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Abstract Brass and brass alloys are widely employed indus-
trial materials because of their excellent characteristics such as
high corrosion resistance, non-magnetism, and good machin-
ability. Surface quality plays a very important role in the
performance of milled products, as good surface quality can
significantly improve fatigue strength, corrosion resistance, or
creep life. Surface roughness (Ra) is one of the most important
factors for evaluating surface quality during the finishing
process. The quality of surface affects the functional charac-
teristics of the workpiece, including fatigue, corrosion, frac-
ture resistance, and surface friction. Furthermore, surface
roughness is among the most critical constraints in cutting
parameter selection in manufacturing process planning. In this
paper, the adaptive neuro-fuzzy inference system (ANFIS)
was used to predict the surface roughness in computer numer-
ical control (CNC) end milling. Spindle speed, feed rate, and
depth of cut were the predictor variables. Experimental vali-
dation runs were conducted to validate the ANFIS model. The
predicted surface roughness was compared with measured
data, and the maximum prediction error for surface roughness
was 6.25 %, while the average prediction error was 2.75 %.

Keywords Brass . ANFIS . Surface roughness . CNC . End
milling

1 Introduction

Brass is one of the first two metals most widely used by
humans, copper and its alloy (brass) and gold [1]. Brass is
specified because of the unique combination of properties, it is
stronger and harder than copper, easy to form into various
shapes, a good conductor of heat, and is generally resistant to
corrosion from salt water. Owing to these properties, brass is
usually a first-choice material for many components in equip-
ment made in general. In the electrical and precision engineer-
ing industries, brass is also used to make pipes and tubes,
weather stripping, and other architectural trim pieces, screws,
radiators, musical instruments, and cartridge casting for fire-
arms [2].

In the milling process, surface roughness plays a vital role
in how products perform, and it is also a factor with great
influence on manufacturing cost. It describes the geometry of
the machined surface, and combined with surface texture, it
can play an important role on the operational characteristics of
the part (e.g., fatigue, corrosion, fracture resistance, and sur-
face friction). To achieve a desirable surface quality value, the
part must be machined more than once. Therefore, the desired
surface finish is usually specified, and appropriate processes
are selected to attain the required quality [3].

To achieve a desired surface finish, a good predictive
model is required for stable machining. The number of surface
roughness prediction models available in literature is very
limited [4]. Most surface quality prediction models are empir-
ical and generally based on laboratory experiments. In addi-
tion, it is practically very difficult to control all factors as
required to obtain reproducible results [5, 6].

Actual surface roughness monitoring can be accomplished
either by intensive post-process inspection, an in-process sur-
face roughness measuring device, or a surface roughness
prediction system. Although post-process inspection is the
easiest to implement, it cannot prevent the parts from being
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processed before a defective batch is discovered. In-process
measurement of surface roughness requires adding sensitive
sensors to a hostile environment. Ultimately, the surface
roughness prediction system can be used to determine the
surface roughness indirectly [7–9].

Several techniques including multiple regression, Taguchi,
fuzzy logic, artificial neural network (ANN), and adaptive
neuro-fuzzy inference system (ANFIS) have been used to
predict surface roughness in various cutting processes
[10–16].

The criterion variable is surface roughness and the predic-
tor variables are controllable machining parameters, such as
spindle speed, feed rate, and depth of cut and their interac-
tions. These techniques were used in turning [17, 18], milling
[19, 20], and drilling processes [21, 22].

ANFIS is a fuzzy inference system implemented in the
framework of an adaptive neural network. By using a hybrid
learning procedure, ANFIS can be used to construct an input–
output mapping based on human knowledge as fuzzy if-then
rules as well as predetermined input–output data pairs for
neural network training. It provides a means for fuzzy model-
ing to learn information about the data set in order to compute
the membership function parameters that best allow the asso-
ciated fuzzy inference system to track the given input–output
data [23, 24].

Recently, ANFIS has been applied to predict workpiece
surface roughness in end-milling operation, yielding accuracy
as high as 96 % [25] and average error up to 0.522 % [26]. It
has also been used to predict surface roughness in turning
operation, producing average error up to 0.38 % [27]. Lee
et al. [28] employed ANFIS to establish the relationship
between actual surface roughness and texture features of the
surface image. Accurate surface roughness modeling can fa-
cilitate the effective estimation of surface roughness. The
input parameters of a training model are spatial frequency,
arithmetic mean value, and standard deviation of gray levels
from the surface image, without involving cutting parameters
(cutting speed, feed rate, and depth of cut). Experiments

demonstrate the validity and effectiveness of fuzzy neural
networks for modeling and estimating surface roughness.
Empirical results also show that the proposed ANFIS-based
method outperforms the existing polynomial-network-based
method in terms of training and test accuracy of surface
roughness. Hence, the aim of this work is to obtain optimal
milling parameters (cutting speed, feed rate, and depth of cut)
for minimal surface roughness while milling brass (60/40).
ANFIS modeling is used to accomplish this objective.

2 Experimental setup

Surface roughness is the dependent variable, while cutting
speed (n) in the range of 750–1,750 rpm, feed rate (f) ranging
from 50 to 250 mm/min, and depth of cut (t) in the range of
0.3–0.7 mm were used as predictor variables, which were
selected based on the tool manufacturer’s recommendations
(Table 1).

The experiments were performed using a ProLight2000
computer numerical control (CNC) end-milling machine. A
high-speed steel four-flute end-milling cutter with a diameter
of 7/16 in. (11.1 mm) was used for dry machining slots of
brass (60/40) blocks under specific machining conditions
(speed, feed, and depth of cut), as shown in Fig. 1. Brass
(60/40) with Vickers hardness of 125 and a chemical compo-
sition of 60 % copper and 40 % zinc served as a workpiece
material with 40×40×20 mm dimensions (Fig. 1). The sur-
face roughness Ra (μm) was measured with a stylus-based
profilometer (Surtronic 3+, 99 % accuracy).

3 Experimental results

A slot-milling test was carried out using the proposed exper-
imental setup to investigate the surface quality. The average
surface roughness Ra was calculated for three different mea-
surements under the same conditions with a sampling length

Table 1 Measured Ra in microns (trained data set)

f (mm/min) n (rpm)

500 750 1,000 1,250 1,500

t (mm)

0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

60 0.79 0.86 0.91 0.33 0.41 0.43 0.28 0.36 0.34 0.28 0.33 0.28 0.28 0.29 0.28

120 1.28 1.39 1.44 0.74 0.81 1.2 0.43 0.51 0.61 0.34 0.41 0.48 0.34 0.39 0.4

180 1.43 1.64 1.82 1.01 0.93 0.88 1.01 0.92 0.84 1.0 0.92 0.82 0.93 0.91 0.8

240 1.79 1.76 2.03 1.29 1.19 1.05 0.89 1.18 0.96 0.85 0.87 0.93 0.82 0.89 0.92

300 1.77 1.84 2.28 1.65 1.55 1.57 1.23 1.29 1.09 1.07 1.02 1.01 1.06 0.92 0.98
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of Lc=2.5 mm at a specific area of the workpiece. The
measurements’ direction was parallel to the cutting direction
and perpendicular to the lay of surface anomalies. A total of 75
sets of data were selected for training ANFIS from a total of
100 sets obtained in the end-milling experiments, as summa-
rized in Table 1. The remaining 25 sets were used for testing
once training was completed to verify the accuracy of the
predicted surface roughness values. All data in this research
is in the steady-state region of tool wear.

4 ANFIS prediction model

The ANFIS architecture is shown in Fig. 2. Five network
layers were used by ANFIS to perform the following fuzzy
inference steps: (1) input fuzzification, (2) fuzzy set database
construction, (3) fuzzy rule base construction, (4) decision-
making, and (5) output defuzzification. ANFIS was construct-
ed through MATLAB, and 75 readings comprised the training
data set as listed in Table 1.

Different membership functions were used in training
ANFIS to predict surface roughness. The generalized bell
membership function (gbellmf) gives the lowest training error,
so it was adopted for the ANFIS training process in this study.
The fuzzy rule architecture of ANFISwhen gbellmf is adopted
consists of 27 fuzzy rules generated from the input–output
data set based on the Sugeno fuzzy model [29–31]. During
training, the 75 Ra values (training data set) were used to
conduct 300 cycles of learning with an average error of 0.10.

The membership functions of every input parameter within
the architecture can be divided into three areas, i.e., small (S),
medium (M), and large (L). Figure 3 shows the initial and final
membership functions of the three end-milling parameters
derived from training via gbellmf.

In Fig. 3a, b, the initial and final membership functions of
speed only undergo minor changes in the medium and large
areas, and major changes in the small area. Figure 3c, d illus-
trates the initial and final membership functions of the feed
rate. It appears that the final membership function after train-
ing experiences smaller variation in the small and large areas
but slightly greater variation in the medium area. Figure 3e, f
shows the initial and final membership functions of the depth
of cut. There is obviously a small change in the final mem-
bership function’s shape after training, regardless of area size.
The large changes in the small area in Fig. 3b indicate that the
lower speed value has greater effect on surface roughness than
the medium and large values. The minor changes in the small,
medium, and large areas in Fig. 3d indicate that all ranges of
feed rate and depth of cut have the same effect on surface
roughness. Also, Fig. 3 shows that among the three end-
milling parameters studied, speed had the greatest impact on
surface roughness, followed by feed rate, and finally depth of
cut, which was the least significant factor of all.

According to Fig. 4a, b, speed and feed rates had consid-
erable effect on surface roughness, while an increase in speed
led to a decrease in surface roughness and an increase in feed
rate resulted in an increase in surface roughness, but depth of
cut had a minor effect on surface roughness. Lower depth of
cut and feed rate values are recommended for smaller surface
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roughness. That is because the combination of feed rate and
depth of cut determines the undeformed chip section and
hence the amount of cutting forces required to remove a
specified volume of material. By decreasing the feed rate
and depth of cut, less material has to be cut per tooth per
revolution; thus, the energy required is lower. Consequently,
this would reduce the cutting forces, leading to lower surface
roughness, while the high depth of cut and feed rate would

lead to a contact overload between the cutting tool and the
workpiece, which would cause inferior surface quality.

On the other hand, the effect of cutting speed should
also be taken into consideration. The results of cutting
speed are shown in Fig. 4a, and they suggest that
higher spindle speed would result in lower surface
roughness. This could be explained in terms of the chip
formation process, which is influenced by the shear
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length (ls) in the shear zone. The shear length (ls) is
given as ls= t/sin φ, where t is undeformed chip thick-
ness, and φ is the shear angle [32]. Shear angle (φ) is
large at high cutting speeds; therefore, the shear length
(ls) is small, as shown in Fig. 5 [33]. As a result, the
chip will break away with less material deformation at

the tool tip, which will in turn preserve the machined
surface properties leading to less edge chipping.

5 Model verification

Twenty-five random readings were used as the testing data set
(Table 2). The plot of 25 measured Ra values versus predicted
Ra using the ANFIS model is shown in Fig. 6. This figure
presents a comparison of the measured Ra and predicted Ra of
the testing data set of 25 following training using ANFIS.
Appropriate assent is evident between the measured and
ANFIS-predicted surface roughness values. This close assent
obviously displays that the ANFIS model can be used to
predict the surface roughness under consideration. Thus, the
proposed ANFIS model offers a promising solution to
predicting roughness values in the specific range of
parameters.

Table 2 and Fig. 6 show a big difference in surface rough-
ness from 625 to 875 rpm and small change between 875 and
1,375 rpm. There is also a big difference in surface roughness

Fig. 5 Chip formation process

Table 2 The error of the ANFIS
model prediction Test no. Parameters Measured Ra (μm) Predicted Ra (μm) Error (%)

n (rpm) f (mm/min) t (mm)

1 625 90 0.15 0.84 0.799 4.88

2 0.25 0.87 0.872 0.23

3 150 0.15 1.36 1.35 0.74

4 0.25 1.44 1.45 0.69

5 210 0.15 1.49 1.47 1.34

6 0.25 1.53 1.58 3.26

7 270 0.15 1.64 1.69 3.05

8 875 90 0.15 0.34 0.327 3.82

9 0.25 0.42 0.409 2.62

10 150 0.15 0.81 0.794 1.97

11 0.25 0.82 0.774 5.61

12 210 0.25 0.88 0.884 0.45

13 270 0.15 1.26 1.27 0.79

14 0.25 1.12 1.19 6.25

15 1,125 90 0.25 0.36 0.36 0

16 150 0.25 0.76 0.724 4.74

17 210 0.25 0.88 0.829 5.79

18 270 0.15 1.12 1.19 6.25

19 0.25 1.1 1.11 0.91

20 1,375 90 0.15 0.28 0.268 4.28

21 0.25 0.29 0.279 3.8

22 210 0.15 0.83 0.842 1.45

23 0.25 0.82 0.826 0.73

24 270 0.15 0.97 0.933 3.81

25 0.25 0.94 0.929 1.17

Average 2.75

Int J Adv Manuf Technol (2014) 74:531–537 535



between 90 and 150 mm/min feed rates and small change
from 150 to 270 mm/min. Thus, it is recommended to ma-
chine brass (60/40) materials using 90 mm/min feed rate,
875 rpm cutting speed, and a small depth of cut range.

To evaluate the ANFIS model, the percentage error Ei and
average percentage error Eav defined in Eqs. (1) and (2),
respectively, were used.

Ei ¼
Rai−bRai
�

�

�

�

�

�

Rai
� 100 ð1Þ

Eav ¼ 1

m

X

i¼1

m

Ei ð2Þ

where Ei is the percentage error of sample number i; Rai is the
measured Ra of sample number i; bRai is the predicted Ra
generated by the ANFIS model; i=1,2,3,…; m is the sample
number; and Eav is the average percentage error of m sample
data.

Table 2 and Fig. 7 show that the average percentage error
for surface roughness prediction is 2.75 %. Figure 7 presents
the percentage error between the predicted and measured Ra.
The highest percentage of error for ANFISmodel prediction is
6.25 %. The low error level signifies that the surface rough-
ness results predicted by ANFIS are very close to the actual
experimental results. The error and accuracy values mean that
the proposed model can predict surface roughness
satisfactorily.

6 Conclusion

ANFIS was used to develop an empirical model for predicting
the surface roughness of machined brass in CNC end milling.
Spindle speed, feed rate, and depth of cut were used as
predictor variables. Seventy-five measured Ra values, under
different cutting conditions, comprised the training data set,
and 25 random values were used as the testing data set. The
model was verified with test data, and the average percentage
accuracy achievedwas 97.25%. These results indicate that the
ANFIS model with gbellmf is accurate and can be used to
predict surface roughness in end-milling operation.
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