMF and LMF are type-1 fuzzy
sets.

Definition 2.4 [42] An interval type-2 fuzzy number is called
trapezoidal interval type-2 fuzzy number if and only if the

UMF and the LMF are both trapezoidal fuzzy numbers. Let A
≈

be a trapezoidal interval type-2 fuzzy set. A
≈
can be expressed

as follows:

A
≈ ~AU ; ~AL
� �¼ð au1; a

u
2; a

u
3; a

u
4; H1ðÃ U Þ; H2ðÃ U Þ

� �
;

aL1 ; a
L
2 ; a

L
3 ; a

L
4; H1ðÃ LÞ; H2ðÃ LÞÞÞ; ð4Þ

�

Fig. 1 A type-1 trapezoidal fuzzy set
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where eAU and eAL denote the UMF and LMF of A
≈
;

respectively, andHj (eAU ) and H j (eAL) (H j (eAU ) ∈ 0; 1½ �; H j

(eAL) ∈ 0; 1½ � and j=1,2) denote the membership values of the
corresponding elements a

j+1
L and a

j+1
U , respectively, as shown

in Fig. 2.

In this study, we concentrate on utilizing interval type-2
fuzzy sets for dealing with fuzzy multiple criteria group
decision-making problems.

3 The arithmetic operations of trapezoidal interval type-2
fuzzy sets

Suppose that A
≈
1
and A

≈
2
are two trapezoidal interval type-2

fuzzy numbers:

A
≈
1
¼ eA1

U ; eA1
L

� �
¼ ð aU11; a

U
12; a

U
13; a

U
14; H1

eA1
U

� �
;H2

eA1
U

� �� �
;

aL11; a
L
12; a

L
13; a

L
14; H1

eA1
L

� �
;H2

eA1
L

� �Þ� �
; ð5Þ

A
≈
2 ¼ eA2

U ; eA2
L

� �
¼ ð aU21; a

U
22; a

U
23; a

U
24; H1

eA2
U

� �
;H2

eA2
U

� �� �
;

aL21; a
L
22; a

L
23; a

L
24; H1

eA2
L

� �
;H2

eA2
L

� �� �Þ; ð6Þ

Then arithmetic operations are represented in the following
definitions.

Definition 3.1 [42] The addition operation is defined as
follows:

A
≈
1
⊕A

≈
2 ¼ eA1

U ; eA1
L

� �
⊕ eA2

U ; eA2
L

� �
¼ aU11 þ aU21; a

U
12 þ aU22; a

U
13 þ aU23; a

U
14 þ aU24; min H1 eA1

U
� �

; H1 eA2
U

� �� �
; min H2 eA1

U
� �

; H2 eA2
U

� �� �� ��
;

aL11 þ aL21; a
L
12 þ aL22; a

L
13 þ aL23; a

L
14 þ aL24; min H1 eA1

L
� �

; H1 eA2
L

� �� �
; min H2 eA1

L
� �

; H2 eA2
L

� �� �� ��
;

ð7Þ

Definition 3.2 [42] The subtraction operation is defined as
follows:

A
≈
1⊖A

≈
2 ¼ eA1

U ; eA1
L

� �
⊖ eA2

U ; eA2
L

� �
¼ aU11−a

U
24; a

U
12−a

U
23; a

U
13−a

U
22; a

U
14−a

U
21; min H1 eA1

U
� �

; H1 eA2
U

� �� �
; min H2 eA1

U
� �

; H2 eA2
U

� �� �� ��
;

aL11−a
L
24; a

L
12−a

L
23; a

L
13−a

L
22; a

L
14−a

L
21; min H1 eA1

L
� �

; H1 eA2
L

� �� �
; min H2 eA1

L
� �

; H2 eA2
L

� �� �� ��
;

ð8Þ

Definition 3.3 The multiplication operation is defined as
follows:

A
≈
1⊗A

≈
2 ¼ eA1

U ; eA1
L

� �
⊗ eA2

U ; eA2
L

� �
¼ XU

1 ; X
U
2 ; X

U
3 ; X

U
4 ; min H1 eA1

U
� �

; H1 eA2
U

� �� �
; min H2 eA1

U
� �

; H2 eA2
U

� �� �� ��
;

XL
1 ; X

L
2 ; X

L
3 ; X

L
4; min H1 eA1

L
� �

; H1 eA2
L

� �� �
; min H2 eA1

L
� �

; H2 eA2
L

� �� �� ��
;

ð9Þ
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where

XT
i ¼

min aT1ia
T
2i; a

T
1ia

T
2 5−ið Þ; a

T
1 5−ið Þa

T
2i; a

T
1 5−ið Þa

T
2 5−ið Þ

� �
if i ¼ 1; 2

max aT1ia
T
2i; a

T
1ia

T
2 5−ið Þ; a

T
1 5−ið Þa

T
2i; a

T
1 5−ið Þa

T
2 5−ið Þ

� �
if i ¼ 3; 4

8<:
ð10Þ

and T∈{U,L}.

Definition 3.4 The division operation is defined as follows:

A
≈
1⊘A

≈
2 ¼ eA1

U ; eA1
L

� �
⊘ eA2

U ; eA2
L

� �
¼ YU

1 ; Y
U
2 ; Y

U
3 ; Y

U
4 ; min H1 eA1

U
� �

; H1 eA2
U

� �� �
; min H2 eA1

U
� �

; H2 eA2
U

� �� �� ��
;

YL
1 ; Y

L
2 ; Y

L
3 ; Y

L
4; min H1 eA1

L
� �

; H1 eA2
L

� �� �
; min H2 eA1

L
� �

; H2 eA2
L

� �� �� ��
;

ð11Þ

where

YT
i ¼

min aT1i=a
T
2i; a

T
1i=a

T
2 5−ið Þ; a

T
1 5−ið Þ=a

T
2i; a

T
1 5−ið Þ=a

T
2 5−ið Þ

� �
if i ¼ 1; 2

max aT1i=a
T
2i; a

T
1i=a

T
2 5−ið Þ; a

T
1 5−ið Þ=a

T
2i; a

T
1 5−ið Þ=a

T
2 5−ið Þ

� �
if i ¼ 3; 4

8<: ;

ð12Þ

a2j
T ≠ 0, j=1,2,3,4 and T∈{U,L}.

The reciprocal influence of different trapezoidal interval
type-2 fuzzy number is considered in multiplication and divi-
sion definitions. Therefore, there is no limitation in multipli-
cation or division of two trapezoidal interval type-2 fuzzy
numbers with negative elements.

Definition 3.5 [37] Multiplication by an ordinary number is
defined as follows:

k:A
≈
1 ¼

k:aU11; k:a
U
12; k:a

U
13; k:a

U
14;H1 eA1

U
� �

;H2 eA1
U

� �� �
; k:aL11; k:a

L
12; k:a

L
13; k:a

L
14;H1 eA1

L
� �

;H2 eA1
L

� �� �� �
if k ≥0

k:aU14; k:a
U
13; k:a

U
12; k:a

U
11;H1 eA1

U
� �

;H2 eA1
U

� �� �
; k:aL14; k:a

L
13; k:a

L
12; k:a

L
11;H1 eA1

L
� �

;H2 eA1
L

� �� �� �
if k ≤0

8<: ;
ð13Þ

Definition 3.6 [37] Division by an ordinary number (l is a
nonzero number) is defined as follows:

A
≈
1
=l ¼

aU11=l; a
U
12=l; a

U
13=l; a

U
14=l;H1 eA1

U
� �

;H2 eA1
U

� �� �
; aL11=l; a

L
12=l; a

L
13=l; a

L
14=l;H1 eA1

L
� �

;H2 eA1
L

� �� �� �
if l > 0

aU14=l; a
U
13=l; a

U
12=l; a

U
11=l;H1 eA1

U
� �

;H2 eA1
U

� �� �
; aL14=l; a

L
13=l; a

L
12=l; a

L
11=l;H1 eA1

L
� �

;H2 eA1
L

� �� �� �
if l < 0

8<: ;

ð14Þ

4 Ranking values of trapezoidal interval type-2 fuzzy sets

A new method for computing the ranking value of trapezoidal
interval type-2 fuzzy sets is presented in this section. The

centroid of a trapezoidal fuzzy set (type-1 fuzzy set) that was
presented byWang et al. [49] is used for calculating possibility
degree of a trapezoidal interval type-2 fuzzy set. Then the
possibility degree is used for determining its ranking value.

Fig. 2 A trapezoidal interval type-2 fuzzy number
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Definition 4.1 [49] Let eAi be a type-1 trapezoidal fuzzy set:

eAi ¼ ai1; ai2; ai3; ai4;H eAi

� �� �

In order to determine the centroid point (Cix,Ciy) of a type-1

trapezoidal fuzzy number ðeAiÞ , the following formulas are
used:

Cix ¼ 1

3
ai1 þ ai2 þ ai3 þ ai4 −

ai3ai4 − ai1ai2
ai3 þ ai4ð Þ − ai1 þ ai2ð Þ

� �
;

ð15Þ

Ciy ¼
H eAi

� �
3

1þ ai3 − ai2
ai3 þ ai4ð Þ − ai1 þ ai2ð Þ

� �
ð16Þ

Definition 4.2 Suppose that A
≈
i is a trapezoidal interval type-

2 fuzzy set:

Ai
≈ ¼ eAi

U ; eAi
L

� �
¼ ð aUi1 ; a

U
i2 ; a

U
i3 ; a

U
i4;H1 eAi

U
� �

;H2 eAi
U

� �� �
aLi1; a

L
i2; a

L
i3; a

L
i4;H1

eAi
L

� �
;H2 eAi

L
� �� �Þ

The previous definition is extended for a trapezoidal inter-

val type-2 fuzzy set A
≈
i

� �
as follows:

CT
ix ¼

1

3
aTi1 þ aTi2 þ aTi3 þ aTi4 −

aTi3a
T
i4 − aTi1a

T
i2

aTi3 þ aTi4
� �

− aTi1 þ aTi2
� � !

; T∈ U ; Lf g;

ð17Þ

CT
iy ¼

ωT

3
1þ aTi3 − aTi2

aTi3 þ aTi4
� �

− aTi1 þ aTi2
� � !

; T∈ U ; Lf g; ð18Þ

where

ωT ¼
H1 eAi

T
� �

þ H2 eAi
T

� �
2

; T∈ U ; Lf g; ð19Þ

Definition 4.3 Suppose that A
≈
s and A

≈
t are two trapezoidal

interval type-2 fuzzy sets:

A
≈
s ¼ eAs

U ; eAs
L

� �
¼ aUs1; a

U
s2; a

U
s3; a

U
s4;H1 eAs

U
� �

;H2 eAs
U

� �� �
; aLs1; a

L
s2; a

L
s3; a

L
s4;H1 eAs

L
� �

;H2 eAs
L

� �� �� �
A
≈
t ¼ eAt

U ; eAt
L

� �
¼ aUt1; a

U
t2; a

U
t3; a

U
t4;H1 eAt

U
� �

;H2 eAt
U

� �� �
; aLt1; a

L
t2; a

L
t3; a

L
t4;H1 eAt

L
� �

;H2 eAt
L

� �� �� �

Let,

Ex ¼
CU

tx þ CL
tx

� �
− CU

sx þ CL
sx

� �
CU

sx þ CL
sx

�� ��þ CU
tx þ CL

tx

�� ��; ð20Þ

Ex
0 ¼ max 1 −max Ex; 0ð Þð Þ; 0ð Þ; ð21Þ

Ey ¼
CU

ty þ CL
ty

� �
− CU

sy þ CL
sy

� �
CU

sy þ CL
sy þ CU

ty þ CL
ty

; ð22Þ

Ey
0 ¼ max 1 −max Ey; 0

� �� �
; 0

� �
; ð23Þ

M ¼ αEx
0 þ 1−αð ÞEy

0 ; ð24Þ

Where Ex
' and Ey

' are defined as the strength of A
≈
s over A

≈
t

with respect to the domain and the membership function of
them, respectively. We use α as a trade-off factor between Ex

and Ey. Then, the possibility degree of A
≈
s over A

≈
t is defined

as:

p A
≈
s ≥ A

≈
t

� �
¼ min M ; 1ð Þ; ð25Þ
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If n trapezoidal interval type-2 fuzzy sets need to be com-
pared, the possibility degree matrix (P) can be obtained,
shown as follows:

P ¼

p A
≈
1 ≥ A

≈
1

� �
p A

≈
1 ≥ A

≈
2

� �
p A

≈
2 ≥ A

≈
1

� �
p A

≈
2 ≥ A

≈
2

� � ⋯ p A
≈
1 ≥ A

≈
n

� �
⋯ p A

≈
2 ≥ A

≈
n

� �
⋮ ⋮

p A
≈
n ≥ A

≈
1

� �
p A

≈
n ≥ A

≈
2

� � ⋱ ⋮
⋯ p A

≈
n ≥ A

≈
n

� �

2666664

3777775;
ð26Þ

in other words

pij ¼ p A
≈
i ≥ A

≈
j

� �
: ð27Þ

Definition 4.4 Suppose that A
≈
i i ¼ 1; 2;…; nð Þ is a collec-

tion of n trapezoidal interval type-2 fuzzy sets. Based on
previous definition, all possibility degrees (pij) can be obtain-
ed by comparing every two trapezoidal interval type-2 fuzzy
sets. Then, the following formula is used for calculating the
ranking values of alternatives [42]:

Rank A
≈
i

� �
¼ 1

n n−1ð Þ
Xn

j¼1
p A

≈
i ≥ A

≈
j

� �
þ n

2
−1

� �
; ð28Þ

where 1≤i≤n.

Thirteen fuzzy sets that were provided by Bortolan and
Degani [49] is used for computing and comparing the ranking
values. These fuzzy sets are shown in Table 1. Three values of
α (α=0.5, 0.8,1) are chosen for this computation. The pre-
sented method is compared with some existing methods that
proposed by Lee and Li [50], Baas and Kwakernaak [51],
Chang et al. [52] and, Chen and Lee [42]. The calculated
results are shown in Table 2.

According to Table 2, some drawbacks of the existing
methods [42, 50–52] can be observed. Drawing a comparison
between these existing methods and the proposed one can be
described as follows:

1. According to Set 1 in Table 2, the methods of Chen and
Lee [42], Lee and Li [50] (in Uniform mode) and the
proposed method get the same ranking order.

2. According to Set 5, Set 6 and Set 8, as shown in Table 2,
the same results can be obtained based on Chen and Lee’s
method [42], Lee and Li’s method [50], the method of
Chang et al. [52], and the proposed method (in α=0.8 and

α=1 for Set 5), while Baas and Kwakernaak’s method
[51] cannot individualize the fuzzy sets in ranking order.

3. According to Set 10 in Table 2, the ranking order of
proposed method in α=0.8 and 1 is consistent with the
methods proposed by Chen and Lee [42], Baas and
Kwakernaak [51] and Lee and Li [50], whereas in
α=0.5 gets a different ranking result. The result from
the method of Chang et al. [52] in α=0.5 and β=0.5 is
inconsistent with other approaches as well.

4. According to Set 11 which has been represented in
Table 2, the same outcomes can be obtained based on
methods proposed by Chen and Lee [42], Chang et al.
[52], Baas and Kwakernaak [51], Lee and Li [50], and the
method that is presented in this study.

5. According to Set 12 in Table 2, it can be seen that Lee and
Li’s method [50], Baas and Kwakernaak’s method [51],
and the proposed method in α=1 cannot distinguish

Table 1 Thirteen sets of fuzzy sets given by Bortolan and Degani [49]

Sets of fuzzy sets Trapezoidal interval type-2 fuzzy sets

Set 1 A
≈
1

((0.35,0.4,0.4,1;1,1), (0.35,0.4,0.4,1;1,1))

A
≈
2

((0.15,0.7,0.7,0.8;1,1), (0.15,0.7,0.7,0.8;1,1))

Set 2 A
≈
1

((0,0.1,0.5,1;1,1), (0,0.1,0.5,1;1,1))

A
≈
2

((0.5,0.6,0.6,0.7;1,1), (0.5,0.6,0.6,0.7;1,1))

Set 3 A
≈
1

((0,0.1,0.5,1;1,1), (0,0.1,0.5,1;1,1))

A
≈
2

((0.6,0.7,0.7,0.8;1,1), (0.6,0.7,0.7,0.8;1,1))

Set 4 A
≈
1

((0.4,0.9,0.9,1;1,1), (0.4,0.9,0.9,1;1,1))

A
≈
2

((0.4,0.7,0.7,1;1,1), (0.4,0.7,0.7,1;1,1))

A
≈
3

((0.4,0.5,0.5,1;1,1), (0.4,0.5,0.5,1;1,1))

Set 5 A
≈
1

((0.5,0.7,0.7,0.9;1,1), (0.5,0.7,0.7,0.9;1,1))

A
≈
2

((0.3,0.7,0.7,0.9;1,1), (0.3,0.7,0.7,0.9;1,1))

A≈
3 ((0.3,0.4,0.7,0.9;1,1), (0.3,0.4,0.7,0.9;1,1))

Set 6 A
≈
1

((0.3,0.5,0.8,0.9;1,1), (0.3,0.5,0.8,0.9;1,1))

A
≈
2

((0.3,0.5,0.5,0.9;1,1), (0.3,0.5,0.5,0.9;1,1))

A
≈
3

((0.3,0.5,0.5,0.7;1,1), (0.3,0.5,0.5,0.7;1,1))

Set 7 A
≈
1

((0.2,0.5,0.5,0.8;1,1), (0.2,0.5,0.5,0.8;1,1))

A
≈
2

((0.4,0.5,0.5,0.6;1,1), (0.4,0.5,0.5,0.6;1,1))

Set 8 A
≈
1

((0,0.4,0.6,0.8;1,1), (0,0.4,0.6,0.8;1,1))

A
≈
2

((0.2,0.5,0.5,0.9;1,1), (0.2,0.5,0.5,0.9;1,1))

A
≈
3

((0.2,0.6,0.7,0.8;1,1), (0.2,0.6,0.7,0.8;1,1))

Set 9 A
≈
1

((0,0.2,0.2,0.4;1,1), (0,0.2,0.2,0.4;1,1))

A
≈
2

((0.6,0.8,0.8,1;0.8,0.8), (0.6,0.8,0.8,1;0.8,0.8))

Set 10 A
≈
1

((0.4,0.6,0.6,0.8;1,1), (0.4,0.6,0.6,0.8;1,1))

A
≈
2

((0.8,0.9,0.9,1;0.2,0.2), (0.8,0.9,0.9,1;0.2,0.2))

Set 11 A
≈
1

((0,0.2,0.2,0.4;0.2,0.2), (0,0.2,0.2,0.4;0.2,0.2))

A
≈
2

((0.6,0.8,0.8,1;1,1), (0.6,0.8,0.8,1;1,1))

Set 12 A
≈
1

((0.2,0.6,0.6,1;1,1), (0.2,0.6,0.6,1;1,1))

A
≈
2

((0.2,0.6,0.6,1;0.2,0.2), (0.2,0.6,0.6,1;0.2,0.2))

Set 13 A
≈
1

((0.6,1,1,1,;1,1), (0.6,1,1,1,;1,1))

A
≈
2

((0.8,1,1,1,;0.2,0.2), (0.8,1,1,1,;0.2,0.2))
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between fuzzy sets, whereas the same results can be
obtained from Chen and Lee’s method [42], the method
of Chang et al. [52] and the proposed method in α=0.5
and α=0.8.

6. According to Set 13, as shown in Table 2, the result of the
proposed method in α=0.5 and α=0.8 is consistent with
Chen and Lee’s method [42] and the method of Chang
et al. [52], while in α=1 proposed method gets result that
consistent with Lee and Li’s method [50]. Baas and
Kwakernaak’s method [51] cannot distinguish between
fuzzy sets of this set.

With overall view of Table 2, we can say that the
proposed method in α=0.8 gets the results that are con-
sistent with other methods. Thus, α=0.8 is chosen as a
good value for α in this study.

The simplicity of the proposed method is the major
advantage of it. The computational steps of the proposed
method are less than those of other methods, while it gets
the same results in most cases.

5 A new method fuzzy multiple criteria group
decision-making based on COPRAS method

The COPRAS method is an MCDM technique that was intro-
duced by Zavadskas et al. [48]. This method determines a
solution with respect to the positive-ideal solution and the
negative-ideal solution and therefore can be considered as a
compromising MCDM method. Originally, the COPRAS

Table 2 A comparison of the ranking results for different methods

Sets of
fuzzy sets

Lee and Li’s method
[50]

Baas and Kwakernaak’s
method [51]

The method of Chang et al.
[52]

Chen and Lee’s method
[42]

The proposed method

Uniform Proportional α=0.1, β=0.9 α=0.5, β=0.5 α=0.5 α=0.8 α=1

Set 1 A
≈
1

0.58 0.54 0.84 0.417 0.519 0.52 1.000 1.000 1.000

A
≈
2

0.55 0.59 1 0.462 0.544 0.48 0.993 0.988 0.985

Set 2 A
≈
1

0.41 0.38 0.82 0.158 0.45 0.4 0.954 0.927 0.908

A
≈
2

0.6 0.60 1 0.554 0.55 0.6 0.969 0.988 1

Set 3 A
≈
1

0.41 0.38 0.66 0.158 0.45 0.36 0.936 0.897 0.872

A
≈
2

0.70 0.70 1 0.644 0.6 0.64 0.969 0.988 1

Set 4 A
≈
1

0.77 0.80 1 0.878 0.65 0.39 0.583 0.583 0.583

A
≈
2

0.70 0.70 0.74 0.788 0.6 0.33 0.580 0.577 0.576

A
≈
3

0.63 0.60 0.6 0.698 0.55 0.28 0.571 0.564 0.559

Set 5 A
≈
1

0.70 0.70 1 0.752 0.6 0.4 0.571 0.579 0.583

A
≈
2

0.63 0.65 1 0.743 0.575 0.32 0.567 0.572 0.575

A
≈
3

0.58 0.57 1 0.73 0.538 0.28 0.572 0.564 0.560

Set 6 A
≈
1

0.62 0.63 1 0.775 0.563 0.39 0.583 0.583 0.583

A
≈
2

0.57 0.55 1 0.653 0.525 0.34 0.568 0.572 0.576

A
≈
3

0.50 0.50 1 0.572 0.5 0.27 0.557 0.556 0.555

Set 7 A
≈
1

0.50 0.50 1 0.608 0.5 0.5 1 1 1

A
≈
2

0.50 0.50 1 0.536 0.5 0.5 1 1 1

Set 8 A
≈
1

0.44 0.46 1 0.635 0.475 0.28 0.566 0.555 0.548

A
≈
2

0.53 0.53 0.88 0.649 0.513 0.35 0.568 0.575 0.580

A
≈
3

0.56 0.58 1 0.694 0.538 0.37 0.581 0.583 0.583

Set 9 A
≈
1

0.20 0.20 0 0.158 0.35 0.28 0.85 0.76 0.7

A
≈
2

0.80 0.80 0.8 0.688 0.6 0.72 0.972 0.989 1

Set 10 A
≈
1

0.60 0.60 0 0.518 0.55 0.49 0.95 0.92 0.9

A
≈
2

0.90 0.90 0.2 0.784 0.5 0.51 0.833 0.933 1

Set 11 A
≈
1

0.20 0.20 0 0.118 0.15 0.25 0.683 0.693 0.7

A
≈
2

0.80 0.80 0.2 0.698 0.65 0.75 1 1 1

Set 12 A
≈
1

0.60 0.60 0.2 0.446 0.55 0.63 1 1 1

A
≈
2

0.60 0.60 0.2 0.406 0.35 0.37 0.833 0.933 1

Set 13 A
≈
1

0.87 0.90 0.2 0.932 0.7 0.63 0.991 0.985 0.981

A
≈
2

0.95 0.95 0.2 0.901 0.525 0.37 0.833 0.933 1

1122 Int J Adv Manuf Technol (2014) 75:1115–1130



method has been developed for decision-making under deter-
ministic conditions. Since uncertainty is an inevitable feature
of decision-making, an extended form of the COPRAS meth-
od is proposed in this study that can be used for group
decision-making problems in uncertain conditions where such
uncertainties are taken into account by means of interval type-
2 fuzzy sets.

In this section, a new method for dealing with multiple
criteria group decision-making problems is proposed. This
method is based on the presented arithmetic operations be-
tween interval type-2 fuzzy sets, the proposed fuzzy ranking
method and the COPRAS method. Let L be a set of alterna-
tives, L={l1,l2,…ln}, and let R be a set of criteria, R={r1,r2,
…rm,}. Assume that there are k decision makers D1,D2,…,
andDk. The proposed method is now shown as follows:

Step 1: Construct the decision matrixMp of the pth decision
maker, shown as follows:

Mp ¼ Xp
ij

≈h i
n�m

¼
X p

11

≈
Xp

12

≈

X p
21

≈
Xp

22

≈
⋯ Xp

1m

≈

⋯ Xp
2m

≈

⋮ ⋮
Xp

n1

≈
X p

n2

≈
⋮ ⋮
⋯ Xp

nm

≈

2664
3775; ð29Þ

where Xp
ij

≈
denotes the performance value of alterna-

tive li on criterion rj assigned by the pth decision
maker, 1≤i≤n, 1≤j≤m, 1≤p≤k.

Step 2: Construct the average decision matrix Y, shown as
follows:

X ij
≈ ¼ X 1

ij

≈
⊕X 2

ij

≈
⊕…⊕X k

ij

≈� �
=k

� �
; ð30Þ

Y ¼ X ij
≈h i

n�m
; ð31Þ

where X ij
≈
denotes the average performance value of

alternative li on criterion rj, 1≤i≤n, 1≤j≤m.

Step 3: Construct the weighting matrix Wp of the criteria of
the pth decision maker, shown as follows:

Wp ¼ w
≈ p
j

h i
m�1

¼
w
≈ p
1

w
≈ p
2

⋮
w
≈ p
m

26664
37775; ð32Þ

wherew≈ p
j denotes the weight of criterion rj assigned

by the pth decision maker, 1≤j≤m, 1≤p≤k.

Step 4: Construct the average weighting matrixW, shown as
follows:

w≈ j ¼ w≈1j⊕w≈2j⊕…⊕w≈kj

� �
=k

� �
; ð33Þ

W ¼ w≈ j

	 

m�1

: ð34Þ

Step 5: Normalize the average decision matrix Y and con-
struct the normalized matrix N using the following
equations:

v j
≈ ¼ X 1 j

≈
⊕X 2 j

≈
⊕…⊕X nj

≈� �
; ð35Þ

nij
≈ ¼ X ij

≈
⊘ v j

≈ ; ð36Þ

N ¼ nij
≈	 


nxm
; ð37Þ

where 1≤i≤n, 1≤j≤m.

Step 6: Determine the weighted normalized decision matrix
E, shown as follows:

eij
≈ ¼ nij

≈ ⊗wj
≈ ; ð38Þ

E ¼ eij
≈
h i

n�m
: ð39Þ

Step 7: Calculate the sum of weighted normalized values for

both the beneficial criteria Sþi
≈

and non-beneficial

criteria S−i
≈

, shown as follows:

Sþi
≈ ¼ eþi1

≈ ⊕ eþi2
≈ ⊕…⊕ eþim

≈ð Þ; ð40Þ

S−i
≈ ¼ e−i1

≈ ⊕ e−i2
≈ ⊕…⊕ e−im

≈ð Þ; ð41Þ

where eþij
≈ and e−ij≈ are the weighted normalized

values for the beneficial and non-beneficial criteria,

respectively. The greater value of Sþi
≈

, the better is

the alternative, and the lower the value of S−i
≈

, the

better is the alternative. In other words, the Sþi
≈

and
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S−i
≈

Values describe the degree of goals achieved by
each alternative.

Step 8: Determine the ranking values for both Sþi
≈

and S−i
≈

(1≤
i≤n) with the equations presented in Section 4.

Step 9: Determine the relative significances Qi of the alter-
natives, shown as follows:

Qi ¼ Rank Sþi
≈� �

þ
Rankmin S−i

≈� �Xn

i¼1
Rank S−i

≈� �� �
Rank S−i

≈� �Xn

i¼1
Rankmin S−i

≈� ��
Rank S−i

≈� �� �;
ð42Þ

where Rankmin S−i
≈� �

denotes the minimum value of

Rank S−i
≈� �

. The relative significance value de-

scribes the degree of satisfaction attained by an
alternative. The above formula can be written as
follows:

Qi ¼ Rank Sþi
≈� �

þ
Xn

i¼1
Rank S−i

≈� �� �
Rank S−i

≈� �Xn

i¼1
1
�
Rank S−i

≈� �� �:
ð43Þ

Step 10: Calculate the quantitative utility Ui. The degree of
an alternative’s utility is determined by comparing
the relative significances of all alternatives with the
most efficient one, shown as follows:

Ui ¼ Qi

Qmax

� �
� 100; ð44Þ

where Qmax is the maximum relative significance
value. The larger the value of Ui, the more prefer-
ence of the alternative li, where 1≤i≤n.

Table 3 Linguistic terms and their corresponding interval type-2 fuzzy
sets

Linguistic terms Interval type-2 fuzzy sets

Very low (VL) ((0,0,0,0.1;1,1), (0,0,0,0.05;0.9,0.9))

Low (L) ((0,0.1,0.15,0.3;1,1), (0.05,0.1,0.15,0.2;0.9,0.9))

Medium low (ML) ((0.1,0.3,0.35,0.5;1,1), (0.2,0.3,0.35,0.4;0.9,0.9))

Medium (M) ((0.3,0.5,0.55,0.7;1,1), (0.4,0.5,0.55,0.6;0.9,0.9))

Medium high (MH) ((0.5,0.7,0.75,0.9;1,1), (0.6,0.7,0.75,0.8;0.9,0.9))

High (H) ((0.7,0.85,0.9,1;1,1), (0.8,0.85,0.9,0.95;0.9,0.9))

Very high (VH) ((0.9,1,1,1;1,1), (0.95,1,1,1;0.9,0.9))

Table 4 Weights of the criteria evaluated by the decision makers

Criteria Decision makers

D1 D2 D3

Responsiveness VH H VH

Cost MH M M

Defect rate H H MH

Delivery reliability VH MH VH

Flexibility ML L M

Table 5 Evaluating values of alternatives of the decision makers with
respect to different criteria

Criteria Suppliers Decision makers

D1 D2 D3

Responsiveness l1 VL L ML

l2 H MH VH

l3 H MH MH

l4 M M ML

l5 H H MH

l6 VH VH H

Cost l1 VH H H

l2 ML ML VL

l3 M M ML

l4 ML ML ML

l5 VL L L

l6 VL VL L

Defect rate l1 M ML M

l2 L L VL

l3 ML L L

l4 VL VL L

l5 M ML M

l6 L VL VL

Delivery reliability l1 L ML MH

l2 H H VH

l3 MH M M

l4 H MH H

l5 M ML MH

l6 VH VH MH

Flexibility l1 VL L ML

l2 MH MH H

l3 M M ML

l4 M MH M

l5 H MH M

l6 VH MH MH
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Table 6 The average decision matrix Y
� �

eXU
ij

eXL
ij

x1ij
U x2ij

U x3ij
U x4ij

U H1ðeXU
ij Þ H2ðeXU

ij Þ x1ij
L x2ij

L x3ij
L x4ij

L H1ðeXL
ijÞ H2ðeXL

ijÞ

X
≈
11

0.03 0.13 0.17 0.30 1.00 1.00 0.08 0.13 0.17 0.22 0.90 0.90

X
≈
12

0.70 0.85 0.88 0.97 1.00 1.00 0.78 0.85 0.88 0.92 0.90 0.90

X
≈
13

0.57 0.75 0.80 0.93 1.00 1.00 0.67 0.75 0.80 0.85 0.90 0.90

X
≈
14

0.23 0.43 0.48 0.63 1.00 1.00 0.33 0.43 0.48 0.53 0.90 0.90

X
≈
15

0.63 0.80 0.85 0.97 1.00 1.00 0.73 0.80 0.85 0.90 0.90 0.90

X
≈
16

0.83 0.95 0.97 1.00 1.00 1.00 0.90 0.95 0.97 0.98 0.90 0.90

X
≈
21

0.77 0.90 0.93 1.00 1.00 1.00 0.85 0.90 0.93 0.97 0.90 0.90

X
≈
22

0.07 0.20 0.23 0.37 1.00 1.00 0.13 0.20 0.23 0.28 0.90 0.90

X
≈
23

0.23 0.43 0.48 0.63 1.00 1.00 0.33 0.43 0.48 0.53 0.90 0.90

X
≈
24

0.10 0.30 0.35 0.50 1.00 1.00 0.20 0.30 0.35 0.40 0.90 0.90

X
≈
25

0.00 0.07 0.10 0.23 1.00 1.00 0.03 0.07 0.10 0.15 0.90 0.90

X
≈
26

0.00 0.03 0.05 0.17 1.00 1.00 0.02 0.03 0.05 0.10 0.90 0.90

X
≈
31

0.23 0.43 0.48 0.63 1.00 1.00 0.33 0.43 0.48 0.53 0.90 0.90

X
≈
32

0.00 0.07 0.10 0.23 1.00 1.00 0.03 0.07 0.10 0.15 0.90 0.90

X
≈
33

0.03 0.17 0.22 0.37 1.00 1.00 0.10 0.17 0.22 0.27 0.90 0.90

X
≈
34

0.00 0.03 0.05 0.17 1.00 1.00 0.02 0.03 0.05 0.10 0.90 0.90

X
≈
35

0.23 0.43 0.48 0.63 1.00 1.00 0.33 0.43 0.48 0.53 0.90 0.90

X
≈
36

0.00 0.03 0.05 0.17 1.00 1.00 0.02 0.03 0.05 0.10 0.90 0.90

X
≈
41

0.20 0.37 0.42 0.57 1.00 1.00 0.28 0.37 0.42 0.47 0.90 0.90

X
≈
42

0.77 0.90 0.93 1.00 1.00 1.00 0.85 0.90 0.93 0.97 0.90 0.90

X
≈
43

0.37 0.57 0.62 0.77 1.00 1.00 0.47 0.57 0.62 0.67 0.90 0.90

X
≈
44

0.63 0.80 0.85 0.97 1.00 1.00 0.73 0.80 0.85 0.90 0.90 0.90

X
≈
45

0.30 0.50 0.55 0.70 1.00 1.00 0.40 0.50 0.55 0.60 0.90 0.90

X
≈
46

0.77 0.90 0.92 0.97 1.00 1.00 0.83 0.90 0.92 0.93 0.90 0.90

X
≈
51

0.03 0.13 0.17 0.30 1.00 1.00 0.08 0.13 0.17 0.22 0.90 0.90

X
≈
52

0.57 0.75 0.80 0.93 1.00 1.00 0.67 0.75 0.80 0.85 0.90 0.90

X
≈
53

0.23 0.43 0.48 0.63 1.00 1.00 0.33 0.43 0.48 0.53 0.90 0.90

X
≈
54

0.37 0.57 0.62 0.77 1.00 1.00 0.47 0.57 0.62 0.67 0.90 0.90

X
≈
55

0.50 0.68 0.73 0.87 1.00 1.00 0.60 0.68 0.73 0.78 0.90 0.90

X
≈
56

0.63 0.80 0.83 0.93 1.00 1.00 0.72 0.80 0.83 0.87 0.90 0.90

Table 7 The average weighting matrix W
� �

ewU
ij ewL

ij

w1ij
U w2ij

U w3ij
U w4ij

U H1ðewU
ij Þ H2ðewU

ij Þ w1ij
L w2ij

L w3ij
L w4ij

L H1ðewL
ijÞ H2ðewL

ijÞ

w
≈
1

0.83 0.95 0.97 1.00 1.00 1.00 0.90 0.95 0.97 0.98 0.90 0.90

w
≈
2

0.37 0.57 0.62 0.77 1.00 1.00 0.47 0.57 0.62 0.67 0.90 0.90

w
≈
3

0.63 0.80 0.85 0.97 1.00 1.00 0.73 0.80 0.85 0.90 0.90 0.90

w
≈
4

0.77 0.90 0.92 0.97 1.00 1.00 0.83 0.90 0.92 0.93 0.90 0.90

w
≈
5

0.13 0.30 0.35 0.50 1.00 1.00 0.22 0.30 0.35 0.40 0.90 0.90
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6 Illustrative example

A high-technology manufacturing company desires to
select a suitable material supplier to purchase the key
components of new products. After initial screening, six
candidates (l1, l2, l3, l4, l5,and l6) remain for further assess-
ment. A committee of three decision makers, D1,D2,and
D3, has been formed to select the most appropriate
supplier.

Five criteria are considered:

1. Responsiveness
2. Cost
3. Defect rate

4. Delivery reliability
5. Flexibility

It should be noted that, “Responsiveness”, “Delivery
reliability” and “Flexibility” are the beneficial criteria
and, “Cost” and “Defect rate” are the non-beneficial
criteria. Decision makers use the linguistic terms shown
in Table 3 to assess the importance of the criteria and
evaluate the ratings of candidates with respect to each
criterion. The importance weights of the criteria deter-
mined by these decision makers are shown in Table 4
and the ratings of the six candidates given by the
decision makers under the various criteria are shown
in Table 5.

Table 8 The normalized matrix (N)

enUij enLij
n1ij
U n2ij

U n3ij
U n4ij

U H1ðenUij Þ H2ðenUij Þ n1ij
L n2ij

L n3ij
L n4ij

L H1ðenLijÞ H2ðenLijÞ
n≈11 0.01 0.03 0.04 0.10 1.00 1.00 0.02 0.03 0.04 0.06 0.90 0.90

n≈12 0.15 0.20 0.23 0.32 1.00 1.00 0.18 0.20 0.23 0.26 0.90 0.90

n≈13 0.12 0.18 0.20 0.31 1.00 1.00 0.15 0.18 0.20 0.24 0.90 0.90

n≈14 0.05 0.10 0.12 0.21 1.00 1.00 0.08 0.10 0.12 0.15 0.90 0.90

n≈15 0.13 0.19 0.22 0.32 1.00 1.00 0.17 0.19 0.22 0.26 0.90 0.90

n≈16 0.17 0.23 0.25 0.33 1.00 1.00 0.20 0.23 0.25 0.28 0.90 0.90

n≈21 0.26 0.42 0.48 0.86 1.00 1.00 0.35 0.42 0.48 0.62 0.90 0.90

n≈22 0.02 0.09 0.12 0.31 1.00 1.00 0.05 0.09 0.12 0.18 0.90 0.90

n≈23 0.08 0.20 0.25 0.54 1.00 1.00 0.14 0.20 0.25 0.34 0.90 0.90

n≈24 0.03 0.14 0.18 0.43 1.00 1.00 0.08 0.14 0.18 0.26 0.90 0.90

n≈25 0.00 0.03 0.05 0.20 1.00 1.00 0.01 0.03 0.05 0.10 0.90 0.90

n≈26 0.00 0.02 0.03 0.14 1.00 1.00 0.01 0.02 0.03 0.06 0.90 0.90

n≈31 0.11 0.31 0.41 1.27 1.00 1.00 0.20 0.31 0.41 0.64 0.90 0.90

n≈32 0.00 0.05 0.09 0.47 1.00 1.00 0.02 0.05 0.09 0.18 0.90 0.90

n≈33 0.02 0.12 0.19 0.73 1.00 1.00 0.06 0.12 0.19 0.32 0.90 0.90

n≈34 0.00 0.02 0.04 0.33 1.00 1.00 0.01 0.02 0.04 0.12 0.90 0.90

n≈35 0.11 0.31 0.41 1.27 1.00 1.00 0.20 0.31 0.41 0.64 0.90 0.90

n≈36 0.00 0.02 0.04 0.33 1.00 1.00 0.01 0.02 0.04 0.12 0.90 0.90

n≈41 0.04 0.09 0.10 0.19 1.00 1.00 0.06 0.09 0.10 0.13 0.90 0.90

n≈42 0.15 0.21 0.23 0.33 1.00 1.00 0.19 0.21 0.23 0.27 0.90 0.90

n≈43 0.07 0.13 0.15 0.25 1.00 1.00 0.10 0.13 0.15 0.19 0.90 0.90

n≈44 0.13 0.19 0.21 0.32 1.00 1.00 0.16 0.19 0.21 0.25 0.90 0.90

n≈45 0.06 0.12 0.14 0.23 1.00 1.00 0.09 0.12 0.14 0.17 0.90 0.90

n≈46 0.15 0.21 0.23 0.32 1.00 1.00 0.18 0.21 0.23 0.26 0.90 0.90

n≈51 0.01 0.04 0.05 0.13 1.00 1.00 0.02 0.04 0.05 0.08 0.90 0.90

n≈52 0.13 0.21 0.24 0.40 1.00 1.00 0.17 0.21 0.24 0.30 0.90 0.90

n≈53 0.05 0.12 0.14 0.27 1.00 1.00 0.09 0.12 0.14 0.19 0.90 0.90

n≈54 0.08 0.16 0.18 0.33 1.00 1.00 0.12 0.16 0.18 0.23 0.90 0.90

n≈55 0.11 0.19 0.22 0.37 1.00 1.00 0.15 0.19 0.22 0.27 0.90 0.90

n≈56 0.14 0.22 0.25 0.40 1.00 1.00 0.18 0.22 0.25 0.30 0.90 0.90
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Table 9 The weighted normalized decision matrix (E)

eeUij eeLij
e1ij
U e2ij

U e3ij
U e4ij

U H1ðeeUij Þ H2ðeeUij Þ e1ij
L e2ij

L e3ij
L e4ij

L H1ðeeLijÞ H2ðeeLijÞ
e≈11 0.01 0.03 0.04 0.10 1.00 1.00 0.02 0.03 0.04 0.06 0.90 0.90

e≈12 0.12 0.19 0.22 0.32 1.00 1.00 0.16 0.19 0.22 0.26 0.90 0.90

e≈13 0.12 0.19 0.22 0.32 1.00 1.00 0.16 0.19 0.22 0.26 0.90 0.90

e≈14 0.04 0.10 0.12 0.21 1.00 1.00 0.07 0.10 0.12 0.15 0.90 0.90

e≈15 0.11 0.18 0.21 0.32 1.00 1.00 0.15 0.18 0.21 0.25 0.90 0.90

e≈16 0.14 0.22 0.24 0.33 1.00 1.00 0.18 0.22 0.24 0.28 0.90 0.90

e≈21 0.10 0.24 0.30 0.66 1.00 1.00 0.16 0.24 0.30 0.41 0.90 0.90

e≈22 0.01 0.05 0.07 0.24 1.00 1.00 0.03 0.05 0.07 0.12 0.90 0.90

e≈23 0.03 0.11 0.15 0.42 1.00 1.00 0.06 0.11 0.15 0.23 0.90 0.90

e≈24 0.01 0.08 0.11 0.33 1.00 1.00 0.04 0.08 0.11 0.17 0.90 0.90

e≈25 0.00 0.02 0.03 0.15 1.00 1.00 0.01 0.02 0.03 0.06 0.90 0.90

e≈26 0.00 0.01 0.02 0.11 1.00 1.00 0.00 0.01 0.02 0.04 0.90 0.90

e≈31 0.07 0.25 0.35 1.22 1.00 1.00 0.15 0.25 0.35 0.58 0.90 0.90

e≈32 0.00 0.04 0.07 0.45 1.00 1.00 0.01 0.04 0.07 0.16 0.90 0.90

e≈33 0.01 0.10 0.16 0.71 1.00 1.00 0.04 0.10 0.16 0.29 0.90 0.90

e≈34 0.00 0.02 0.04 0.32 1.00 1.00 0.01 0.02 0.04 0.11 0.90 0.90

e≈35 0.07 0.25 0.35 1.22 1.00 1.00 0.15 0.25 0.35 0.58 0.90 0.90

e≈36 0.00 0.02 0.04 0.32 1.00 1.00 0.01 0.02 0.04 0.11 0.90 0.90

e≈41 0.03 0.08 0.09 0.18 1.00 1.00 0.05 0.08 0.09 0.12 0.90 0.90

e≈42 0.12 0.19 0.21 0.32 1.00 1.00 0.16 0.19 0.21 0.25 0.90 0.90

e≈43 0.06 0.12 0.14 0.24 1.00 1.00 0.09 0.12 0.14 0.17 0.90 0.90

e≈44 0.10 0.17 0.19 0.31 1.00 1.00 0.13 0.17 0.19 0.24 0.90 0.90

e≈45 0.05 0.11 0.12 0.22 1.00 1.00 0.07 0.11 0.12 0.16 0.90 0.90

e≈46 0.12 0.19 0.21 0.31 1.00 1.00 0.15 0.19 0.21 0.24 0.90 0.90

e≈51 0.00 0.01 0.02 0.06 1.00 1.00 0.00 0.01 0.02 0.03 0.90 0.90

e≈52 0.02 0.06 0.08 0.20 1.00 1.00 0.04 0.06 0.08 0.12 0.90 0.90

e≈53 0.01 0.04 0.05 0.14 1.00 1.00 0.02 0.04 0.05 0.07 0.90 0.90

e≈54 0.01 0.05 0.06 0.16 1.00 1.00 0.03 0.05 0.06 0.09 0.90 0.90

e≈55 0.02 0.06 0.08 0.19 1.00 1.00 0.03 0.06 0.08 0.11 0.90 0.90

e≈56 0.02 0.07 0.09 0.20 1.00 1.00 0.04 0.07 0.09 0.12 0.90 0.90

Table 10 The calculated values for S
≈
þi

esUþi esLþi

s+ i1
U s+ i2

U s+ i3
U s+ i4

U H1 esUþi

� �
H2 esUþi

� �
s+ i1
L s+ i2

L s+ i3
L s+ i4

L H1 esLþi

� �
H2 esLþi

� �
S
≈
þ1

0.04 0.12 0.15 0.34 1.00 1.00 0.07 0.12 0.15 0.21 0.90 0.90

S
≈
þ2

0.26 0.45 0.51 0.84 1.00 1.00 0.35 0.45 0.51 0.63 0.90 0.90

S
≈
þ3

0.19 0.35 0.41 0.70 1.00 1.00 0.26 0.35 0.41 0.51 0.90 0.90

S
≈
þ4

0.15 0.31 0.38 0.68 1.00 1.00 0.23 0.31 0.38 0.48 0.90 0.90

S
≈
þ5

0.17 0.34 0.41 0.73 1.00 1.00 0.26 0.34 0.41 0.52 0.90 0.90

S
≈
þ6

0.28 0.47 0.53 0.84 1.00 1.00 0.38 0.47 0.53 0.64 0.90 0.90
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In this section, the proposed method is applied to solve this
problem. The computational procedure is summarized as
follows:

Step 1: Based on Table 5 and Eq. 29, the decision matrices
M1,M2,andM3 of the alternatives (suppliers) l1,l2,l3,
l4,l5,andl6 are constructed respectively:

M 1 ¼

VL H H M H VH
VH ML M ML VL VL
M L ML VL M L
L H MH H M VH
VL MH M M H VH

266664
377775 ;

M 2 ¼

L MH MH M H VH
H ML M ML L VL
ML L L VL ML VL
ML H M MH ML VH
L MH M MH MH MH

266664
377775;

M 3 ¼

ML VH MH ML MH H
H VL ML ML L L
M VL L L M VL
MH VH M H MH MH
ML H ML M M MH

266664
377775:

Step 2: Based on the results of Step 1, Eqs. 30 and 31, we

can get the average decision matrix Y , shown as
follows:

Y ¼

X 11
≈

X 12
≈

X 13
≈

X 14
≈

X 15
≈

X 16
≈

X 21
≈

X 22
≈

X 23
≈

X 24
≈

X 25
≈

X 26
≈

X 31
≈

X 32
≈

X 33
≈

X 34
≈

X 35
≈

X 36
≈

X 41
≈

X 42
≈

X 43
≈

X 44
≈

X 45
≈

X 46
≈

X 51
≈

X 52
≈

X 53
≈

X 54
≈

X 55
≈

X 56
≈

266664
377775

Table 6 presents the results.

Step 3: Based on Table 4 and Eq. 32, we can get the
weighting matrices W1,W2, and W3, respectively,
where

W 1 ¼

VH
MH
H
VH
ML

266664
377775; W 2 ¼

H
M
H
MH
L

266664
377775; W 3 ¼

VH
M
MH
VH
M

266664
377775

Step 4: Based on Step 3, Eqs. 33 and 34, we can get the

average weighting matrix W, where

W ¼

w1
≈

w2
≈

w3
≈

w4
≈

w5
≈

266664
377775;

The results are shown in Table 7.

Step 5: Based on Table 6, Eqs. 35, 36, and 37, normalized
matrix N is constructed, where

N ¼

n11
≈ n12

≈ n13
≈ n14

≈ n15
≈ n16

≈

n21
≈ n22

≈ n23
≈ n24

≈ n25
≈ n26

≈

n31
≈ n32

≈ n33
≈ n34

≈ n35
≈ n36

≈

n41
≈ n42

≈ n43
≈ n44

≈ n45
≈ n46

≈

n51
≈ n52

≈ n53
≈ n54

≈ n55
≈ n56

≈

266664
377775;

and the results are shown in Table 8.

Step 6: Based on Tables 7 and 8, Eqs. 38 and 39, we can
determine the weighted normalized decision matrix
E, where

Table 11 The calculated values for S
≈
−i

esU−i esL−i
s− i1
U s− i2

U s− i3
U s− i4

U H1 esU−i� �
H2 esU−i� �

s− i1
L s− i2

L s− i3
L s− i4

L H1 esL−i� �
H2 esL−i� �

S
≈
−1 0.16 0.49 0.65 1.88 1.00 1.00 0.31 0.49 0.65 0.99 0.90 0.90

S
≈
−2 0.01 0.09 0.15 0.69 1.00 1.00 0.04 0.09 0.15 0.28 0.90 0.90

S
≈
−3 0.04 0.21 0.31 1.13 1.00 1.00 0.11 0.21 0.31 0.51 0.90 0.90

S
≈
−4 0.01 0.10 0.15 0.65 1.00 1.00 0.05 0.10 0.15 0.28 0.90 0.90

S
≈
−5 0.07 0.27 0.38 1.38 1.00 1.00 0.15 0.27 0.38 0.64 0.90 0.90

S
≈
−6 0.00 0.03 0.05 0.43 1.00 1.00 0.01 0.03 0.05 0.15 0.90 0.90
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E ¼

e11
≈ e12

≈ e13
≈ e14

≈ e15
≈ e16

≈

e21
≈ e22

≈ e23
≈ e24

≈ e25
≈ e26

≈

e31
≈ e32

≈ e33
≈ e34

≈ e35
≈ e36

≈

e41
≈ e42

≈ e43
≈ e44

≈ e45
≈ e46

≈

e51
≈ e52

≈ e53
≈ e54

≈ e55
≈ e56

≈

266664
377775;

and Table 9 presents the results.

Step 7: Based on Table 9, Eqs. 40 and 41, we can calculate

Sþi
≈

and S−i
≈

. The results are shown in Tables 10 and
11.

Step 8: Based on Tables 10 and 11 and the method that

presented in section 4, ranking values of Sþi
≈

and

S−i
≈

are calculated and shown in Table 12.
Step 9 and 10: Based on Table 12, Eqs. 43 and 44, we can

determine the relative significances Qi and
the quantitative utility Ui of the alternatives,
as shown in Table 13.

With respect to Table 13 the optimal rank-
ing of six alternatives (suppliers) is l6≻l2≻l4
≻l3≻l5≻l1. Thus, l6 is the best choice.

7 Conclusion

In this paper, a new method for ranking interval type-2 fuzzy
numbers, based on the centroid of fuzzy sets has been pro-
posed and compared with some existing methods. Although
the proposed method is simpler than others, the comparison

results validate the performance of it. We have presented a
newmethod for fuzzy multiple criteria group decision-making
based on the proposed ranking method and COPRAS method
within the context of interval type-2 fuzzy sets. We have also
illustrated the application of the proposed method in supplier
selection problems through a numerical example. The pro-
posed method provides us with a useful way to handle fuzzy
multiple criteria group decision-making problems based on
interval type-2 fuzzy sets.
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