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Abstract This paper presents a novel tool management con-
cept for cutting processes which integrates tool relevant infor-
mation, such as distribution data, tool orders, tool condition,
and allocation data, within a centralized information cycle.
The developed tool management approach uses decentralized
identification and storage technologies, enabling an autono-
mous cooperation of tools and machine tools within a produc-
tion. The first part of the paper is focused on the assessment of
tool condition in a flexible job shop production. A tool wear
monitoring system based on cutting force coefficients is de-
veloped and demonstrated by an exemplary milling operation.
Thereby, it is shown that cutting force coefficients are suitable
for wear monitoring and prediction, even for varying cutting
conditions. For the online assessment of the current tool
condition and for the prediction of residual tool life, an em-
pirical tool wear model is demonstrated. This is applied to a
novel condition-based tool management strategy which en-
ables the optimum exploitation of the life time and perfor-
mance of the cutting tool. The developed condition-based tool
management concept is finally demonstrated by a software
demonstrator.

Keywords Cutting process . Tool wear . Tool
management . Monitoring . Small batch production

1 Introduction

Complex manufacturing processes and innovations in terms
of tool technology have led to an enormous increase in the

diversity of cutting tools. For companies with small batch
production and a wide range of product variants, in particular,
the management of cutting tools has become a complex task.
In the case of a flexible small batch production, up to 40 % of
the tool costs are spent on handling, setup, reworking, and
other tool management tasks within the tool cycle of the
company. By ensuring the availability and utilization of cut-
ting tools, the tool management system influences production
performance significantly. For years, tool management sys-
tems have been the standard for the planning and control of
the tool usage [1–3].

The main objectives of tool management systems are the
exploitation of tool performance, the optimized tool selection,
the reduction of idle time caused by the tools, and the man-
agement of tool logistics and procurement [1]. To maximize
the tool performance and utilization, it is necessary to gain
precise information about the tool condition from the shop
floor. In an industrial job shop production, lack of information
about tool wear often leads to a preventive tool exchange to
avoid tool breakage and scrap production. In order to avoid
tool breakage during machining, tools are not operated at the
optimum cutting conditions which results in a loss of
performance.

Tool condition monitoring (TCM) seems to be a promising
approach to observe tool wear during the machining process
[4]. Several TCM approaches have been developed so far. For
the observation of the tool condition from the machining
process, process signals have to be acquired by direct or
indirect sensor technology. The existing TCM methods differ
by their utilization of sensor technology, signal processing,
and feature extraction for tool wear estimation. Force signals
and motor currents are commonly used for tool wear moni-
toring of cutting processes [5]. Besides the estimation and
observation of the tool condition, a reliable prediction of the
remaining tool life is necessary for tool management.
Therefore, artificial intelligence methods have been applied
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to predict remaining tool life based on the current tool condi-
tion. For example, neuronal networks (NN) are able to recog-
nize implicit dependencies between various, indirect input
signals and, thereby, have been successfully used for tool wear
estimation [6, 7]. Neuronal networks have to be trained to the
tool and process characteristics and, thus, are limited to con-
stant process conditions [5]. A review of wear prediction
methods is given in [8]. Due to the required training phase
and the low flexibility of the existing predictionmethods, their
applications are limited to batch production. However, tool
condition observation and prognosis is highly demanded in a
flexible job shop production with small or single-batch pro-
duction. There, cost-intensive workpieces can be damaged.
For the observation and estimation of tool life in a flexible
small batch production, process-independent wear indicators
and characteristics for online monitoring have to be found in
order to provide a reliable tool condition monitoring and
prognosis.

Recent research in tool management systems (TMS) is
primarily aimed at solving the job-tool allocation-problem
especially in context of flexible manufacturing systems
[9–12]. Different algorithms (simulated annealing, ant colony,
etc.) have proven their capability, e.g., to minimize the
makespan. Within these approaches, tool life is considered
as a static value depending on the tool type that represents a
constraint for the optimization algorithm. In real small batch
manufacturing environment, tool life strongly depends on the
cutting conditions and follows a random distribution.
Therefore, Prickett et al. presents a promising approach that
combines milling cutter monitoring with a TMS. The system
focuses the monitoring of tool breakage and failure diagnosis
[13].

In order to overcome the limitations of existing tool
condition monitoring strategies in terms of flexibility and
reliability, a flexible condition monitoring concept for
milling tools is described and demonstrated in the fol-
lowing. The flexibility of the condition monitoring en-
ables the application in a flexible job shop production,
where various cutting conditions result in various tool
conditions of individual tools over time. Additionally,
manufacturing resources in a job shop production are
highly distributed over time. To overcome this challenge,
decentralized allocation technology, using radiofrequency
identification (RFID), has been applied for tool manage-
ment [14, 15].

In order to manage the information complexity generated
by distribution and condition information and to profit from
the high information availability, a novel condition-based tool
management is described and demonstrated in the subsequent
captions. The application of the condition-based tool manage-
ment is pointed out by the improvement of process reliability,
tool utilization, and the increasing of tool performance at the
end of the paper.

2 Condition-based tool management concept

In order to provide current tool condition and allocation data
for tool management, a centralized information structure was
chosen for the condition-based tool management. Therefore,
tool condition information are generated by online monitoring
and are transmitted to a centralized tool management system.
This enables an optimized tool assignment in a flexible small
batch production in terms of process reliability and tool utili-
zation (Fig. 1).

Within the tool information cycle, a tool request is gener-
ated by the tool management system triggered by a
manufacturing order and a process plan. Relevant tool infor-
mation within the tool cycle is transferred to the central tool
management system and is stored, connected to a unique tool
identification number (ID). This allows a unique allocation of
information to a single tool or tool component. In order to
enable an autonomous cooperation of tools and machine tools,
individual tool task information is stored decentralized on the
tool, using inherent storage and transponder technology [16].
In order to realize a consistent and compatible information
flow, a self-contained data format was developed. This format
enables the connection of process data and tool data by its
modular construction. On the semantic layer, the hierarchical
Gentelligent markup language (GIML) provides a high scal-
ability with respect to different use cases in the life cycle of a
tool or tool component. As a basis for the textual representa-
tion of product and production-related information, GIML
uses the extensible markup language (XML), which can be
both easily human-read and at the same time machine-
processed with a large inventory of preexisting software
frameworks. The development and application of the GIML
data model has been described in detail in [17]. It is applied
here in order to provide a unique information model for tool
information exchange in a job-shop production.

In order to acquire accurate tool condition inside a job shop
production with less effort, a flexible tool monitoring method
based on process-independent characteristics has been devel-
oped. Thereby, tool condition is automatically detected from
process signals and is provided inside the tool information
cycle enabling tool wear acquisition and prognosis in terms of
process planning and control.

3 Monitoring of tool wear in end milling—investigation
of process signals for wear monitoring

In order to provide an observation of tool wear during the
manufacturing process, process signals have been investigated
for the observation of tool wear. A common procedure for tool
wear observation is the monitoring of process forces during
the manufacturing operation [5]. Process forces can be cap-
tured within the flux of force of the machine tool during the
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machining operation. If force sensors like dynamometers are
too expensive or insufficient for the application, a novel
development of sensory fixture elements provide a comfort-
able and practical alternative for the observation of process
forces even in industrial manufacturing processes [18].

An experimental milling process was performed in order to
observe tool wear from measured process forces. Figure 2
shows the evolution of process force amplitudes and flank
wear land VB over the course of the tool life for end milling of
tempered steel (42CrMo4).

The average of the process force amplitudes (Fig. 2a) rises
significantly up to 100 % (Ff) over the course of the tool life.

Tool flank wear rises up to 200 μm after a tool life of 600 s
(Fig. 2b). Therefore, a linear correlation could be assumed
between the force amplitudes and tool flank wear. Hence, the
monotonous rising characteristic of force amplitudes provides
an indicator of tool wear for tool condition monitoring [19].
However, the increase of cutting force amplitudes is only
applicable as a tool wear indicator in terms of constant process
conditions. Cutting force changes due to changing engage-
ment conditions can disturb that kind of wear indicator. In
order to observe the tool wear from cutting forces, indepen-
dent from process variations, the cutting force coefficients are
taken into account.

Fig. 1 Condition-based tool
information cycle

Fig. 2 Evolution of process force
amplitudes (a) and flank wear
land (b)
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3.1 Calculation of cutting force coefficients

In order to provide a wear indicator even for changing en-
gagement conditions, the cutting force coefficients are taken
into account for tool condition monitoring. The cutting force
of a milling process can be described as a function of the uncut
chip geometry and the cutting force coefficients [20]. The
cutting force function can be written in a matrix formulation
as follows:

F φð Þ ¼ K⋅GT φð Þ ð1Þ

F φð Þ ¼
Ft φð Þ
Fr φð Þ
Fa φð Þ

2
4

3
5 ð2Þ

G φð Þ ¼
A φð Þ b φð Þ 0 0 0 0

0 0 A φð Þ b φð Þ 0 0
0 0 0 0 A φð Þ b φð Þ

2
4

3
5

ð3Þ

K ¼ ktc kte krc kre kac kae½ � ð4Þ

where Ft, Fr, Fa are the process force components, F is the
resultant process force vector in the tool coordinate system,G
is the geometry matrix, including the cross-section of the
undeformed chip A(φ) and the width of undeformed chip
b(φ), andK being the coefficient matrix, including the cutting
coefficients ktc, krc, and kac and the edge coefficients kte, kre,
and kae. The geometry matrixG has to be calculated based on
the given process parameters, using a cutting force simulation
(see [21]).

For determining the cutting force coefficients from given
process forces from a milling process, Eq. 1 has to be solved
for the coefficient matrix K:

K ¼ F φð Þ
.
GT φð Þ ð5Þ

Due to the scale and complexity of force and geometry
matrix, Eq. 5 has to be solved numerically by determining the
coefficient vectorK over a range of rotation angle positionsφ.
The cutting force coefficients incorporate the nature of the
cutting process and are highly sensitive to changes in the tool
and workpiece behavior, the coolant, the temperature, the
cutting edge condition (in terms of wear or breakage), as well
as many other influences.

In order to provide a robust wear indicator even for varying
process parameters, their influence on cutting coefficients has
to be determined. Consequently, the sensitivity of the cutting
force coefficients has been evaluated over a variation of

process parameters over several cutting experiments based
on the process shown in Fig. 2. Table 1 quantifies the maxi-
mum variation of each coefficient for different cutting
conditions.

Based on the theoretical background of semiempirical cut-
ting force models, the cutting force coefficients have to be
independent from changes in the engagement parameters. The
identified variations of the cutting force coefficients for the
process parameters indicate the accuracy of the proposed
method for calculation of force coefficients described above.
Even if the influence of tool wear is more sensitive than the
variation of the force coefficients (c.f. Table 1, <33 %), the
cutting force coefficients can be used to indicate tool wear for
varying process parameters.

3.2 Observation of cutting force coefficients

In order to identify the tool condition based on process forces,
the cutting forces coefficients were observed and evaluated
over the course of tool life. Desfosses et al. proposed a tool
wear estimation based on the cutting force coefficients [22,
23]. By tracking the cutting force coefficients over tool life,
they have found that the edge coefficients correspond system-
atically to the tool wear. Thus, a tool wear observation can be
performed even for changing process conditions. In order to
improve the robustness of the coefficient based tool wear
monitoring for a wider range of process conditions, the whole
coefficient spectrum (cutting and edge coefficients) is ana-
lyzed in the following to identify wear sensitive signal
features.

Based on the measured process forces from the obtained
machining process (see Fig. 2), the cutting force coefficients
can be solved by Eq. (5). Figure 3 presents the development of
the coefficients over the course of tool life. The influence of
tool wear on the force coefficients can be indicated by a
significant drift over tool life.

The development of tool wear can be clearly correlated to
the continuous change of the cutting force coefficients. In
particular, the edge coefficients (kte, kre, and kae) rise linearly

Table 1 Variation of the cutting force coefficients for changing cutting
velocity, engagement widths, and engagement depths for process given in
Fig. 2

Cutting velocity
vc=100–200 m/min

Engag. width
ae=1–10 mm

Engag. depth
ap=1–5 mm

ktc 5 % 19 % 5 %

kte 14 % 30 % 15 %

krc 10 % 29 % 12 %

kre 20 % 33 % 20 %

kac 15 % 22 % 10 %

kae 5 % 21 % 20 %
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over the course of tool life. In order to qualify the cutting force
coefficients for tool wear observation and prognosis, the re-
peatability of this observation value has to be verified.
Therefore, the tool wear observation was evaluated statistical-
ly over seven tool observations. The correlation of the cutting
coefficients and the tool wear is presented in Fig. 4.

This dataset was generated by performing identical cutting
tests with seven endmills and by capturing the cutting coeffi-
cient seven times per second. The confidence bounds of the
dataset for 96, 50, and 20 % are shown as gray areas. The
correlation data was evaluated in order to identify general
functional relations for an empirical wear indicator. In order
to qualify coefficients for a tool wear indicator, the sensitivity,
the correlation index, and the distribution has been quantified.
Table 2 shows the sensitivity S of the cutting force coefficients

calculated by a linear approximation of the data from Fig. 4.
The confidence range was calculated by a Student’s t distri-
bution [24] from seven observations. The correlation coeffi-
cient is drawn in order to evaluate the significance of tool wear
in the development of coefficients.

The edge coefficients (kte, kre, and kae) show high sensitiv-
ity and correlation (R>0,8) and thereby are qualified for the
application of wear observation. Regarding the cutting force
coefficients, solely the axial cutting coefficient kae exhibits a
linear correlation over tool wear.

3.3 Empirical tool wear indicator

In order to provide a robust wear indicator for the estimation
and prognosis of tool life, the linear behavior of several cutting

Fig. 3 Evolution of cutting force
coefficients over tool life

Fig. 4 Distribution of correlated
cutting force coefficients over tool
wear land
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force coefficients was merged into a nominal tool wear indi-
cator. The tool wear indicator is based on the assumption that
the tool wear exhibits a linear trend and can be reproduced
within a small confidence range. In order to provide a robust
indicator, a multicriteria method is used, merging a couple of
independent signal features.

The tool wear estimation is based on an empirical database,
which stores linear wear function parameters and confidence
ranges of the observations. The end of tool life has to be
defined manually for the first observations. Afterwards, the
observed process can be indicated by comparing the observed
value to the empirical wear function.

In the first step, the empirical model has to be generated
from the observed processes. In order to get an equally scaled
parameter range, the observed coefficients are normalized
over tool life.

k tð Þ ¼ k tð Þ
k tendð Þ ð6Þ

The normalized coefficients were weighted according to
their linear correlation coefficients, taken from Table 2, and
afterwards summed up to get a linear tool wear indicator
IVB(t):

IVB tð Þ ¼ K ⋅W T ð7Þ

W ¼ wtc wte wrc wte wac wae½ � ð8Þ

K ¼ ktc tð Þ kte tð Þ krc tð Þ kre tð Þ kac tð Þ kae tð Þ�
h

ð9Þ

The weights were chosen, in order to generate a linear wear
indicator (R>0.8), by means of high sensitivity and a low
confidence range. The combination of redundant signals pro-
vides a robust indication of tool wear. Due to their low
significance (R<0.8, c.f. Table 2), the cutting coefficients ktc
and krc were rated by w=0 (Table 3).

The tool wear indicator IVB(t) quantifies the tool condition
by means of a ratio between 0 and 1, where 0 describes a new
and 1 a worn tool. The empirical tool wear model is build up
by the parameters of the linear tool wear function and the
confidence level of observations. By every observation refin-
ing the confidence level of the Student’s t distribution, the
model is improved continuously. The following empirical
function has been generated from the tool wear observations
from seven milling experiments.

At the beginning of tool life t<100 s, the index is not
sensitive. However, within the tool life t=100–600 s, a linear
function can be approximated from the observations. For the
indication of tool wear for a current observation, the current
index IVB(t) indicates the absolute condition of the observed
tool. For a tool life prognosis, the linear approximation of the
tool wear model is used to extrapolate the end of tool life tend
based on the current index location (c.f. Fig. 5). The failure
probability of tool life can be estimated based on the predicted
end of tool life and the empirical failure distribution at the end
of tool life IVB(t)=1.

Due to the robust behavior of the cutting force coefficients
for the varying process parameters (c.f. Table 1), the tool wear
index can be indicated even for changing process conditions.
For the prognosis of tool life, the empirical tool wear function
has to be generated from the past observations. The end of tool
life can be predicted by the extrapolation of the linear tool
wear function. Therefore, a tool database is required which
stores tool-specific wear models. By linking several wear
models to their process specifications, given by the process
parameters, machine tool, coolant, and workpiece informa-
tion, the tool wear monitoring could asses and predict tool
wear even under changing process conditions. This enables a
tool wear monitoring and prediction even for a complex and
individual single-batch production. The application of tool

Table 2 Sensitivity, standard deviation, and correlation coefficient of
cutting force coefficients

Sensitivity S 95 % Confidence
range

Correlation
coefficient R

ktc Non-linear 780 N/mm2 0.67

kte 0.45 N/mm μm 21 N/mm −0.85
krc Non-linear 610 N/mm2 −0.29
kre 0.9 N/mm μm 70 N/mm 0.957

kac −2.3 N/mm2 μm 293 N/mm2 −0.82
kae 0.05 N/mm μm 8 N/mm 0.831

Table 3 Normalized weight coefficients

wtc wte wrc wre wac wae

Value 0 1/3 0 1/3 1/6 1/6

Fig. 5 Tool wear indicator, confidence range, and observation
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condition monitoring for tool management are demonstrated
in the next chapter.

4 Strategy for condition-based tool management

Common tool management strategies are based on empirical
data from the shop floor based on manual observations of tool
life, which have to be generated by extensive experimental
tests. Thereby, the statistical probability of the end of tool life
is determined and can be used to calculate the probable tool
life for manufacturing operations. However, as the shop floor
usually does not provide any feedback on the tool condition,
the true end of tool life cannot be determined accurately. Thus,
an effective tool is often exchanged preventively in order to
ensure the stability of production.

In order to optimize the manufacturing resource utilization
and thereby reduce tool and manufacturing costs for a flexible

job shop production, a novel condition-based tool manage-
ment strategy was developed (Fig. 6). As described above, the
residual tool life is calculated from the monitored process
signals by means of an empirical tool wear model separately
for every single tool. The GIML format provides a consistent
data structure for both centralized systems (e.g., TMS) and
decentralized systems (e.g., tool inherent data storage) and
enables a direct communication of single tools (e.g., via
RFID) and legacy systems.

If the identified tool wear index IVB exceeds the empirical
threshold value, which is generated by the confidence level of
the empirical end of tool life, the residual tool life tend is
compared with the operation time tOperation specified in the
process plan. If the remaining operation time exceeds the
predicted tool life, the cutting parameters (e.g., the cutting
velocity [25]) can be reduced in order to avoid either an
additional tool exchange or a higher risk of tool breakage. In
order to gain empirical data for the tool wear prediction, the
tool wear model is updated continuously by the practiced tool

Fig. 6 Condition-based tool
management strategy
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life time and by the conducted process parameters. If exceed-
ing the tool life cannot be avoided, the systems stops the
cutting process in order to avoid tool breakage. The permanent
monitoring of single cutting tools and the continuous compar-
ison of the current tool condition with empirical data in every
phase of the tool life enable a sustainable exploitation of single
cutting tools considering their special operational history in
unique cutting processes. In combination with a very high
process reliability, the strategy meets the demands of small
batch production. After finishing the cutting process, a tool
request and a rework order is generated to ensure the efficient
regrinding of the tool and the secure tool supply for following
cutting processes.

By combination of wear monitoring, decentralized data
acquisition, and centralized wear prognosis, the proposed
method of condition-based tool management offers several
advantages for an industrial production scenario.

& Avoidance of tool breakage and resulting interruptions
& Optimal exploitation of the tool performance
& Analysis of former tool applications

& Increasing performance through optimized cutting
conditions

& Reduction of tool management efforts by a central
organization

& Reduced process failure probability by process
monitoring

For the tracking of tool wear and the allocation of tool life
time information, it is essential to realize a novel perception of
tool data administration. Instead of a tool type oriented ap-
proach, an individual tool component specific data adminis-
tration is required, as the current condition can vary between
different tools of the same type. Therefore, a database for the
condition-based administration of individual tool components
and their dynamic condition data was developed and realized
in an SQL-based prototype in connection with a tool informa-
tion interface programmed in .net framework (Fig. 7). On the
left, a general classification of tools and tool components is
shown. In the associated list of tool individuals (on the right),
single components can be chosen to display the dynamic
progress of wear (below).

Fig. 7 Administration of tool-
specific wear data
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Within the database, the development of cutting force
coefficients, the wear indicator, and the residual tool life time
is tracked related to the instant of time. This enables the on-
time tool exchange as well as the avoidance of manufacturing
disturbances and product quality failures due to probable tool
breakage. The collection of life time data from the shop floor
also serves as an experience basis for the evaluation and
optimization of the subsequent processes and tool selections.

In order to estimate the added value of the condition-based
tool management strategy, a testing case on a milling tool has
been examined. For the exemplary milling process (Fig. 2),
the predefined tool life was set at 470 s. Within a testing case,
milling tools of the same type were examined in extensive
wear investigations within a standardized testing procedure
until breakdown. In the testing case, 50 % of the tools reached
actually a tool life of 600 s (Fig. 5). Regarding the fact that
50 % of the tools reached even a longer tool life, the median
corresponds to the average tool life applying the condition-
based strategy. Thus, an increase of approximately 130 s in
tool life within the testing case can be realized which repre-
sents a benefit of about 26 %. With respect to the tool costs in
small-batch machining, the condition-based tool management
strategy promises a significant saving of variable operating
costs.

5 Conclusion

The paper provides an approach for online tool wear estima-
tion and condition-based tool management. The proposed
integrated tool management strategy provides several advan-
tages for a job shop production as follows:

& The combination of decentralized cooperation of tools and
machine tools in combination with a centralized data
collection and analysis enables an efficient tool manage-
ment, especially for companies with small batch produc-
tion and a large variety of processes, tools, and products.

& The cutting forces from amilling process were analyzed in
order to observe an indicator for flank wear, which is a
dominant wear effect in metal cutting. A significant rise of
cutting forces was detected frommilling experiments over
the course of tool life.

& In order to provide a wear indicator independent from
changing process conditions, the cutting force coefficients
were taken into account. It was found that coefficients
show a small variance over cutting speed (<20 %), en-
gagement width (<30 %), and engagement depth (<20 %,
c.f. Table 1).

& The cutting force coefficients were found to be high
sensitive to wear land (>300 %) over the course of the
tool life of an endmill. A linear correlation was determined
between the cutting force coefficients and tool wear.

& The tool condition during the machining process was
observed by means of tool wear monitoring approach.
By merging the normalized coefficient matrix over tool
life, a linear tool wear indicator was created. Based on an
empirical tool wear model, the wear indicator enables the
assessment and prognosis of tool life, even for changing
process conditions.

& Based on the obtained tool condition, a strategy for
condition-based tool management was developed. This
allows an on-time exchange of tools to realize a maximum
exploitation of cutting tools in terms of life time and
cutting performance, while reducing the risk of tool break-
age and scrap production.

& Within an experimental test case, the utilization of tools
can be enhanced by 26 % by the proposed method for
condition-based tool management. This can be provided
in parallel to an improved process reliability until the
actual end of tool life.

& A condition-based tool database and decentralized data
transmission using the unified GIML data format enables
a single component-specific and condition-based admin-
istration of tool data as well as a maximum of data con-
sistency between information systems in manufacturing
(e.g., CAM, MES).

Future research focuses on the analysis of wear information
to improve process planning. The collected data offers a great
opportunity to learn from already finished cutting processes
for the planning of future processes, especially in terms of tool
selection and setting of cutting conditions.
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