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Abstract This study proposes an integrated optimization sys-
tem to find out the optimal parameter settings of multi-input
multi-output (MIMO) plastic injection molding (PIM) pro-
cess. The system is divided into two stages. In the first stage,
the Taguchi method and analysis of variance (ANOVA) are
employed to perform the experimental work, calculate the
signal-to-noise (S/N) ratio, and determine the initial process
parameters. The back-propagation neural network (BPNN) is
employed to construct an S/N ratio predictor and a quality
predictor. The S/N ratio predictor and genetic algorithms (GA)
are integrated to search for the first optimal parameter combi-
nation. The purpose of this stage is to reduce the process
variance. In the second stage, the quality predictor is com-
bined with particle swarm optimization (PSO) to find the final
optimal parameters. The quality characteristics, product length
and warpage, are dedicated to finding the optimal process
parameters. After the numerical analysis, the optimal param-
eters can meet the lowest variance and the product quality
requirements simultaneously. Experimental results show that
the proposed optimization system can not only satisfy the
quality specification but also improve stability of the PIM
process.

Keywords PIM . Taguchimethod . ANOVA . BPNN . GA .
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1 Introduction

In today’s world, plastic injection molding (PIM) process is
one of the most important methods for producing plastic
components. Historically, many engineers and experienced
operators have regarded the PIM as a simple manufacturing
process without many dedicated manufacturing adjustments
required. However, PIM is actually one of the complex
manufacturing processes, and the quality of products depends
on material selection, mold design, and determination of pro-
cess parameter settings. Optimizing parameter settings is an
extremely critical issue requiring prompt and effective solu-
tions from the manufacturing industry, especially when
searching for the global optimal process parameter settings.
Thus, the determination of the optimal process parameter
settings is recognized as one of themost crucial steps in plastic
injection molding for improving the multi-input multi-output
(MIMO) quality of PIM products.

Every product, however, has its own process parameter
settings created by engineers relying on experience and trial
and error, resulting in time-consuming repetitive testing. The
Taguchi method using the signal-to-noise (S/N) ratio is fre-
quently employed for finding the initial process parameter
settings. Lin [1] employed cutting parameters to examine the
effectiveness of the Taguchi technique with regard to multiple
performance characteristics. Yang et al. [2] employed the
Taguchi method to arrange 16 experimental runs using melt-
ing temperature, injection velocity, and injection pressure as
process control factors. Contour distortions were utilized as
the product’s quality. Altan [3] employed the Taguchi method,
experimental design, and analysis of variance (ANOVA) to
determine minimum shrinkage in injection moldings and to
find the significant process factors of product quality. Fei et al.
[4] employed the Taguchi technique and ANOVA to find out
the effect of injection molding process parameters and optimal
settings. Öktem [5] used the Taguchi method to arrange the

W.<C. Chen (*) : S.<C. Chou
Department of Industrial Management, Chung Hua University, 707
Wu Fu Rd., Sec.2, 30012 Hsinchu, Taiwan
e-mail: wenchin@chu.edu.tw

P.<H. Liou
Department of Technology Management, Chung Hua University,
707 Wu Fu Rd., Sec.2, 30012 Hsinchu, Taiwan

Int J Adv Manuf Technol (2014) 73:1465–1474
DOI 10.1007/s00170-014-5941-1



experimental work, and a series of Moldflow analysis had
been performed. ANOVAwas employed to search for which
of the process parameters are statistically important. However,
the Taguchi method can only determine the best set of spec-
ified factor level combinations that are the discrete setting
values. An improper process parameter setting can induce
many defective products and lower product quality during
the PIM process.

To deal with these problems, many researchers have inves-
tigated optimization of the PIM process by using computer-
aided engineering (CAE) simulations [6–11]. The neural net-
work or the general regression model has been selected to build
up the relationships between the input process parameters and
output responses [12–17]. Subsequently, the prediction model
can be combined with related optimization theories to resolve
the optimum process parameters. Shi et al. [18] presented an
improved hybrid strategy for optimizing a plastic injection
molding process. Numerical simulation software, genetic algo-
rithms (GA), and back-propagation neural network (BPNN)
were employed to optimize process parameters. Costly numer-
ical calculations were avoided by creating a BPNN quality
predictor. Ozcelik and Erzurumlu [19] used CAE and response
surface methodology to develop two regression models and to
describe the relationship between the input variables and re-
sponses. After initial parameter settings are obtained using
response surface methodology (RSM) then the final optimiza-
tion of parameter settings will be found using simulated an-
nealing optimization. Kurtaran and Erzurumlu [20] integrated
finite element analysis, design of experiment (DOE) method,
response surface methodology (RSM), and GA to effectively
optimize warpage of thin-shell plastic parts. In considering
product warpage, ANOVA was used to determine the most
significant process parameters. Optimum values for those pro-
cess parameters can be determined through a predictive re-
sponse surface model in conjunction with GA. Zhao et al.
[21] proposed optimization of PIM process parameters using
a finite difference method, evolutionary algorithms, fast strip
analysis (FSA), and particle swarm optimization (PSO). Chen
et al. [22] studied optimization of process parameters using
DOE, RSM, and GA. In the first stage, significant PIM process
parameters were determined by ANOVA and DOE screening
experiments via CAE simulations. Then, the optimal process
parameter settings were obtained by integrating regression
models with GA. However, there is an error existing in the
setting value of control parameters due to interference from an
injection molding process’s inner and outer noise neglected by
CAE simulations.

To solve the above-mentioned problems, Deng et al. [23]
adopted the Taguchi orthogonal arrays to calculate the S/N
ratios and to find an initial combination of process parameters.
Regression analysis and the Davidon-Fletcher-Powell method
were used to determine the optimal process parameter settings
of plastic injection molding under single quality characteristic

considerations. Chen et al. [24] integrated the Taguchi meth-
od, BPNN, and GA to optimize the MIMO process parame-
ters. A real-world plastic in molding experiment was per-
formed. A BPNN quality predictor was established and com-
bined with GA to find the other optimal parameter settings.
The experimental results show that the optimization approach
can effectively help engineers determine optimal process pa-
rameter settings. Xu et al. [25] presented a parameter optimi-
zation system for the MIMO plastic injection molding process
by using the Taguchi method, BPNN, and particle swarm
optimization (PSO). Yang et al. [26] studied variations of
mechanical properties in the injection molding process. The
experimental materials used were the blending of short glass
fiber (SGF) and polytetrafluoroethylene (PTFE)-reinforced
polycarbonate composites. An optimization approach inte-
grating back-propagation neural networks, genetic algorithms,
and simulated annealing was proposed to search for the opti-
mal mixture ratio.

According to the previous studies, parameter optimization of
the injection molding process can be classified into three cate-
gories: (1) the Taguchi method in the realistic injection exper-
iment, (2) numerical simulations in experiments by applying
the CAE simulation software with DOE and optimization
methodologies, and (3) realistic injection experiments along
with the neural network or the regression model to develop a
quality predictor with the optimization algorithms integrated to
find the optimal process parameters. In the first, the Taguchi
method can only determine the best set of specified factor level
combinations that are the discrete setting values. In the second
category, CAE simulations are not practical since the injection
molding process’s inner and outer noises are neglected. In the
third category, the stability of the injection molding process is
neglected, which fails to optimize both the product’s quality and
stability. Thus, this study proposes the two-stage optimization
system to optimize process parameters in the PIM. The system
is divided into two stages. The purpose of the first stage is to
reduce the process variance, and the second stage is to reach the
quality specification. Thus, the proposed parameter optimiza-
tion system not only effectively increases the process stability
but also meets the quality specification.

2 Design of the optimization system

This study proposes an integrated optimization system for the
MIMO plastic injection molding process under five control
factors and two quality responses. Injection pressure, injection
velocity, melt temperature, packing pressure, and packing
time are selected as process control parameters, while warpage
and length are employed as the quality responses. The pro-
posed system integrates the Taguchi method, BPNN,
ANOVA, GA, and PSO to obtain the optimal process param-
eter settings. The system is divided into two stages. In the first
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stage, the Taguchi method is used to perform the L25(5
6)

experiment and to calculate the S/N ratio. Subsequently, the
experimental data with ANOVA is employed to determine the
initial process parameter settings that have minimal sensitivity
to noise with the consideration for the major quality charac-
teristic. The BPNN is used to construct an S/N ratio predictor
and a quality predictor. The S/N ratio predictor is combined
with GA to generate the first optimal parameter combination.

This optimization methodology can significantly reduce var-
iance of the PIM process. In the second stage, a BPNN quality
predictor is along with PSO to find the final optimal parameter
settings. The quality characteristics, product length and warp-
age, are dedicated to finding the final optimal process param-
eter settings for the best quality specification. The significant
control factors of optimization process influencing the product
quality and S/N ratio are determined using experimental data
based on ANOVA. In the numerical computation, the optimal
parameter combination in the first stage is taken as the initial
values for PSO searching conditions in the second stage. After
the second stage optimization, the optimal parameters obtain-
ed should be able to meet the lowest variance and the product
quality requirements simultaneously. If not, the two-stage
iteration procedure must be repeated. Finally, three confirma-
tion experiments are performed to verify the effectiveness of
final optimal process parameter settings. Flowchart of the
proposed optimization system is shown in Fig. 1.

2.1 Experimental equipment

For this investigation, the experimental material used is PA-765
fire-proof plastic material. The injection molding machine is a
Victor Taichung Vs-100. The device to measure length is
Mitutoyo digital slide caliper with the measuring range up to
300mmwith a precision of 0.01 mm, and the device to measure
warpage is PEACOCKPC-1L lever indicator with a precision of
0.01 mm. The mold features as two cavities in one mold. The
experimental mold was installed on the injection molding ma-
chine as shown in Fig. 2. The illustrative example shows two
ADSL modems as shown in Fig. 3. The specifications and
measuring positions of two quality characteristics, length and
warpage, are shown in Fig. 4. The measuring sample is selected
from modem I, which has been marked “1” in the back. The
positions to measure the warpage are along a straight line with a
distance of 1 cm from the cover edge and at the same side as
measuring the length. Warpage is the highest distance measured
along a straight line. Target length is 124 mm.

2.2 Implementation of the Taguchi method and ANOVA

Chen et al. [22] studied optimization of process parameters
using DOE, RSM, and GA. The experimental mold is the
same as this study. Significant PIM process parameters were
determined by ANOVA and DOE screening experiments via
the CAE simulations, in which the significant parameters were
melt temperature, injection velocity, injection pressure, pack-
ing pressure, and packing time. Therefore, this research ap-
plies the L25(5

6) orthogonal array to assign five factors into
rows. Melt temperature (MT), injection velocity (IV), injec-
tion pressure (IP), packing pressure (PP), and packing time
(PT) are control factors and are assigned to variable A, B, C,
D, and E, respectively. Table 1 shows the five process control

Fig. 1 Flowchart of the proposed optimization system

Fig. 2 Experimental mold
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factors and parameter setting range. Experimental control
factors and the setting of level are shown in Table 2. There
are in total 25 treatments with different level combinations of
five factors. Five replications are taken to increase analytical
data amount. In total, 125 data samples are collected. In
addition, the experimental data of five new combinations
randomly generated within the levels of the orthogonal array
are used to test the quality predictor and S/N predictor. During
the collection of samples, ten shots of each treatment are made
before the actual sample collecting started to ensure that the
injection molding process is stable. Since the responses of the
experiment are warpage and length, the target product length
is 124 mm, and the nominal-the-best is applied to calculate
S/N ratio for each treatment. In addition, the company’s pro-
duction consulting team has concluded that the target warpage
must be less than 0.25 mm and the smaller-the-better is
applied to calculate S/N ratio for each treatment. The
nominal-the-best and the smaller-the-better are defined as
the following:

Nominal-the-best:

S=N ¼ −10log

X

i¼1

n

yi−mð Þ2

n
¼ −10log ȳ−mð Þ2 þ S2n

h i
ð1Þ

Smaller-the-better:

S=N ¼ −10log

X

i¼1

n

y2i

n
¼ −10log ȳ2 þ S2n

� � ð2Þ

where yi is the response value of a specific treatment
under i replications, m is the target value, n is the
number of replications, y is the average of all yi values,
and Sn is the standard deviation (DOF=n) of all yi values.
From the experimental treatments, average and standard
deviation of each treatment with five replications and the
S/N ratio of two quality characteristics, length and warp-
age, are shown in Tables 3 and 4. Table 5 shows the
process parameter combinations of highest S/N ratio un-
der different responses. Table 6 shows the ANOVA results
of length and indicates that D is significant. Table 7 also
reveals that D and E are significant for warpage. There-
fore, the control factors in the optimization of the product
quality model could only employ packing pressure and
packing time. According to the process parameter combi-
nations of highest S/N ratio under different responses in
Table 5 and the ANOVA results in Tables 6 and 7, the
initial process parameter settings obtained from the
Taguchi method and ANOVA are melt temperature=197,
injection velocity=36, injection pressure=65, packing
pressure=52, and packing time=1.6.

2.3 Hybrid BPNNSN-GA search approach

In the first stage, the hybrid S/N ratio predictor
(BPNNSN)-GA search approach is adopted to yield the
first optimal process parameter settings. Melt tempera-
ture (MT), injection velocity (IV), injection pressure
(IP), packing pressure (PP), and packing time (PT) are

Table 1 Product param-
eter setting range Control parameters Setting range

Melt temperature 195∼203 °C

Injection velocity 30∼38 mm/s

Injection pressure 60∼68 MPa

Packing pressure 50∼58 MPa

Packing time 1∼2.2 s

Table 2 Control factors and settings of the various levels

Variable Control factor Levels

1 2 3 4 5

A Melt temperature (°C) 195 197 199 201 203

B Injection velocity (mm/s) 30 32 34 36 38

C Injection pressure (MPa) 60 62 64 66 68

D Packing pressure (MPa) 50 52 54 56 58

E Packing time (s) 1 1.3 1.6 1.9 2.2

Fig. 3 Illustrated component

Fig. 4 Sample’s external for measurement of length and warpage
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selected as process control factors. Warpage and length
are employed as the quality responses. Furthermore, the
experimental data of the Taguchi method are used for
effectively training and testing BPNN quality predictor
(BPNNPQ) and S/N ratio predictor (BPNNSN) that finely
map the relationship between the input control factors
and output responses. The steepest descent method is
used to minimize the cost function to perform stable
results. The activation function is a sigmoid function.
The architecture of BPNN is shown in Fig. 5.

The training performance (RMSE) of BPNNSN is up
to 0.007, and the testing performance amounts to 0.035.
Two S/N ratios for length and warpage are selected as
the target values in the Taguchi experimental data. In
the quality predictor, length and warpage are selected as

the output values. The training performance (RMSE) of
BPNNPQ is up to 0.0065, and the testing performance
amounts to 0.0228. Then, BPNNSN is employed as an
S/N ratio predictor combined with GA to search for the
first optimal process parameters. To identify optimal
process parameters of the hybrid BPNNSN-GA search
approach, the fitness function of GA is given as fol-
lows:

Min F1 Xð Þ ¼ yo1−34:75ð Þ2 þ yo2−16:65ð Þ2
s:t

196 ≤ x1 ≤ 198 30≤ x2 ≤ 37
61 ≤ x3≤ 68 50 ≤ x4 ≤ 55
1:15 ≤ x5≤ 2:05

Table 3 Experimental treatments, response statistics, and S/N ratio (length)

Treatment Control factor Length Average Standard deviation S/N ratio

A B C D E 1 2 3 4 5

1 195 30 60 50 1.0 123.90 123.90 123.91 123.94 123.94 123.92 0.0251 22.04

2 195 32 62 52 1.3 123.96 123.95 123.95 123.97 123.94 123.95 0.0117 26.07

3 195 34 64 54 1.6 123.99 124.00 124.00 123.99 123.97 123.99 0.0164 33.05

4 195 36 66 56 1.9 124.05 124.04 124.04 124.05 124.03 124.04 0.0151 28.04

5 195 38 68 58 2.2 124.12 124.12 124.11 124.10 124.11 124.11 0.0117 19.25

6 197 30 62 54 1.9 123.98 123.99 123.99 123.97 124.00 123.99 0.0105 34.75

7 197 32 64 56 2.2 124.04 124.04 124.02 124.04 124.07 124.04 0.0163 26.69

8 197 34 66 58 1.0 124.05 124.06 124.08 124.06 124.06 124.06 0.0133 24.46

9 197 36 68 50 1.3 123.93 123.95 123.97 123.97 123.95 123.95 0.0204 25.11

10 197 38 60 52 1.6 124.00 123.99 123.95 123.94 123.91 123.96 0.0333 25.25

11 199 30 64 58 1.3 124.04 124.03 124.06 124.07 124.05 124.05 0.0163 25.07

12 199 32 66 50 1.6 123.97 124.01 123.99 124.00 123.96 123.99 0.0397 26.24

13 199 34 68 52 1.9 124.01 124.00 123.98 123.97 123.96 123.98 0.0210 30.76

14 199 36 60 54 2.2 123.95 123.98 123.96 123.96 123.95 123.96 0.0137 28.15

15 199 38 62 56 1.0 124.01 123.98 123.95 123.97 123.99 123.98 0.0204 30.53

16 201 30 66 52 2.2 123.94 123.93 123.95 123.94 123.96 123.94 0.0105 25.04

17 201 32 68 54 1.0 123.93 123.93 123.96 123.95 123.94 123.94 0.0138 24.93

18 201 34 60 56 1.3 124.03 124.02 124.02 124.01 124.01 124.02 0.0089 33.19

19 201 36 62 58 1.6 124.11 124.14 124.11 124.16 124.13 124.13 0.0250 18.00

20 201 38 64 50 1.9 123.92 123.98 123.96 123.96 123.94 123.95 0.0210 25.32

21 203 30 68 56 1.6 124.08 124.09 124.08 124.08 124.09 124.08 0.0075 21.72

22 203 32 60 58 1.9 124.11 124.13 124.12 124.12 124.09 124.11 0.0137 18.85

23 203 34 62 50 2.2 123.95 123.92 123.99 123.96 123.95 123.95 0.0232 25.42

24 203 36 64 52 1.0 123.98 123.93 123.98 123.94 123.94 123.95 0.0217 26.03

25 203 38 66 54 1.3 124.05 124.05 124.03 124.04 124.05 124.04 0.0103 26.41

26 202 31 65 56 1.5 124.11 124.12 124.12 124.11 124.10 124.11 0.0075 19.00

27 202 38 60 50 1.5 123.96 123.93 123.98 123.94 123.94 123.95 0.0271 24.90

28 196 38 67 52 1.9 123.97 123.95 123.96 124.00 124.00 123.98 0.0207 29.97

29 202 34 67 50 2.0 124.00 123.96 123.98 123.97 123.99 123.98 0.0141 32.22

30 200 36 65 51 1.2 123.91 123.95 123.93 123.93 123.95 123.93 0.0152 23.39
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where melt temperature, injection velocity, injection
pressure, packing pressure, and packing time are control
parameters and assign to variable X=[x1, x2, x3, x4, x5],
respectively. yo1 and yo2 are the output S/N ratios of
BPNNSN. yo1 is for length and yo2 is for warpage. Two
highest S/N ratios of length and warpage, 34.75 and
16.65, respectively, are set to the target values.

2.4 Hybrid BPNNPQ-PSO search approach

In the second stage, BPNNPQ is combined with PSO to search
for the final optimal process parameter settings. The optimal
parameter combination in the first stage is taken as the initial
values. According to the ANOVA results in Section 2.2,
the control factors in the optimization model only em-

Table 4 Experimental treatments, response statistics, and S/N ratio (warpage)

Treatment Control factor Warpage Average Standard deviation S/N ratio

A B C D E 1 2 3 4 5

1 195 30 60 50 1.0 0.19 0.17 0.18 0.17 0.15 0.172 0.0175 15.01

2 195 32 62 52 1.3 0.17 0.19 0.22 0.20 0.22 0.200 0.0190 13.94

3 195 34 64 54 1.6 0.29 0.31 0.33 0.32 0.33 0.316 0.0163 10.07

4 195 36 66 56 1.9 0.41 0.38 0.39 0.41 0.39 0.396 0.0137 8.10

5 195 38 68 58 2.2 0.39 0.42 0.41 0.40 0.41 0.406 0.0121 7.88

6 197 30 62 54 1.9 0.33 0.31 0.32 0.33 0.35 0.328 0.0175 9.79

7 197 32 64 56 2.2 0.47 0.46 0.46 0.48 0.45 0.464 0.0172 6.77

8 197 34 66 58 1.0 0.28 0.26 0.29 0.27 0.28 0.276 0.0147 11.31

9 197 36 68 50 1.3 0.16 0.15 0.14 0.15 0.13 0.146 0.0103 16.65

10 197 38 60 52 1.6 0.27 0.25 0.23 0.22 0.23 0.240 0.0197 12.49

11 199 30 64 58 1.3 0.34 0.38 0.38 0.39 0.37 0.372 0.0175 8.55

12 199 32 66 50 1.6 0.20 0.18 0.19 0.18 0.17 0.184 0.0141 14.87

13 199 34 68 52 1.9 0.35 0.34 0.32 0.31 0.33 0.330 0.0187 9.75

14 199 36 60 54 2.2 0.36 0.38 0.40 0.36 0.37 0.374 0.0151 8.55

15 199 38 62 56 1.0 0.26 0.25 0.25 0.26 0.28 0.260 0.0117 11.75

16 201 30 66 52 2.2 0.33 0.34 0.35 0.33 0.34 0.338 0.0117 9.32

17 201 32 68 54 1.0 0.20 0.22 0.21 0.22 0.21 0.212 0.0117 13.61

18 201 34 60 56 1.3 0.37 0.33 0.32 0.33 0.32 0.334 0.0197 9.44

19 201 36 62 58 1.6 0.38 0.35 0.36 0.37 0.34 0.360 0.0147 8.91

20 201 38 64 50 1.9 0.23 0.21 0.22 0.20 0.22 0.216 0.0103 13.27

21 203 30 68 56 1.6 0.40 0.38 0.36 0.36 0.38 0.376 0.0183 8.59

22 203 32 60 58 1.9 0.43 0.42 0.41 0.42 0.42 0.420 0.0103 7.60

23 203 34 62 50 2.2 0.27 0.28 0.27 0.24 0.25 0.262 0.0197 11.79

24 203 36 64 52 1.0 0.19 0.18 0.19 0.21 0.17 0.188 0.0137 14.56

25 203 38 66 54 1.3 0.31 0.30 0.29 0.30 0.28 0.296 0.0147 10.69

26 202 31 65 56 1.5 0.39 0.37 0.38 0.39 0.37 0.380 0.0121 8.41

27 202 38 60 50 1.5 0.21 0.20 0.21 0.19 0.18 0.198 0.0242 14.13

28 196 38 67 52 1.9 0.29 0.31 0.30 0.31 0.30 0.302 0.0151 10.41

29 202 34 67 50 2.0 0.29 0.33 0.27 0.28 0.30 0.294 0.0228 10.66

30 200 36 65 51 1.2 0.20 0.19 0.22 0.19 0.18 0.196 0.0172 14.19

Table 5 The process parameter settings of highest S/N ratio under different responses

Parameter variable A B C D E Highest S/N ratio for length Highest S/N ratio for warpage

Parameter combination 197 30 62 54 1.9 34.75 /

197 36 68 50 1.3 / 16.65
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ploy packing pressure and packing time. Then, the
objective function of the hybrid BPNNPQ-PSO search
approach is given as follows:

Min F2 Xð Þ ¼ yLo1−124ð Þ2
Min yWo2

s :t :
50 ≤ x4≤ 55
1:15 ≤ x5≤ 2:05

where x4 and x5 are the process control parameters, yLo1 is
the predicted length of BPNNPQ, and yWo2 is the predicted
warpage of BPNNPQ.

3 Results and discussion

When the first iteration of the two-stage optimization is
completed, the optimal parameters obtained from the
numerical analysis should be able to achieve two goals.
One is to meet the highest S/N ratio not only for length
(34.75) but also for warpage (16.65). The other is to fill
the requirements for product quality, which are 124 mm
for the length and as small as possible for the warpage.
If the optimal parameters do not reach the highest S/N
ratio and the product quality requirements, the second

Table 6 ANOVA for product
length Source of variance DOF Seq SS Adj SS Adj MS F p value

A 4 0.0048127 0.0048127 0.0012032 1.30 0.404

B 4 0.0003771 0.0003771 0.0000943 0.10 0.976

C 4 0.0013971 0.0013971 0.0003493 0.38 0.817

D 4 0.0695149 0.0695149 0.0173787 18.72 0.007

E 4 0.0073449 0.0073449 0.0018362 1.98 0.262

Error 4 0.0037127 0.0037127 0.0009282

Total 24 0.0871593

Table 7 ANOVA for product
warpage Source of variance DOF Seq SS Adj SS Adj MS F p value

A 4 0.000994 0.000994 0.000248 0.23 0.909

B 4 0.003596 0.003596 0.000899 0.83 0.569

C 4 0.003155 0.003155 0.000789 0.73 0.617

D 4 0.104525 0.104525 0.026131 24.13 0.005

E 4 0.064735 0.064735 0.016184 14.94 0.011

Error 4 0.004332 0.004332 0.001083

Total 24 0.0181336

Fig. 5 Architecture of BPNN
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iteration of the two-stage optimization must be proc-
essed. The optimal parameters gained from the first
iteration need to be set for the initial parameter solution
of the second iteration. The iteration procedures need to
be continued until the results meet the goals. Following
the procedure of the two-stage optimization system and
executing the numerical computation, three optimal pro-
cess parameter combinations are obtained, and the re-
sults and machine settings are shown in Table 8. To
demonstrate the effectiveness of the proposed optimiza-
tion system, three confirmation experiments are per-
formed. One experiment utilizes preliminary initial pro-
cess parameter settings obtained from the Taguchi meth-
od. The other two experiments utilize the optimal pro-
cess parameter settings obtained from the first stage and
the second stage. Because of the minimum unit of the
parameter setting in the plastic injection molding ma-
chine, the final optimal process parameter settings are
determined after the minimum unit tuning and are
shown in Table 8. Each experiment produced 30 product
samples in the confirmation experiment. The statistical
averages, standard deviations, and process capability
indices of all three methods are compared in order to
judge the best approach for determining the final

Table 8 Optimal process parameters and machine settings for three confirmation experiments

Melt temperature Injection velocity Injection pressure Packing pressure Packing time

Taguchi method 197 36 65 52 1.6

Machine setting 197 36 65 52 1.6

First stage 197.44 34.86 61.13 51.94 1.225

Machine setting 197 35 61 52 1.2

Proposed system 197.44 34.86 61.13 52.018 1.354

Machine setting 197 35 61 52 1.4

Table 9 Comparison of warpage quality statistics

Average Standard deviation

Taguchi method 0.2202 0.0080

First stage 0.1545 0.0063

Proposed system 0.1351 0.0041

Table 10 Comparison of length quality statistics

Average Standard deviation Cpk

Taguchi method 123.958 0.0152 1.274

First stage 123.969 0.0076 2.592

Proposed system 123.997 0.0111 2.913

Fig. 6 Comparison of quality
characteristics (length) between
Taguchi method, first stage and
proposed system
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optimal process parameter settings. Comparisons of
quality statistics between the Taguchi method, the first
stage and the second stage search approaches are shown
in Tables 9 and 10, respectively. In addition, compari-
sons of quality characteristics (length and warpage) be-
tween the Taguchi method, the first stage and the second
stage search approaches are shown in Figs. 6 and 7,
respectively. According to the experimental results, the
standard deviation of the Taguchi method is 0.008, and
the standard deviation of the first stage is 0.0063. The
Taguchi method approximately two times that of the
proposed system (0.0041). In the practical assessment,
the process capability index (Cpk) is a major criterion for
assessing the ability of a production process to make
products that meet specifications. The practical mini-
mum process capability index is 1.33 in many
manufacturing industries. As the results in Table 10
show, the Cpk of Taguchi’s approach is 1.274, which is
roughly one half that of the first stage (2.592) and the
proposed system (2.913). Experimental results also re-
veal that the two-stage optimization system produced the
highest Cpk value and the best quality products. Conse-
quently, the final optimal process parameters generated
by the proposed two-stage optimization system definitely
produced the best performance than the Taguchi method
and the first stage approach.

4 Conclusion

Costs of production in plastic injection molding are directly
affected by strategies for choosing the suitable parameter
settings in different kinds ofmachines, especially when setting
up production runs. The suitable parameter settings have
traditionally relied on trial-and-error experiments. These

conventional strategies, however, often produce unstable
product quality. The application of the Taguchi method cannot
help engineers obtain optimal process parameter settings
when process parameters are continuous and have a nonlinear
relationship. Therefore, this study proposed an integrated
optimization system to perform the process parameter optimi-
zation for plastic injection products of multiple quality char-
acteristics. After the actual verification, the results show that
the two-stage optimization parameter combination for the
length Cpk value at 2.913 is higher than the Taguchi method
optimized parameter Cpk value at 1.274. The warping dropped
from 0.2202 to 0.1351, which is a 38.6 % decrease, thus
indicating that the product quality complies with the specifi-
cations and produces the most stable process. Thus, the pro-
posed integrated optimization system is a feasible and effec-
tive method for process parameter optimization in MIMO
plastic injection molding and can result in significant quality
and cost advantages.
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