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Abstract Incremental forming is a sheet metal forming pro-
cess characterized by high flexibility; for this reason, it is
suggested for rapid prototyping and customized products.
On the other hand, this process is slower than traditional ones
and requires in-depth studies to know the influence and the
optimization of certain process parameters. In this paper, a
complete optimization procedure starting from modeling and
leading to the search of robust optimal process parameters is
proposed. A numerical model of single point incremental
forming of aluminum truncated cone geometries is developed
by means of Finite Element simulation code ABAQUS and
validated experimentally. One of the problems to be solved in
the metal forming processes of thin sheets is the taking into
account of the effects of technological process parameters so
that the part takes the desired mechanical and geometrical
characteristics. The control parameters for the study included
wall inclination angle (α), tool size (D), material thickness
(Thini), and vertical step size (In). A total of 27 numerical tests
were conducted based on a 4-factor, 3-level Box–Behnken
Design of Experiments approach along with FEA. An analysis
of variance (ANOVA) test was carried out to obtain the
relative importance of each single factor in terms of their main
effects on the response variable. The main and interaction
effects of the process parameters on sheet thinning rate and
the punch forces were studied in more detail and presented in
graphical form that helps in selecting quickly the process
parameters to achieve the desired results. The main objective
of this work is to examine andminimize the sheet thinning rate
and the punch loads generated in this forming process. A first

optimization procedure is based on the use of graphical re-
sponse surfacesmethodology (RSM). Quadratic mathematical
models of the process were formulated correlating for the
important controllable process parameters with the considered
responses. The adequacies of the models were checked using
analysis of variance technique. These analytical formulations
allow the identification of the influential parameters of an
optimization problem and the reduction of the number of
evaluations of the objective functions. Taking the models as
objective functions further optimization has been carried out
using a genetic algorithm (GA) developed in order to compute
the optimum solutions defined by the minimum values of
sheet thinning and the punch loads and their corresponding
combinations of optimum process parameters. For validation
of its accuracy and generalization, the genetic algorithm was
tested by using two analytical test functions as benchmarks of
which global and local minima are known. It was demonstrat-
ed that the developed method can solve high nonlinear prob-
lems successfully. Finally, it is observed that the numerical
results showed the suitability of the proposed approaches, and
some comparative studies of the optimum solutions obtained
by these algorithms developed in this work are shown here.

Keywords Incremental forming process . Finite element
modeling . Optimization . Design of experiments . Response
surface methodology . Genetic algorithm

1 Introduction

Incremental sheet forming (ISF) is a flexible process which
does not need dedicated forming tools. A sheet of metal is
formed by a progression of localized plastic deformation using
a simple hemispherical tool, controlled by a CNC milling
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machine-tool. The tool is moved over the surface of the
sheet along contours, which follow the shape of the final
geometry as described by CAD-CAM software. Upon the
completion of a contour, the tool is moved to greater depth
and the stylus like tool traces the next contour. Step by step the
concept takes a physical form as a sheet metal part [1] and
consequently, the final shape is built progressively according
to the tool motion, such that a highly localized plastic defor-
mation is caused. The cumulative effect of these local defor-
mations leads to the desired final geometry. Thus, varied and
complex 3D shapes can be achieved by moving the tool along
a correctly designed path, without the need to manufacture
specialized tools. As reported in [2, 3] several ISF configura-
tions have been designed and studied. So, depending on the
number of contact points between sheet, tool and die, it is
possible to distinguish between two-point incremental
forming (TPIF) with partial or full die, and single point
incremental forming (SPIF).

This work is dedicated to the detailed development and the
optimization of SPIF process for thin metal sheets in order to
control some process parameters and to improve the final
product quality. SPIF process is interesting both industrially
and scientifically. It represents a die-less sheet metal forming
process in which a peripherally clamped sheet is locally de-
formed using a simple hemispherical ended tool that follows a
predefined toolpath [4, 5], controlled and performed on a
CNC machine. A sketch of SPIF is presented in Fig. 1. It
makes it possible to illustrate this concept of vertical
incrementing.

Most investigations of SPIF process have concerned appli-
cations and formability limits of the process [6–8]. The exper-
imental investigations [9] lead to the conclusion that the
formability of the process can be defined in terms of four
major parameters: tool velocity and radius, sheet thickness
and forming strategy. In Arfa et al. [10] and Duflou et al. [11],
the formability is determined by considering the evolution of
forming forces during the process. This approach is based on
force measurements during the production of conical part.
Typical curves are reported and influences of some process

parameters are revealed. Ambrogio et al. [12] used this ap-
proach to evaluate a “spy variable” for defining a correction
strategy to prevent failure during process. For scientists, ISF
exhibits local effects and needs then new characterization
methods. Ham and Jeswiet [13, 14], have built forming limit
diagrams by using a Box–Behnken design of experiments and
response surfaces method based on the two following criteria:
maximum forming angle and effective strains.

Through the last decades, it has been discovered that it is
expensive and time consuming to design incremental sheet
forming processes as well as conventional forming processes
using trial and error. The application of numerical simulation
based on the finite element method for single point incremen-
tal forming process helped engineers to efficiently improve
the process development avoiding the cost and limitations of
compiling a database of real world parts. Finite element anal-
ysis allows an inexpensive study of arbitrary combinations of
input parameters including design parameters and process
conditions to be investigated [15]. In this sense, Dejardin
et al. [16] developed an experimental work and numerical
modeling for improving knowledge of incremental sheet
forming process for sheet metal parts. Their studies are related
to the analysis of shape distortions and springback effects
arising in single point incremental sheet forming in order to
study the use of a FE model based on shell elements to
perform simulation of the process. Thibaud et al. [17] have
proposed a fully parametric toolbox for the simulation of
single point incremental sheet forming process. Therefore,
their work is dedicated to the development of SPIF for
microparts (shape or detail) and for thin metal sheets (less
than 1 mm). The complete methodology is proposed and
numerical results are presented in terms of global geometry
(shape and section profiles), thickness evolution and forming
forces. Equivalent experimental tests are carried out to vali-
date the numerical approach. Previous researches by
Bouffioux et al. [18] demonstrated an experimental and nu-
merical study of an AlMgSc sheet formed by an incremental
process, since this material, which is well adapted to the
aeronautic domain, is poorly known. A numerical model
was developed and proved to be able to predict both the force
evolution during the process and the final geometrical shape.
The first objective is to reach a better knowledge of this alloy
to provide the missing useful information to the aeronautic
industry. The second objective is to study the applicability of
the SPIF process on this material. The numerical inaccuracy of
finite element models is one of the main problems often
encountered by scientists. Furthermore, the simulations usu-
ally require a very high computation time because the tool
path is long and can be complex. The combination of different
strategies described by Bouffioux et al. [19, 20], Lequesne
et al. [21] to improve the material and numerical models and
applied on this study aims to be able to accurately simulate the
process with a short computation time. Numerical simulationsFig. 1 Principle of single point incremental forming process (SPIF)
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are very useful to develop manufacturing processes (feasibil-
ity, optimization). Therefore, numerical simulations based on
the finite element method have been carried out for develop-
ing ISF process. Henrard et al. [22, 23] have performed studies
to propose the best ways for numerical modeling to predict the
process correctly. Malhotra et al. [24] have investigated the
use of several material models and element formulations to
simulate SPIF. From these studies, it has been shown that
element formulations (solid element), integration algorithms
(transient dynamic explicit algorithm), material models and
contact algorithms are the most influent parameters.

The optimization of forming processes aimed at the pro-
duction of net-shape components and high resistant products
is nowadays one of the fundamental topics on which the
interest of automotive research groups is focused. Some pa-
pers related to the optimization of forming strategies in ISF
process have been published [25–27]. As a reliable method-
ology, design of experiments [13, 28] and response surface
approximation [29] are retained in several cases for analysis
and optimization of sheet metal forming. In 2008, an applica-
tion to the optimization of sheet metal forming processes by
adaptive response surface based on intelligent sampling meth-
od was given by Wang et al. [30]. The study of Azaouzi and
Lebaal [31] proposes an optimization procedure tested for tool
path optimization in single point incremental sheet forming
using response surface method, in order to reduce the
manufacturing time and homogenize thickness distribution
of an asymmetric part. The optimal forming strategy was
determined by finite element analyses (FEA) in combination
with response surface method (RSM) and sequential quadratic
programming (SQP) algorithm. In [26, 32], Attanasio et al.
presented in their work the optimization of the tool path in two
point sheet incremental forming with full die, in a particular
asymmetric sheet incremental forming configuration. The aim
of the study was the experimental evaluation and optimization
of the tool path, which is able to reproduce an automotive
component with the best dimensional accuracy, the best sur-
face quality and the lowest sheet thinning. Sun et al. [33]
developed a multiobjective robust optimization method to
address the effects of parametric uncertainties on drawbead
design in sheet metal forming, where the six sigma principle is
adopted to measure the variations, a dual response surface
method is used to construct surrogate model and a
multiobjective particle swarm optimization is developed to
generate robust Pareto solutions. An innovative monitoring
and control approach, aimed to define and in process update
the most relevant process parameters during an industrial SPIF
operation, is proposed [34]. The experiments were designed
according to a CCD face-centered plan; a suitable statistical
analysis was carried out on the obtained results, permitting to
highlight the influence of the experiment parameters on the
punch force trend and, what is more, on the force gradient
which occurs after the force peak. Furthermore a critical value

of the mentioned gradient was determined for the investigated
material, as function of the sheet thickness.

Some papers have tried to establish a new approach for
numerical optimization problems in the field of manufactur-
ing. They suggest using genetic algorithms (GA) [35] recently
applied as an approach to sweep a region of interest and select
the optimal (or near optimal) settings to a process [36]. Liu
et al. [37] proposed a technique based on artificial neural
network (ANN) and GA to solve the problem of springback
of the typical U-shaped bending. The results show that more
accurate prediction of springback can be acquired with the
GA-ANNmodel. It can be taken as a reference for sheet metal
forming. A study on the relation of springback and various
process parameters was carried out based on the model of
springback, providing theoretical guide for sheet metal
forming and tools design. A Pareto-based multiobjective ge-
netic algorithm was applied to optimize sheet metal forming
process has been investigated by Wei et al. [38]. An optimal
design is performed for powder die-pressing process based on
the genetic algorithm approach [39]. It includes the shape
optimization of powder component, the optimal design of
punch movements, and the friction optimization of powder–
tool interface. The goal of the optimization is to eliminate the
work-piece defects that may arise during the powder compac-
tion process. Ledoux et al. [40] have developed an optimiza-
tion method and a numerical model for stamping tools under
reliability constraints through finite element simulation codes
and validated by experimental methods. The search for opti-
mal tool configurations is performed by optimizing a desir-
ability function and by means of a genetic algorithm based
optimization code. Many works have been developed in order
to optimize many forming processes of sheet metal. In fact,
many researchers have applied an optimization strategy into
manufacturing based on a combination of finite element meth-
od (FEM), ANN computation, and GA [37, 41–43].

In the present work, an optimization strategy for single
point incremental sheet forming process based on finite ele-
ment analysis, design of experiments, response surface meth-
odology and genetic algorithm method is proposed. A model
of SPIF part is developed through finite element simulation
and validated by experimental methods. The major factors
considered in SPIF are forming angle, punch diameter, initial
sheet thickness and incremental step size. Accordingly, a
Box–Behnken design of experiments (DOE) approach was
used to study the sensitivity of predictions to four inputs of the
forming process parameters. It also allows to develop the
numerical plan, formalize the forming parameters critical in
SPIF, and analyze data. The main effects and interaction plots
of the four forming parameters on sheet thinning rate and the
punch loads evolution are investigated by adopting the anal-
ysis of variance (ANOVA) technique. The steps of optimiza-
tion procedure include the using of a global approach based on
the response surface method to establish the mathematical
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models that represent the relationship between design factors
and the objective functions, and the genetic algorithm to find
the optimum solutions from the response surface generated.
The ability of each technique to find the optimal solution is
evaluated, and good results are obtained from these optimiza-
tion techniques. Some conclusions are drawn from the numer-
ical results.

2 Modeling and numerical analysis of the SPIF process

In this study, we consider the SPIF operations. This process is
based on layeredmanufacturing principles, where the model is
divided into horizontal slices. The numerically controlled
(NC) tool path is prepared by using contours of these slices.
It is a progressive sheet metal forming operation characterized
by large displacements and strains, and located deformations.
The punch is a simple-shaped tool with a diameter far smaller
than the dimension of the part being made. Proceeding in an
incremental way, the tool is moved along contours which
follow the shape of the final geometry as described by CAD
and CAMof CATIA software. It makes it possible to impose a
local deformation on the sheet in a consecutive manner. In this
investigation, elasto-plastic analysis of SPIF process by FEM
was performed using a finite element code ABAQUS© soft-
ware capable of handling large deformation. Finite element
models are established to simulate aluminum-truncated cones.
The output of the simulation is given in terms of the reaction
forces, the final geometry and the thickness distribution of the
product.

2.1 Incremental sheet forming conditions and material
behavior

The sheet metal used in the numerical simulation is Al 3003-O
[11]. It is considered as isotropic and the flow has been
accounted by means of a Swift-type hardening law expressed
as [44]:

σ� ¼ k ε0 þ ε̄ð Þn ð1Þ
where k is the strain hardening coefficient, n the power law
coefficient and ε is the effective accumulated plastic strain.
This choice has been validated through a tensile test that has
been used to determine the material coefficients. The param-
eters are as follows: k=184 MPa, n=0.224 and ε0=0.00196.

The elastic part of the constitutive behavior of the sheet is
assumed to be linear and isotropic, with Young’s modulus (E)
and Poisson’s ratio (ν) were taken to be 70.0 GPa and 0.33,
respectively. The plasticity criterion of Hill was considered,
and therefore the anisotropy phenomenon of material was
introduced in the numerical models of the SPIF process. The
planar anisotropies are characterized by experimental tests

according to three particular directions. They are fitted accord-
ing to measured Lankford coefficients: r0=0.51, r45=0.75,
and r90=0.48.

Modeling the interaction between the tool and the sheet is
one of the most important considerations necessary to simu-
late the incremental forming process correctly. Concerning the
processing conditions, tools are considered as an analytical
rigid body and the corresponding boundary conditions are
related to the defined path, while the sheet material is consid-
ered as elastic-plastic object. The contact at the interface
between sheet and tools follows Coulomb’s friction law:

τ f ¼ μσn ð2Þ

where τf is friction shear stress, σn is normal stress at interface
and μ is the friction coefficient. Friction conditions between
the forming tool and the sheet metal part have been accounted
by considering sliding friction with a friction coefficient equal
to 0.09.

2.2 Finite element simulation of SPIF

As incremental forming is a progressive sheet metal forming
process characterized by large displacements and large local-
ized strains, therefore static simulations were conducted in this
work by using the implicit FE package Abaqus/Standard like
calculation algorithm. An axisymmetric part representative of
right truncated cone at 40 mm depth with circular base having
the initial diameter of D=180 mm obtained from a square
blank sheet (200×200 mm) was studied considering the SPIF
process. Figure 2 shows a generation of discontinuous tool
path showing the forming of a cone. Each tool path is made up
of a series of contours generated transverse to the long axis of
the cone. The forming tool follows the predetermined tool
path and gradually forms the sheet metal in a series of incre-
mental steps until the final depth is reached. The tool motion is
usually described in terms of Cartesian coordinates. The steps
of single point incremental sheet metal forming are usually
defined asΔx,Δy representing increments in horizontal sheet
plane labeled as the X-axis and Y-axis and a finite forming
depth h in vertical Z-axis respectively, being the direction in
which deformation occurs.

The part is formed according to a discontinuous trajectory
as it shown in Fig. 2. The tool starts from the outside of the
shape toward the inner part and incrementally goes down in
the Z-directionwith increasing depth describing a sort of spiral
until the desired diameter at the maximum depth is reached. In
this way, the tangential movement of the tool completely
forms the product profile. The tool path is prescribed by NC
data that is generated from a CAD model of the component to
be formed. The forming strategy consists of a single forming
stage where the tool traces along a sequence of contour lines
with a vertical increment step size in between. The part is
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formed progressively and locally around the tool thanks to its
CNC-controlled movement. Using this forming strategy it is
obvious that there are a relatively large number of adjustable
process parameters that can influence the forming process for
a given geometry such as the forming angle, the radius of the
forming tool, the initial thickness of the sheet metal or the size
of the step down.

As sheet metal forming involves large material rotation as
well as strain, suitable algorithm should be employed in the
FEA. Due to the 3D tool path movement, a fully three-
dimensional, elasto-plastic FE model is set up for the simula-
tion to investigate the SPIF process. Figure 3 reports the
developed numerical model for the process in the initial,
intermediate and final configurations of the part during the
single point incremental operation. It shows both the unde-
formed and deformed shapes modeled in this context.

As a consequence, quadrilateral shell elements with 4
nodes and 6 degrees of freedom per node (S4R) and five
Gaussian reduced integration points through the thickness
direction were used. These elements are the so-called 3D
reduced shell elements and are well suited to properly consid-
ered thickness variations through the deformation process.
Consequently, they are widely used in the forming problems
of large deformation and large rotation. The general shape of
the aluminum alloy sheet Al 3003-O has been considered
square for different thicknesses with a size of 200 mm×
200 mm. The finite element meshing subdivision of the initial

blank is depicted in Fig. 4. The aluminum alloy sheet was
modeled as an elasto-plastic material with isotropic hardening
using material data previously mentioned. In the FE model,
the blank was initially meshed with 25,600 rectangular shell
finite element (dimensions, 1.25 mm×1.25 mm) considering
reduced integration and 25,901 nodes.

The parameters of the finite element model (meshing, element
type and contact algorithm) are selected after several numerical
simulations to evaluate their influence on the computational time
and to achieve good results. Particular attention has to be paid to
the mesh conditions. In this particular simulation, the selection of
the mesh is of great importance because it must be suitable to
describe the precision the results. Therefore, a convergence study
through mesh size reduction has been carried out for the finite
elementmodel. All simulations were performed onWindowsXP
PC Core 2 Quad with 2.5 GHz processor and a read/write
memory performance of 2,096 Mb. The CPU time required to
simulate the single point incremental forming process of trun-
cated cone mentioned previously takes, on average, 5 days.

3 Design of numerical experiments

In order to effectively determine the correlations between the
process parameters and the responses as well as in order to
determine the optimal design variables in SPIF, a campaign of

step 1step 2

step 3

contour

Fig. 2 Schematic description of the tooling path generated by CATIA and integrated into ABAQUS

Tool Blank

Blank edges
are clamped

(a) (b) (c)

Fig. 3 Schematic of the setup in FEA simulations. a Initial, b intermediate, and c final configurations of the blank shape during the SPIF operation
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numerical simulations using finite element analysis was car-
ried out based on a proper DOE. A Box–Behnken experimen-
tal design [45] is executed using four forming factors. The
four factors varied at three levels are wall angle, tool size,
material thickness and incremental step size. The responses to
the factors are the thinning rate and the maximum punch load.
The Box–Behnken design can analyze four factors in three
levels in a total number of 27 numerical simulation runs
performed. The first objective of the set of numerically simu-
lated tests is to define the most critical forming parameters in
SPIF. The second objective is that a Box–Behnken experi-
mental design is used to determine the affect of process
parameters on the considered responses, and also it can be
employed to develop mathematical models in view to define
approximations of objectives functions. The forming factors
and levels are listed in Table 1. In the used Box–Behnken
design, the numerical process parameters are coded, in this
case there are three levels codes and the coded factors are low
(−1), medium (0), and high (1).

3.1 Considered DoE

Table 2 illustrates the matrix of experiments which represents
the numerical data obtained based on the finite element de-
scribed earlier. This experimental design was used for the
optimization procedure and for the visualization of the results
in the form of different graphics. It will lead to the develop-
ment of an analytical formulation connecting the response to

the various factors conducing to the optimization of single
point incremental forming process. Consequently, this tech-
nique is suitable for exploring quadratic response surfaces and
constructing second-order polynomial models.

3.2 Main effects plot of the factors

In order to compare the impacts of various factors on the value
of thinning rate of the sheet and the maximum punch load, the
main effects of the factors were represented in Fig. 5. It is then
immediately possible to note that changes carried out between
the low and high levels of different parameters affect in a more
or less important way the variation of the geometrical or
mechanical response according to the factors considered.
The graphs of the main effects emphasize immediately the
significant factors, the wall angle and the initial thickness. The
variables diameter and vertical increment of the tool seem to
be the factors with much less important effects on the
responses.

 Finite element type = S4R 

 Number of elements = 25600 

 Number of nodes = 25901 

Fig. 4 Initial FE meshing configuration and tool position for the trun-
cated cone simulation in ABAQUS formed by SPIF

Table 1 The levels of factors for numerical experiments

Name Description Inferior
born (−1)

Middle (0) Superior
born (1)

α (°) Wall angle 50 60 70

D (mm) Punch diameter 10 17.5 25

Thini (mm) Initial thickness 0.85 1.425 2

In (mm) Step size 0.5 1.25 2

Table 2 Box–Behnken design of experiments

N° α D Thini In Th final Thinning rate Fmax

1 0 1 0 −1 0.56 60.70 % 950

2 −1 0 1 0 1.082 45.90 % 1,600

3 −1 0 −1 0 0.46 45.88 % 475

4 1 0 −1 0 0.243 71.42 % 650

5 1 0 1 0 0.568 71.61 % 1,850

6 0 1 0 1 0.524 63.23 % 1,300

7 0 −1 0 −1 0.604 57.61 % 600

8 0 0 0 0 0.585 58.93 % 1,125

9 0 −1 0 1 0.57 60.00 % 1,000

10 0 0 −1 1 0.332 60.95 % 620

11 0 0 0 0 0.585 58.93 % 1,125

12 0 0 −1 −1 0.351 58.68 % 450

13 0 0 1 −1 0.82 59.00 % 1,250

14 1 −1 0 0 0.426 70.14 % 1,100

15 0 0 1 1 0.78 61.00 % 1,900

16 1 1 0 0 0.399 72.00 % 1,250

17 −1 −1 0 0 0.784 45.02 % 800

18 −1 1 0 0 0.77 45.96 % 940

19 1 0 0 1 0.4 71.93 % 1,350

20 0 1 −1 0 0.339 60.12 % 575

21 0 −1 −1 0 0.36 57.65 % 460

22 0 −1 1 0 0.845 57.75 % 1,300

23 0 0 0 0 0.585 58.93 % 1,125

24 1 0 0 −1 0.412 71.09 % 900

25 −1 0 0 −1 0.791 44.49 % 750

26 −1 0 0 1 0.742 47.93 % 1,200

27 0 1 1 0 0.782 60.90 % 1,850
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In the presence of a significant number of factors, the
construction of graphs like interaction matrix can offer an
interesting alternative to the main effects of forming
parameters and their interactions. Figure 6a, b shows a
graphic representation of interaction plots corresponding
for the two responses, respectively: the thinning rate
and the maximum punch force. From the reading of
the interaction plots (Fig. 6a) related to the thinning
rate, the predominance of the wall angle, which appears
first, can be seen. The increase in this factor contributes to
grow the response values of the sheet thinning rate, that
means a decrease in sheet formability. In particular, the
forming angle is particularly significant for the formability
when its value is larger. By eliminating the first dominating
factor, we identify the influence of the other factors as well
as their interactions. The interaction between tool size (or
initial thickness of material) and step size is relatively
nonsignificant.

The interaction effects of the process parameters corre-
sponding to the maximum punch load are presented in
graphical form given by Fig. 6b. According to this figure,
the value of the response results to be strongly influenced
by the initial sheet thickness parameter which affects more

the punch load during the incremental forming. Indeed,
this can be explained by the effects of material increasing
when the thickness evolves. Therefore, the punch will be
subjected to a significant quantity of material pushed to
deform it, and consequently a rise in the load necessary
for deforming the part will be generated. The combina-
tion of higher sheet thickness and larger values of tool
diameter (or incremental step size) contributes to signif-
icant increase of the maximum force value provided by
punch tool as illustrated in Fig. 6b. It should also be
mentioned from the obtained interaction plots, that the
interaction of the wall inclination angle with all other
factors has more or less negligible effect on the output
variable.

Based on the preceding results, the RSMwill be used in the
following section to construct the global approximation of the
responses at various sampled points of design space.
Therefore, MATLAB based programs were developed
in this work for which all computations were carried
out. Two optimization problems are formulated and two
optimization procedures based on the global approach
and the genetic algorithm are proposed and applied to find the
optimum solutions.
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Fig. 5 Graphs of the main effects of four studied factors for: a thinning rate and b Fmax

Fig. 6 The interaction effects of the input parameters for: a thinning rate and b maximum punch load
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4 Procedures of optimization

In incremental forming processes of sheet metal, vari-
ous criteria must be satisfied, and the search for an
optimal solution can account for contradictory criteria.
Consequently, several constraints and objective func-
tions are necessary in order to obtain proper quality
product.

The goal of the optimization is to get the best combination
of process or geometry design variables which will lead to a
desired sheet metal part without any defects, such as, maxi-
mum sheet metal thinning, fractures, insufficient stretching
and thickness varying, high values of punch load, etc.

4.1 Overview of response surface approximation

For the most of the response surfaces, the functions for the
approximations are polynomials because of simplicity, though

the functions are not limited to the polynomials. For the cases
of quadratic polynomials, the response surface function is
described as follows:

y ¼ β0 þ
X
j¼1

k

β jx j þ
X
j¼1

k

βjjx
2
j þ

Xk−1
i¼1

X
j¼iþ1

k

βijxix j ð3Þ

where k is the number of design variables. In the case
that total number of experiments is n, corresponding
to n combinations of the design variables, the re-
sponse surface can be expressed as follows by matrix
expression:

Y ¼ Xβ þ ε ð4Þ

where

Y ¼
y1
y2
y3
⋮
yn

2
6664

3
7775;X ¼

1 x11 x12 ⋯ x1k
1 x21 x22 ⋯ x2k
1 x31 x32 ⋯ x3k
⋮ ⋮ ⋮ ⋱ ⋮
1 xn1 xn2 ⋯ xnn

2
66664

3
77775
;β ¼

β1

β2
β3

⋮
βn

2
6664

3
7775; ε ¼

ε1
ε2
ε3
⋮
εn

2
6664

3
7775 ð5Þ

In which Y is the response vector, X is the matrix of the
independent variables, β is the vector of the unknown coeffi-
cients βi and ε is the random error vector of the approximation.

The unbiased estimator ε of the coefficient vector β is obtain-
ed using the well-known least square error method as follows:

b ¼ XTX
� �−1

XTY ð6Þ

The variance–covariance matrix of the b is obtained as
follows:

cov bi; bj

� � ¼ Cij ¼ σ2 XTX
� �−1 ð7Þ

where the σ is the error of Y. The estimated value of σ is
obtained as follows:

σ2 ¼ SSE
n−l−1

ð8Þ

where l is the number of non-consist terms in RS model, SSE
is a square sum of errors, and expressed as follows:

SSE ¼ YTY−bTXTY ð9Þ
Statistical analysis techniques such as ANOVA can be used

to check the fitness of RS model and to identify the main

effects of design variables. The major statistical parameters
used for evaluating model fitness are the Y statistic, R2, ad-
justed R2(Radj

2 ), and root mean square error (RMSE). Note that
these parameters are not totally independent of each other and
are calculated as

F ¼ SSYY−SSEð Þ=l
SSE= n−l−1ð Þ ð10Þ

R2 ¼ 1−
SSE
SSYY

ð11Þ

R2
adj ¼ 1−

SSE= n−l−1ð Þ
SYY=n−1

ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE
n−l−1

r
ð13Þ

where SYY is the total sum of squares expressed as following,
SSE is presented in Eq. 9.

SYY ¼ YTY−

Xn

i¼1
yi

n
ð14Þ
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R2 is the proportion of variability in a data set that is
accounted for by a statistical model. In this case R2 increases
as we increase the number of variables in the model (R2 will
not decrease). This illustrates a drawback to one possible use
of R2, where one might try to include more variables in the
model until “there is no more improvement”. This leads to the
alternative approach of looking at the adjusted R2. The expla-
nation of this statistic is almost the same as R2 but it penalizes
the statistic as extra variables are included in the model. In
situations where the number of design variables is large, it is
more appropriate to look at Radj

2 ; because R2 always increases
as the number of terms in the model is increased while Radj

2

actually decreases if unnecessary terms are added to the mod-
el. In addition to these statistics, the accuracy of the RS model
can also be measured by checking its predictability of re-
sponse using the prediction error sum of squares (PRESS)
and R2 for prediction (Rpred

2 ). The PRESS statistic and Rpred
2 are

calculated as

PRESS ¼ YTY−

Xn

i¼1
y ið Þ

n
ð15Þ

R2
pred ¼ 1−

PRESS

SSYY
ð16Þ

where y(i) is the predicted value at the ith design point using
the model created by (n−l) design points that exclude the ith
point.

4.2 Analysis of variance

The adequacy of the developed models were tested using the
ANOVA technique and the results of the quadratic order
response surface model fitting in the form of ANOVA are
given in Tables 3 and 4. The test for significance of the
regression models, the test for significance on individual
model coefficients and the lack-of-fit test were performed
using the same statistical Minitab 16 software package.
These tables summarize the analysis of variance for each
response and show the significant model terms. The same
tables show the other adequacy measures R2, adjusted R2

and predicted R2. The coefficient of determinationR2 indicates
the goodness of fit for the model. In this case, all the values of
the entire adequacy measures are nearly equal to 1, which is in
reasonable agreement and indicates adequate models. Clearly,
we must have 0≤R2≤1, with larger values being more desir-
able. The adjusted coefficient of determination R2 or “adjust-
ed” R2 is a variation of the ordinary R2 statistic that reflects the
number of factors in the model. The entire adequacy measures
are closer to 1 for the two considered responses: the thinning
rate and the maximum punch load, which is in reasonable
agreement and indicate adequate models. Tables 3 and 4 also
indicate that the predicted correlation coefficients values

(predicted R2=99.04 % and 94.16 %) for accuracy of this
model are very satisfactory.

Finally, and according to the values of R2, adjusted R2 and
predicted R2, the response surface statistical analysis
highlighted that a quadratic model well describes these two
responses evolution with respect to the input data with a
performance index (R2=99.83 %, adjusted R2=99.64 %
and predicted R2=99.04 %) and (R2=98.99 %, adjusted
R2=97.80 % and predicted R2=94.16 %). They correspond to
the sheet thinning rate and the punch force cost functions
respectively, thus confirming the results consistency.

4.3 Genetic algorithm

The genetic algorithm is a method for solving both
constrained and unconstrained optimization problems that is
based on natural selection, the process that drives biological
evolution. The genetic algorithm repeatedly modifies a popu-
lation of individual solutions. At each step, the genetic algo-
rithm selects individuals at random from the current popula-
tion to be parents and uses them produce the children for the
next generation. Over successive generations, the population
“evolves” toward an optimal solution. The genetic algorithm
uses three main types of rules at each step to create the next
generation from the current population:

& Selection rules select the individuals, called “parents”, that
contribute to the population at the next generation.

& Crossover rules combine two parents to form children for
the next generation.

& Mutation rules apply random changes to individual par-
ents to form children.

4.3.1 Genetic algorithm steps

In short, the steps involved in the GA used in this research are
as follows:

Step 1 Choose a coding to represent problem parameters, a
selection operator, a crossover operator, and a muta-
tion operator. Choose population sizeNpop, crossover
probability Pc, and mutation probability Pm. Choose
a maximum allowable generation GEN and initialize
a random population P0 of chromosomes.

Step 2 Evaluate fitness of the solution set for all chromosomes
in the initial population. Assign a fitness value to each
solution in P0 according to the objective function.

Step 3 If a termination criterion is satisfied, terminate.
Step 4 While no termination condition, perform reproduc-

tion on the population. Select individual for mating
pool members of population size set by focusing on
the fitness value.
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(i) Tournament Selection
(ii) Roulette Wheel Selection
(iii) Elitist selection with their rates to selecting chromo-

somes from population P
Step 5 Alter the population by performing the genetic

operators.

(i) Crossover: Applying the crossover operation for each
random pair of chromosomes with probability Pc.

(ii) Mutation: Applying the mutation operation for the
genes of the chromosome with probability Pm.

Step 6 Replace the current population by the resulting new
population.

Step 7 Evaluate the objective function for all strings in the
new generation, called offsprings and formed by
either crossover operator or mutation operator.

Step 8 If the stopping criteria is satisfied, then terminate algo-
rithm and return the best solution of the generation

Step 9 Otherwise, go back to step 4. This process will continue
until the stopping of the algorithmwhen the value of the
fitness function for the best point in the current popula-
tion is less than or equal to fitness limit.

The flowchart of GA algorithm process is shown in Fig. 7.

4.3.2 Parameters of genetic algorithm

In the optimization problem of single point incremental
forming process, the chromosomes are encoded in a binary
string. This type of encoding is the most common, mainly
because first works about GA used this type of binary code. In
binary encoding, every chromosome has one binary string of
bits, 0 or 1.

The first step in the implementation of any genetic algo-
rithm is to create an initial population composed of a group of
chromosomes. The initial population evolves under deter-
mined selection rules to a new state that minimizes an objec-
tive function. Therefore, in each step, the algorithm has a
population of chromosomes that holds specific qualities more
than the previous population. Each population or generation
of chromosomes has the same size which is well-known as the
population size and is denoted byNpop. In the present research,
the initial population is randomly generated regarding the
population size in which Npop is chosen to be 300.

For creating the new generation, it is required to select
some chromosomes (mating pool) from the population with
the latest fitness in the progress generation for recombining or
creating chromosomes allied to the new generation. In this
case, tournament selection is used in which the fitness of

Table 3 ANOVA table for thin-
ning rate quadratic model

R2 =99.83 %, adjusted R2 =
99.64 %, predicted R2 =99.04 %,
PRESS=0.001922, S=
0.00527301

Source Degree
of freedom

Sum of squares Adjusted sum
of squares

Adjusted
mean square

F value p value
Prob>F

Regression 14 0.199738 0.199738 0.014267 513.12 0.000

Linear 4 0.198406 0.001814 0.000454 16.31 0.000

α 1 0.195067 0.001187 0.001187 42.69 0.000

D 1 0.001811 0.000023 0.000023 0.82 0.382

Thini 1 0.000017 0.000016 0.000016 0.56 0.467

In 1 0.001510 0.000004 0.000004 0.16 0.695

Square 4 0.001129 0.001129 0.000282 10.15 0.001

α×α 1 0.000682 0.000301 0.000301 10.84 0.006

D×D 1 0.000002 0.000024 0.000024 0.86 0.373

Thini×Thini 1 0.000008 0.000018 0.000018 0.65 0.436

In×In 1 0.000436 0.000436 0.000436 15.67 0.002

Interaction 6 0.000203 0.000203 0.000034 1.22 0.361

α×D 1 0.000021 0.000021 0.000021 0.75 0.404

α×Thini 1 0.000001 0.000001 0.000001 0.02 0.879

α×In 1 0.000168 0.000168 0.000168 6.05 0.030

D×Thini 1 0.000012 0.000012 0.000012 0.42 0.532

D×In 1 0.000000 0.000000 0.000000 0.02 0.896

Thini×In 1 0.000002 0.000002 0.000002 0.07 0.802

Residual error 12 0.000334 0.000334 0.000028

Lack-of-fit 10 0.000334 0.000334 0.000033

Pure error 2 0.000000 0.000000 0.000000

Total 26 0.200072
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current-generation chromosomes is calculated according to
objective function. In what follows, the value of tournament
size used in the proposed GA of this research is 5.

When the GA operators are applied, offspring chro-
mosome may not be a feasible solution, so these solu-
tions are corrected to be feasible. The crossover and

Table 4 ANOVA table for max-
imum punch load quadratic
model

R2 =98.99 %, adjusted R2 =
97.80 %, predicted R2 =94.16 %,
PRESS=271,572, S=62.6817

Source Degree of
freedom

Sum of squares Adjusted sum
of squares

Adjusted
mean square

F value p value
Prob>F

Regression 14 4,605,298 4,605,298 328,950 83.72 0.000

Linear 4 4,414,129 9,664 2,416 0.61 0.660

α 1 148,519 166 166 0.04 0.840

D 1 214,669 6,106 6,106 1.55 0.236

Thini 1 3,542,533 503 503 0.13 0.727

In 1 508,408 2,540 2,540 0.65 0.437

Square 4 84,207 84,207 21,052 5.36 0.010

α×α 1 6,033 6 6 0.00 0.970

D×D 1 38,958 46,667 46,667 11.88 0.005

Thini×Thini 1 8,881 948 948 0.24 0.632

In×In 1 30,334 30,334 30,334 7.72 0.017

Interaction 6 106,963 106,963 17,827 4.54 0.013

α×D 1 25 25 25 0.01 0.938

α×Thini 1 1,406 1,406 1,406 0.36 0.561

α×In 1 0 0 0 0.00 1.000

D×Thini 1 47,306 47,306 47,306 12.04 0.005

D×In 1 625 625 625 0.16 0.697

Thini×In 1 57,600 57,600 57,600 14.66 0.002

Residual error 12 47,148 47,148 3,929

Lack-of-fit 10 47,148 47,148 4,715

Pure error 2 0 0 0

Total 26 4,652,446

Generation g+1

Mating pool

Generation g

Evolution &

selection

Crossover

Mutation

Evolution

Evolution &

selection
Stopping 

criteria

False

True: The best solution 

of the generation

End

Fig. 7 The flowchart of GA
algorithm process
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mutation are the most important part of the genetic
algorithm.

Crossover operator The crossover operator represents the
main genetic operator. The last selects genes from parent
chromosomes and creates a new offspring. The standard single
point crossover was adopted which randomly generates one
crossover points along the length of array and divides two
chromosomes into two segments subsequently, from one point
randomly and exchange their broken parts, resulting in two
offspring’s chromosomes. Crossover operates on the parents
chromosomes with the probability of Pc. This parameter of
crossover probability used for the GA developed here is Pc=0.9.

Mutation operator After a crossover is performed, mutation
operation takes place for exploring new solutions. This oper-
ator can change the values of randomly chosen gene bits for
the new offspring. Consequently, in the case of our GA the
binary encoding is employed and we can switch a few ran-
domly chosen bits from 1 to 0 or from 0 to 1. The mutation
probability Pm performed in this research was chosen to be
equal to its usual value of 0.01.

After producing the new chromosomes by crossover and
mutation operations, we need to evaluate them. Genetic algo-
rithm evaluates chromosomes based on fitness function value.
In a minimization problem, the more appropriate the solution
is the less the amount of the objective function (fitness value)
will be.

The last step in a GA method is to check if the algorithm
has found a solution that is good enough to meet the user’s
expectations. The GA uses different stopping criteria used in
literature to determine the good solution. In this research the
reaching a fitness limit of the objective function is used to stop
the algorithm. At first, the algorithm examines the fitness
values corresponding to the successive individuals of the
present generation. The convergence error corresponding to
the tolerance of the variation between two consecutive evalu-
ations of the objective function for its convergence is chosen
equal to 10−6.

5 Optimization procedure based on response surface
modeling

The incremental forming of metal parts is subjected to a
variety of process parameters. The characteristic functions
which were selected to approximate the responses of the parts
during the SPIF operation are the sheet thinning rate
(Thin_rate) and the maximum punch force (F_max). The
effects of the interaction between the wall inclination angle
(α), the punch diameter (D), the initial thickness of material
(Thini) and the size of the step down (In) on the evolution of

geometrical and mechanical responses were studied.
Numerical and graphical optimization methods were used in
this part of work by choosing the desired goals for each factor
and response. For that, the RSM is used to construct global
approximation of the response at various sampled points of
design space. Therefore, MATLAB-based [46] programs were
developed in this work for which all computations were
carried out.

Polynomial regression methods are commonly used to
create response surface functions from a set of sampled data.
In this study, it has been found that a quadratic polynomial
approximation was shown to be reliable and sufficient to fit
the numerical data by using response surface methodology
with less error. This quadratic order interpolation makes it
possible to represent accurately two models in SPIF for the
objective functions of thinning rate and maximum punch
force. For a general polynomial approximation of second
order, the mathematical models can be represented in the
following form:

y ¼ β0 þ
X
i¼1

n

βixi þ
X
i¼1

n

βiix
2
iþ

X
i< j

n

βijxix j þ ε ð17Þ

The optimization procedure is carried out in the search
range of design variables in order to determine the optimal
values of these process parameters guaranteeing the minimi-
zation of sheet thinning rate (Thin_rate) and maximum punch
load (F_max). The multiobjective function problem can be
formulated as follows:

Minimize Thin rate ¼ F1 α;D;Thini; Inð Þ ð18aÞ

Minimize F max ¼ F2 α;D;Thini; Inð Þ ð18bÞ
Subject to the constraints:

αmin≤α≤αmax ð19aÞ

Dmin≤D≤Dmax ð19bÞ

Thinimin ≤Thini≤Thinimax ð19cÞ

Inmin≤ In≤ Inmax ð19dÞ

{β0,βi,βii,βij} are the regression coefficients representing
the approximate functions of the polynomials Thin_rate and
F_max. They are determined by applying the method de-
scribed in Section 4.1.

The theoretical development allows minimizing the square
error εerr between the real design point yi and the estimated
values computed by using the second-order function y. The
total quadratic error is defined by:
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εerr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnexp
i¼1

yi−yð Þ2
vuut ð20Þ

The minimization of the quadratic error requires the deri-
vation of εerr with respect to the constants that appears in
Eq. 17. In this case, the method allows to solve a linear system
in β0, βi, βii and βij to evaluate the objective functions Thin_
rate and F_max, respectively. Tables 5 and 6 summarize the
computed regression coefficients corresponding to the two
polynomials of objective functions.

5.1 Response surface analysis of thinning rate objective
function

RSM is the regression method exploring the relationships be-
tween several explanatory variables and one or more response
variables. This technique aims at determining in a quantitative
way the variations of the response function. Using the foregoing
methodology, a complete set of numerical experiments was run.
The results are reported in three-dimensional response surface
(RS) and contour plots. The graphs given by Fig. 8a1, b1 are
shown as the three-dimensional representation of the relative
variation of the predicted thinning rate Thin_rate on the Z-axis
and the variables: incremental step size (X-axis), and tool size on
the Y-axis. From a global point of view, it worth noting in 8a1 and
8b1 that thinning rate of sheet metal evolves similarly. Thus, the
obtained maps give a same tendency at the domain of process
variables. It can be evoked, that the results show an evolution of
sheet thinning in a nonlinear way according to the considered
parameters and that is more sensitive to the vertical step size than
to the punch diameter. These figures show that the increase in the
vertical increment step size and the tool diameter represents an
amplification of thinning rate of sheet metal. The minimum
values of this response are located at the low ranges of process
parameters wherea, high values of sheet thinning rate are reached
for the most severe conditions of forming characterized by the
highest values of incremental step size (In) and punch diameter
(D). Comparing the response surface given by Fig. 8a1 to b1, it
can be seen certainly that the thinning rate has to be affected by
the wall inclination angle. Consequently, for a large value of the
geometrical process parameter, the numerical result obtained for
the studied response increases considerably.

The variation of thinning rate of the sheet in the space
design is illustrated by contour plots shown in Fig. 8a2, b2,
respectively for wall angle values equal to α=50° and α=70°.
They make it possible to locate the regions containing the
global minimum values of this response. It was found that the
regions with less thinning rate are obtained in the lower left
zones of last two figures corresponding to the small values of
vertical step size (In_opt) and tool diameter (D_opt). They were
limited by amplitudes of Thin_rateopt=43.8094% and Thin_ T
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rateopt=69.6325%, respectively for minimum and maximum
forming angle having a values of 50° and 70°.

5.2 Response surface analysis of maximum punch load
objective function

A second response, which is very important, represents the
maximum punch load. Indeed, the control of this response
decreases the probability of the damaged parts. The global
evolution of the maximum forming load F_max is illustrated
by Fig. 9a1, b1 in form of response surfaces according to the
two significant factors: incremental step size (In) and the
punch diameter (D). Regarding the trends of the response
surfaces, it is interesting to evoke the nonlinearity dependency
of the maximum load according to the two retained variables
and that it is more sensitive to the (D) than to the (In). A
comparison between the response surfaces given by Fig. 9a1,
b1, allow marking that both figures have almost the same
trend, and the maximum force applied by punch is related to
the mechanical resistance of the part which increases consid-
erably with the increase in the sheet thickness. From the
numerical results, it has also been deduced that the values of
this mechanical response are prominent when the incremental
step size (In) and the tool diameter (D) are high.

As mentioned in Fig. 9a1, b1, it can be marked that the
effect of the forming load appears very significant when the
difference of the maximum values of punch force correspond-
ing to minimum and maximum initial material thickness is
observed to be 620 N and 2,068 N respectively. The minimum
values of the applied loads necessary for forming the part in
incremental CNC sheet metal forming process are obtained for
the lowest values of these process parameters. Hence, the
optimal solutions are predicted for the following values de-
fined by F_maxopt=302.7083N and F_maxopt=931.875N,
when the initial thickness is maintained fixed to its lower
and upper bounds equal, respectively, to Thini=0.85 mm and
Thini=2 mm. The contour plots of the response surfaces are
presented in Fig. 9a2, b2. They make it possible to locate the
optimal zone in which the maximum punch load is the
smallest. The regions with less punch load fitness function
(F_max) are found for small values of process parameters
characterized by optimal incremental step size (In_opt) and
optimal value of punch diameter (D_opt).

6 Optimization results and comparison

6.1 Results of optimization by global approach

The purpose of the study is to determine the optimal relative
values of process parameters which make possible to mini-
mize sheet thinning rate Thin_rate and maximum formingT
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load F_max. In order to do this, the four response surfaces
corresponding to the two objectives functions are plotted. The
optima in the global approach are found by evaluating the
values of the objectives functions at points located inside the
feasibility domain. The latter is sampled by a regular grid of
100×100 points which corresponds to a discretization of each
process parameters. The flow chart of this optimization step is
given in Fig. 10.

The minimum values of sheet thinning rate in cases of
minimum and maximum values of the wall inclination angle
are Thin_ ratemin

Global =43.8094% and Thin_ ratemin
Global =

69.6325%, respectively. These global minimums are reached
for the following couples of process parameters: (D_opt=
10 mm, In_opt = 0.5300 mm) and (D_opt = 10 mm,
In_opt=1.07 mm). This approach is applied again for
the minimization of punch force cost functions. Hence,
the optimal solutions corresponding to the two limit
values of initial blank thickness are obtained for a
minimum punch load values equal to F_maxmin

Global=
302.7083N and F_maxmin

Global=931.875N, respectively.
The optimum process parameters provided by this global
approach adopted are (D_opt=10 mm, In_opt=0.5 mm) and
(D_opt=10 mm, In_opt=0.5 mm). The CPU time for each
simulation is approximately 2 s.

6.2 Optimization results obtained using genetic algorithm

To test the algorithm’s validity before its applicability to the
optimization stage of single point incremental forming process,
two case studies were conducted. In the first step of the analysis,
the developed genetic algorithm was applied to find the mini-
mum of Rastrigin’s function, which it is often used to test the
genetic algorithm, because its many local minima make it diffi-
cult for standard, gradient-based methods to find the global
minimum. For two independent variables, Rastrigin’s function
is defined as:

Ras x1; x2ð Þ ¼ 20þ x21 þ x22−10 cos2πx1 þ cos2πx2ð Þ ð21Þ

Figure 11a. b shows the response surface and the contour
plot of Rastrigin’s function respectively. As shown in Fig. 11a,
the plot has a lot of local minima—the “valleys” in the plot
due to existing of cosine in it. However, the function has just
one global minimum considered as theoretical solution, which
occurs at the point [0 0] in the X1–X2 plane, as indicated by
the vertical line in the plot, where the value of the function in
this point is 0. The following contour plot of Rastrigin’s
function presented by Fig. 11b shows the alternating maxima

(a2)(a1)

(b2)(b1)

α = 50°
Thini = 1.425 mm

α = 50°
Thini = 1.425 mm

α = 70°
Thini = 1.425 mm

α = 70°
Thini = 1.425 mm

Fig. 8 Thinning rate results given in form of second-order response surfaces and contours plots of two variables. (a1 and a2) The wall angle α=50° (b1
and b2) The wall angle α=70°
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and minima. At any local minimum other than [0 0], the value
of Rastrigin’s function is greater than 0.

The evolution of Rastrigin’s function value versus the
cumulated generations number during the minimization stage
is shown in Fig. 12a. Typically, the fitness value improves
rapidly in the early generations, when the individuals are
farther from the optimum. The best fitness value improves
more slowly in later generations, whose populations are closer

to the optimal point. The optimal solution of the objective
function when the algorithm terminated is 0. Figure 12b dis-
plays the convergence of variables in the Rastrigin’s function
with the number of generation. We can note a continuous
increase in the two values of variables X1 and X2 until the
second iteration, and from here onwards, they begin to de-
crease and end up being stable. The optimal solution obtained
through the optimization phase using GAwas reached after six
iterations corresponding to X1=−2.7914E−10 and X2=
1.9974E−09. It can be concluded that the genetic algorithm
provide an optimal solution very close to the theoretical solu-
tion which is considered as reference result.

The second step consists in multidimensional minimization
of a classic test example through a genetic algorithm. This
function is Rosenbrock’s function, also known as the banana
function because of the way the curvature bends around the
origin. The function is described by the following equation:

Ros x1; x2ð Þ ¼ 1−x1ð Þ2 þ 100 x2−x21
� �2 ð22Þ

where x1 and x2 have a range of [−2 2;−1 3]. That is often
used as a test problem for optimization algorithms.
Figure 13a, b demonstrated the surface plot and the contour
map of the Rosenbrock banana function metamodel approxi-
mated by RSM. As it can be seen in Fig. 13a, the Rosenbrock

(b2)(b1)

(a2)(a1)

Thini = 0.85 mm

α = 60°

Thini = 0.85 mm

α = 60°

Thini = 2 mm

α = 60°

Thini = 2 mm

α = 60°

Fig. 9 Maximum punch load results given in form of second-order response surfaces and contours plots of two variables. (a1 and a2) The initial
thickness Thini=0.85 mm (b1 and b2) The initial thickness Thini=2 mm

Evaluation of objective 
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f(xi+1) = minimum
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fmin = minimum

Initial value of the function:

f(x0) = minimum

i i+1
No
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Fig. 10 Flow chart of global optimization algorithm
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banana function has a high degree of nonlinearity and con-
verges extremely slowly. Consequently, it is considered like a
common test problem in optimization. This function has a
global minimum at the point X*=[11] where it has a function
value Ros(X*)=0.

The convergence history of Rosenbrock’s banana function
versus the number of generations during the optimization
process is illustrated in Fig. 14a. According to the representa-
tive curve, it can be noticed that the objective function de-
creases in the first iterations and the minimal value of the
response begins to be stable from the first 20 evaluations. The
minimum fitness value returned by GA is approximately
1.7248E−05. Therefore, it can be observed that the value
shown is comparable and very close to the global minimum
represented by the theoretical solution of reference of
Rastrigin’s function, which is 0. Figure 14b displays the
convergence history of variables of Rosenbrock’s function
during generations to get near an optimum point. At the begin
of their evolution, each one of these two parameters presents
weak fluctuations until approximately 30 generations, then
from here onwards, they will be stabilized. The optimal values
of the two variables are X1=0.9959 and X2=0.9917,
respectively.

Comparing the minimum values of the fitness function and
their optimal variables obtained in this study using a genetic
algorithm with the optimum point given by the theoretical

solution, an excellent agreement is obtained and the high
accuracy of the joint results in this work can be clearly
observed.

6.2.1 Minimization of sheet thinning rate (Thin_rate)
objective functions

The first objective of the optimization procedure based on the
genetic algorithm is to find the best process parameters of
punch tool diameter and the vertical increment size which lead
to a minimum thinning rate of sheet metal after the forming
operation. The computation time required for the evaluation of
every solution has been assessed to about 5 s (realized on a PC
running a 2.5 GHz Core 2 Quad under Windows XP Pro and
3.96 Gb of RAM). The variation of the thinning rate objective
function is plotted with the number of generation in Fig. 15a
for the lower bound of the wall inclination angle of 50° and the
constant initial thickness of material fixed to its average cen-
tral value (Thini=1.425 mm). It can be seen that the curve
decreases rapidly first and then gradually until reaching the
convergence toward the minimal value of the thinning rate.
The optimal solution Thin_ratemin

GA=43.8094% was reached
after six generations.

The convergence history of process parameters optimiza-
tion to the optimal solution is illustrated in Fig. 15b. The total
number of function evaluations is 42. The iterative procedure

(b)

Global minimum at [0 0]

Global minimum at [0 0]

Local maxima

Local minima

(a)

Fig. 11 A plot (a) and a contour plot (b) of Rastrigin’s function

(a) (b)

Fig. 12 Evolution of Rastrigin’s
function value (a) and their
corresponding variables (b)
versus the number of generations
during the minimization stage

Int J Adv Manuf Technol (2014) 74:163–185 179



stops when the successive points of the objective function
evaluations are superposed for a convergence with a tolerance
of 10−6. The process parameters optimized by the proposed
optimization method defined by the values of punch diameter
and vertical step size are D_opt=10 mm and In_opt=
0.5297 mm, respectively. These values can be compared with
the previous results obtained through global approach to note
that they are in close agreement, which will make it possible to
validate the reliability and effectiveness of this genetic
algorithms-based optimization process.

In the same conditions as mentioned previously, we wish to
determine the optimum design variables minimizing the same
fitness function of sheet thinning rate while forming the part in
case of maximum wall inclination angle of 70°. The evolution
of the fitness function value with the number of generation is
reported in Fig. 16a. According to the representative curve, it
can be noted that the minimal value of the response begins to
be stable from the first five evaluations. The results of Fig. 16a
show that the minimum fitness value of the objective function
is Thin_ratemin

GA=69.6325%. Comparing the optimal solution
of thinning rate shown by Fig. 15a for parts geometries
numerically formed incrementally at 50° wall angle and the
optimization result calculated by adopting a maximum slope

angle α=70° described in Fig. 16a, it can be said that the sheet
thinning depends strongly on the wall angle. This means that
the steeper the forming angle, the greater the thinning on the
sheet surface. It could be explained that when the wall angle
increases, a localized nonuniform thinning however becomes
more and more severe, resulting in localized thinning in the
cone wall region and finally leads to unexpected failure at a
certain wall angle.

The curve of the variation of incremental forming process
parameters with the number of generation is plotted in
Fig. 16b. According to the representative curves mentioned
in the previous figure, it was found that the GA is a powerful
optimization tool with respect to its robustness and its conver-
gence speed, since these two factors present almost constant
evolutions with very weak oscillations during the first itera-
tions. In fact, this optimization technique converges to the
global minimum at the point defined by the optimized values
of tool diameter and incremental step size predicted by GA
equal to D_opt=10 mm and In_opt=1.0686 mm, respectively.

In this part of work, some comparative studies were then
carried out between all best solutions provided by the two
optimization methods described previously for a better under-
standing of the mentioned algorithm’s performance and

(a) (b)

Global minimum at [1 1]

Minimum at [1 1]

*
Ros(X ) = 0

Fig. 13 A plot (a) and a contour plot (b) of Rosenbrock banana function

(a) (b)

Fig. 14 Evolution of Rosenbrock’s banana function value (a) and their corresponding variables (b) versus the number of generations during the
minimization stage
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efficiency. Table 7 recapitulates the obtained optimization
results corresponding to the minimization of the thinning rate
cost functions Thin_rate and the deduced optimal values of
process parameters for parts formed numerically in cases of
minimum and maximum values of the wall inclination angle.
From Table 7, it can be seen that the numerical results of the
global minimum obtained by utilizing a GA are identical to
the computed values by using global approach which is con-
sidered as reference method. Consequently, these results can
thus be observed as satisfactory. It can be also noticed that the
optima determined by the two used optimization methods are
predicted approximately at the same design points of tool
diameter (D), and for slightly different values of the tool depth
step (In).

6.2.2 Minimization of the maximum punch load (F_max)
fitness functions

The second optimization problem deals with the minimization
of punch load fitness function. The objective is to determine
the best forming process parameters to reduce the maximum
punch force predicted during the simulation of single point

incremental forming operation. In the same way as previously,
the genetic algorithm is employed in this stage of optimiza-
tion. A graphical representation of the objective function by
number of generations is shown in Fig. 17a corresponding to
the lower initial sheet thickness (Thini=0.85 mm) and the
forming angle maintained fixed at its medium value (α=
60°). A continuous decrease of the punch force in more or
less linear according to the cumulated number of generations
was observed until reaching the convergence toward its min-
imal value. The global optimum solution is found after the
tenth iterations equal to F_maxmin

GA=302.7083N. The valida-
tion of the simulation is performed by comparing this optimal
response value resulting form the integration of GAwith the
global approach based optimization technique.

In Fig. 17b, we report the convergence history of design
parameters, such as the size of tool diameter as well as the
vertical increment step versus the cumulated number of gen-
erations at the same time that the evaluations of the fitness
function of the punch force F_max. After evolution from
generation to generation, the algorithm will converge to the
optimal solution defined by D_opt=10 mm and In_opt=
0.5 mm. Therefore, comparing these results obtained in this

(a) (b)

α = 50°_Thini = 1.425 mmα = 50°_Thini = 1.425 mm

Fig. 15 Convergence history of thinning rate objective function (a) and process parameters (b) to the optimal solution with genetic algorithm in case of
50° wall inclination angle

(a) (b)

α = 70°_Thini = 1.425 mm
α = 70°_Thini = 1.425 mm

Fig. 16 Convergence history of thinning rate objective function (a) and process parameters (b) to the optimal solution with genetic algorithm in case of
70° wall inclination angle
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part using a genetic algorithm to minimize the punch load
objective function with the optimum parameters computed
when we wish to optimize the thinning rate cost function with
50° wall angle, it can be clearly observed that they are almost
identical.

The second stage consists in finding the optimum parameters
which reduce the same cost function of punch load formulated
for the upper limit of initial blank thickness having a value of
(Thini=2mm). For that, a similar optimization approach based on
the application of the genetic algorithm was investigated.
Figure 18a demonstrated the convergence path curve of the
fitness function of the maximum forming force provided by tool
versus cumulated evaluations number. It can be noticed that the
objective function shows a rapid decrease until the third iteration
then it fluctuates during the next iterations. This optimization
method is well known to be efficient and to converge to a global
optimum. As seen at the end of this stage, the optimal fitness
value is F_maxmin

GA=931.875N. It was obtained after 15 itera-
tions. As it has been observed from the previous result of
optimization, an increase in the sheet thickness has a substantial
impact on the magnitude of the force required for successful
operation in the forming process. Consequently, it can be con-
cluded that the numerical simulation results show that an increase
in the sheet thickness also causes a considerable increase in the
resultant tool force.

The established GA is adopted to optimize the process pa-
rameters with less time and faster convergence. Figure 18b

represents the variation of punch diameter and vertical step size
versus the generation number during the optimization phase.
Initially, each one of these two parameters decreases by present-
ing weak fluctuations until approximately seven evaluations,
then from here onwards they will be stabilized progressively to
converge to an optimum solution. The converged decision var-
iables D_opt and In_opt are 10 and 0.5, respectively.

Table 8 presents a summary of the optimization results
corresponding to the minimization of punch force cost func-
tion. It can be deduced that the two methods used lead to
optimal numerical values of global response, punch diameter
and step depth which are comparable and very close. It was
found that all the two methods predicted the response with
almost the same accuracy when the results obtained with the
genetic algorithm method were also compared with the results
obtained using the global approach based on the response
surface method. In conclusion, the optimization strategies
clearly showed their capacities to search an optimal solution
with a fast convergence.

7 Conclusions and perspectives

This research focuses on the development of single point
incremental sheet forming process and its optimization in
order to accurately analyze the impacts of some forming

Table 7 Summary table of the optimization results corresponding to the minimization of sheet thinning rate cost function in cases of minimum and
maximum values of the wall inclination angle

Objective functions Thinning rate for part with 50° wall angle Thinning rate for part with 70° wall angle

Optimization methods Global approach Genetic algorithm Global approach Genetic algorithm

Global minimum 43.8094 43.8094 69.6325 69.6325

D_opt 10 10 10 10

In_opt 0.5300 0.5297 1.07 1.0686

(a) (b)

Thini = 0.85 mm _α =60°Thini = 0.85 mm _α =60°

Fig. 17 Evaluation of punch load fitness function with genetic algorithm (a) and variation of process parameters (b) versus cumulated number of
generations during the optimization phase for parts made from 0.85 mm initial thickness
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factors. The proposed approach is based on finite element
(FE) simulation by using the implicit algorithm of
ABAQUS/Standard module. A set of numerical experiments
have been conducted on SPIF, based on Box–Behnken DOE
in order to determine the influence of forming angle, tool size,
material thickness and step size on the sheet thinning rate and
the punch loads evolution generated in this forming process.
These numerical results were analyzed using statistical analy-
sis techniques such as ANOVA to evaluate the adequacy of
developed mathematical model and to check its fitness. It
proves that the wall angle and the initial sheet thickness have
significant effects on these two responses previously men-
tioned. The influences of the FE model parameters on FE
results are described with a set of second-order RS. This step
consists in developing of approximated objective functions in
order to explore the relationship between response variables
and a set of control factors. Response surface graphs and
contours plots were constructed to describe the effects of the
process parameters on the geometrical and mechanical re-
sponses. Also the performance of these mathematical models
were served as fitness functions in minimization of maximum
punch force (F_max) and sheet thinning rate (Thin_rate). In
fact, two constrained optimization methodology were applied
to find the optimum solutions using global approach based
response surface and a developed genetic algorithm. It can be
noted that the optimization method based on GA is efficient
and a powerful optimization tool, since it needs not gradients

and has good convergence speed. The developed approach
has demonstrated its ability to efficiently optimize the incre-
mental forming process of sheet metal. In conclusion, a com-
parison between the optimization results determined by this
technique and the results obtained by the global approach
allowed to show a good coherence between them and that
the two optimal solutions are almost identical.

In terms of perspectives, some important conclusions can
be stated:

& The integration of the presented methodology can be
enhanced by taking into consideration the simulta-
neous optimization of several functions, where a
problem of multiobjective robust optimization can
be achieved by using a modified multiobjective ge-
netic algorithm.

& Knowing that RSM depends strongly on the problem size
and order of the approximation models; therefore, the use
of RSM in conjunction with moving least square (MLS)
approximation could be advantageous by considering a
moving region of interest within the design space. The
MLS approximation maximizes the accuracy and mini-
mizes the number of function evaluations and consequent-
ly the number of finite element calculation. Furthermore,
adaptive RSM is a technique that could be of practical use
because it is able to be re-built automatically in the grad-
ually reduced design space.

Thini = 2 mm _α =60° Thini = 2 mm _α =60°

(a) (b)

Fig. 18 Evaluation of punch load fitness function with genetic algorithm (a) and variation of process parameters (b) versus cumulated number of
generations during the optimization phase for parts made from 2 mm initial thickness

Table 8 Summary table of the optimization results corresponding to the minimization of punch force cost function in cases of minimum and maximum
values of initial blank thickness

Objective functions Punch load for part with 0.85 mm thickness Punch load for part with 2 mm thickness

Optimization methods Global approach Genetic algorithm Global approach Genetic algorithm

Global minimum 302.7083 302.7083 931.875 931.875

D_opt 10 10 10 10

In_opt 0.5 0.5 0.5 0.5
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& Also, from an application point of view it seems important
to consider real industrial parts in the future. Of course,
this opens perspectives for many further investigations in
this direction, mainly focused on the experimental explo-
ration of the proposed process and on the model extension
to general geometries and materials.

& A new incremental sheet forming technology with local
heating will be investigated in the future to form light-
weight hard-to-form sheet metals such as aluminum-
magnesium alloy sheet or magnesium alloy sheet consid-
ered as attractive materials for lightweight products.
Therefore, the planning of experimental studies and the
development of numerical models aiming the finite ele-
ment simulation of warm incremental forming at elevated
temperature appear to be very interesting research
orientations.

References

1. Hagan E, Jeswiet J (2003) A review of conventional and modern
single point sheet metal forming methods. Proc IME B J Eng
Manufact 217:213–225

2. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou JR, Allwood J (2005)
Asymmetric single point incremental forming of sheet metal
(SheMet). Ann CIRP–Manuf Technol 54(2):623–649

3. Jeswiet J (2005) Asymmetric incremental sheet forming. Proceedings
of the Eleventh International Conference on Sheet Metal (SheMet),
Erlangen–Nuremberg, Germany, pp 35–58

4. Bahloul R, Arfa H, Bel Hadj Salah H (2011) Process analysis based
on experimental tests and numerical modelling of single point incre-
mental forming of sheet metal: effect of the principal process param-
eters. Proceedings of the XI International Conference on
Computational Plasticity (COMPLAS), Barcelona, Spain

5. Ben Hmida R, Thibaud S, Gilbin A, Richard F (2013) Influence of
the initial grain size in single point incremental forming process for
thin sheets metal and microparts: experimental investigations. J
Mater Des 45:155–165

6. Martins PAF, Bay N, Skjoedt M, Silva MB (2008) Theory of single
point incremental forming. Ann CIRP–Manuf Technol 57:247–252

7. Jackson K, Allwood J (2009) The mechanics of incremental sheet
forming. J Mater Process Technol 209:1158–1174

8. Hussain G, Gao L, Hayat N, Ziran X (2009) A new formability
indicator in single point incremental forming. J Mater Process
Technol 209:4237–4242

9. Bambach M, Ames J, Azaouzi M, Campagne L, Hirt G, Batoz JL
(2005) New forming strategies for single point incremental sheet
forming: experimental evaluation and numerical simulation.
Proceedings of the eighth International Conference on Material
Forming (ESAFORM), pp 671–674

10. Arfa H, Bahloul R, BelHadjSalah H (2012) Finite element modelling
and experimental investigation of single point incremental forming
process of aluminum sheets: influence of process parameters on
punch force monitoring and on mechanical and geometrical quality
of parts. Int J Mater Form. doi:10.1007/s12289-012-1101-z

11. Duflou JR, Tunçkol Y, Szekeres A, Vanherck P (2007) Experimental
study on force measurements for single point incremental forming. J
Mater Process Technol 189:65–72

12. Ambrogio G, Filice L, Micari F (2006) A force measuring based
strategy for failure prevention in incremental forming. J Mater
Process Technol 177:413–416

13. Ham M, Jeswiet J (2007) Single point incremental forming limits
using a Box-Behnken design of experiment. Key Eng Mater 344:
629–636

14. Ham M, Jeswiet J (2007) Forming limit curves in single point
incremental forming. Ann CIRP 56:277–280

15. Arfa H, Bahloul R, BelHadjSalah H (2009) Simulation numérique du
formage incrémental. 19ème Congrès Français de Mécanique
(CFM’2009), Marseille

16. Dejardin S, Thibaud S, Gelin JC, Michel G (2010) Experimental
investigations and numerical analysis for improving knowledge of
incremental sheet forming process for sheet metal parts. J Mater
Process Technol 210:363–369

17. Thibaud S, Ben Hmida R, Richard F, Malécot P (2012) A fully
parametric toolbox for the simulation of single point incremental
sheet forming process: numerical feasibility and experimental vali-
dation. Simul Model Pract Theory 29:32–43

18. Bouffioux C, Lequesne C, Vanhove H, Duflou JR, Pouteau P,
Duchêne L, Habraken AM (2011) Experimental and numerical study
of an AlMgSc sheet formed by an incremental process. J Mater
Process Technol 211:1684–1693

19. Bouffioux C, Henrard C, Eyckens P, Aerens R, Van Bael A, Sol H,
Duflou JR, Habraken AM (2008) Comparison of the tests chosen for
material parameter identification to predict single point incremental
forming forces. Proceedings of IDDRG Conference, Olofström,
Sweden, pp 133–144

20. Bouffioux C, Pouteau P, Duchêne L, Vanhove H, Duflou JR,
Habraken AM (2010)Material data identification to model the single
point incremental forming process. Int J Mater Form 3(Suppl 1):979–
982. doi:10.1007/s12289-010-0933-7

21. Lequesne C, Henrard C, Bouffioux C, Duflou JR, Habraken AM
(2008) Adaptive remeshing for incremental forming simulation.
Proceedings of Numisheet Conference, Interlaken, Switzerland, pp
399–403

22. Henrard C, Bouffioux C, Duchene L, Duflou JR (2007)
Validation of a new finite element for incremental forming
simulation using a dynamic explicit approach. Key Eng Mater
344:495–502

23. Henrard C, Bouffioux C, Eyckens P, Sol H, Duflou JR, Van Houtte P,
Van Bael A, Duchene L, Habraken AM (2011) Forming forces in
single incremental forming: prediction by finite element simulations,
validation and sensitivity. Comput Mech 47:573–590

24. Malhotra R, Huang Y, Xue L, Cao J, Belytschko T (2010) An
investigation on the accuracy of numerical simulations for single
point incremental forming with continuum elements. Proceedings
of the tenth International Conference on Numerical Methods in
Industrial Forming Processes (NUMIFORM), Pohang, Korea,
1252: 221–227

25. Bambach M, Cannamela M, Azaouzi M, Hirt G, Batoz JL (2006)
Computer-aided tool path optimization for single point incremental
sheet forming. Adv Meth Mater Form:234–250

26. Attanasio A, Ceretti E, Giardini C, Mazzoni L (2008) Asymmetric
two points incremental forming: improving surface quality and geo-
metric accuracy by tool path optimization. Mater Process Technol
197:59–67

27. Matthieu R, Hascoet JY, Hamann JC, Plenel Y (2009) Tool path
programming optimization for incremental sheet forming applica-
tions. J Comput Aided Des 41:877–885

28. Ham M, Jeswiet J (2006) Single point incremental forming and the
forming criteria for AA3003. Ann CIRP–Manuf Technol 55(1):241–
244

29. Bahloul R (2011) Optimisation of process parameters in flanging
operation in order to minimise stresses and Lemaitre’s damage. J
Mater Des 32:108–120

184 Int J Adv Manuf Technol (2014) 74:163–185

http://dx.doi.org/10.1007/s12289-012-1101-z
http://dx.doi.org/10.1007/s12289-010-0933-7


30. Wang H, Li GY, Zhong ZH (2008) Optimization of sheet metal
forming processes by adaptive response surface based on intelligent
sampling method. J Mater Process Technol 197:77–88

31. Azaouzi M, Lebaal N (2012) Tool path optimization for single point
incremental sheet forming using response surface method. Simul
Model Pract Theory 24:49–58

32. Attanasio A, Ceretti E, Giardini C (2006) Optimization of tool path in
two points incremental forming. J Mater Process Technol 177:409–
412

33. Sun G, Li G, Gong Z, Cui X, Yang X, Li Q (2010) Multiobjective
robust optimization method for drawbead design in sheet metal
forming. J Mater Des 31:1917–1929

34. Filice L, Ambrogio G,Micari F (2006) On-line control of single point
incremental forming operations through punch force monitoring.
Ann CIRP–Manuf Technol 55(1):245–248

35. Ahari H, Khajepour A, Bedi S, Melek WW (2011) A genetic algo-
rithm for optimization of laminated dies manufacturing. J Comput
Aided Des 43:730–737

36. Bahloul R, Ben Ayed L, Potiron A, Batoz JL (2010) Comparison
between three optimization methods for the minimization of maxi-
mum bending load and springback in wiping die bending obtained by
an experimental approach. Int J Adv Manuf Technol 48:1185–1203

37. LiuW, Liu Q, Ruana F, Liang Z, Qiu H (2007) Springback prediction
for sheet metal forming based on GA-ANN technology. J Mater
Process Technol 187(188):227–231

38. Wei L, Yuying Y (2008) Multi-objective optimization of sheet metal
forming process using Pareto-based genetic algorithm. J Mater
Process Technol 208:499–506

39. Khoei AR, Keshavarz S, Biabanaki SOR (2010) Optimal design of
powder compaction processes via genetic algorithm technique. Finite
Elem Anal Des 46:843–861

40. Ledoux Y, Sébastian P, Samper S (2010) Optimization method for
stamping tools under reliability constraints using genetic algorithms
and finite element simulations. J Mater Process Technol 210:474–
486

41. Aguir H, BelHadjSalah H, Hambli R (2011) Parameter identification
of an elasto-plastic behaviour using artificial neural networks-genetic
algorithm method. J Mater Des 32:48–53

42. Yin F, Mao H, Hua L (2011) A hybrid of back propagation neural
network and genetic algorithm for optimization of injection molding
process parameters. J Mater Des 32:3457–3464

43. Fu Z, Mo J, Chen L, Chen W (2010) Using genetic algorithm-back
propagation neural network prediction and finite-element model sim-
ulation to optimize the process of multiple-step incremental air-
bending forming of sheet metal. J Mater Des 31:267–277

44. Van Bael A, Eyckens P, He S, Bouffioux C, Henrard C, Habraken
AM, Duflou JR, Van Houtte P (2007) Forming limit predictions for
single-point incremental sheet metal forming. Proceedings of the
tenth International Conference on Material Forming (ESAFORM),
Zaragoza, Spain

45. Bahloul R, Arfa H, BelHadjSalah H (2013) Application of response
surface analysis and genetic algorithm for the optimization of single
point incremental forming process. Key Eng Mater 554(557):1265–
1272. doi:10.4028/www.scientific.net/KEM.554-557.1265

46. MATLAB User’s guide, version 7.5.0.342 (R2007 b), (The
MathWorks, Inc.)

Int J Adv Manuf Technol (2014) 74:163–185 185

http://dx.doi.org/10.4028/www.scientific.net/KEM.554-557.1265

	A...
	Abstract
	Introduction
	Modeling and numerical analysis of the SPIF process
	Incremental sheet forming conditions and material behavior
	Finite element simulation of SPIF

	Design of numerical experiments
	Considered DoE
	Main effects plot of the factors

	Procedures of optimization
	Overview of response surface approximation
	Analysis of variance
	Genetic algorithm
	Genetic algorithm steps
	Parameters of genetic algorithm


	Optimization procedure based on response surface modeling
	Response surface analysis of thinning rate objective function
	Response surface analysis of maximum punch load objective function

	Optimization results and comparison
	Results of optimization by global approach
	Optimization results obtained using genetic algorithm
	Minimization of sheet thinning rate (Thin_rate) objective functions
	Minimization of the maximum punch load (F_max) fitness functions


	Conclusions and perspectives
	References


