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Abstract This paper focuses on using multi-criteria op-
timization approach in the end milling machining pro-
cess of AISI D2 steel. It aims to minimize the cost
caused by a poor surface roughness and the electrical
energy consumption during machining. A multi-
objective cost function was derived based on the energy
consumption during machining, and the extra machining
needed to improve the surface finish. Three machining
parameters have been used to derive the cost function:
feed, speed, and depth of cut. Regression analysis was
used to model the surface roughness and energy con-
sumption, and the cost function was optimized using a
genetic algorithm. The optimal solutions for the feed
and speed are found and presented in graphs as func-
tions of extra machining and electrical energy cost.
Machine operators can use these graphs to run the
milling process under optimal conditions. It is found
that the optimal values of the feed and speed decrease
as the cost of extra machining increases and the optimal
machining condition is achieved at a low value of depth
of cut. The multi-criteria optimization approach can be
applied to investigate the optimal machining parameters
of conventional manufacturing processes such as turn-
ing, drilling, grinding, and advanced manufacturing pro-
cesses such as electrical discharge machining.
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Nomenclature
GA Genetic algorithm
n Number of bits for each variable
w Rotational speed, rpm
f Feed rate, mm/min
d Depth of cut mm
D Target depth, cm
Pd Power dissipation, Watt
E Energy dissipation, kWh
t Machining time, hr
T Torque in the cutting tool, N.cm
N Number of passes
tp Time per pass, hr
Ra Average surface roughness, μm
Ra0 Target average surface roughness, μm
K1 Unit cost factor of surface roughness, US$/μm.m2

K2 Unit cost factor of energy dissipation, US$/kWh
XA Actual value of decoded variable
XL Lower limit of variable
XU Upper limit of variable

1 Introduction

AISI D2 is an air-hardened steel that has many applications
such as in the manufacturing of stamping or forming of dies.
End milling is one of the most common machining operations
used in AISI D2 steel fabrication. It is a preferred process
when a high surface quality is required. The machining of
steel using the end milling process has been investigated by
different researchers and has been extensively reviewed by
Dewes and Aspinwall [1].

Determining optimum machining parameters are very im-
portant in manufacturing where the lower cost of machining
operations can lead to a competitive advantage [2]. Moreover,
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the selection of optimal machining parameters leads to
quality improvement [3]. Machining parameters are usu-
ally selected by operators based on their experience or
by referring to machining handbooks. However, the
optimum values are not usually guaranteed by such
selection methods [4].

Achieving optimal machining parameters in milling oper-
ations by minimizing the surface finish has also been investi-
gated by different researchers. Vivancos et al. [5] presented a
mathematical model to optimize machine parameters of a
high-speed milling of hardened steels used for injection
molds. A factorial design was used to model the behavior of
the surface roughness as a function of speed, feed, and depth
of cut. Öktem et al. [6] used a response surface methodology
to determine the optimum cutting conditions for the surface
roughness in milling mold surfaces. They combined the sur-
face response methodology with the genetic algorithm. Their
hybridmethodology improved the surface roughness by 10%.
Yildiz [7] used a novel approach by combining the immune
and the hill climbing local search algorithms to optimize the
machining parameters of milling operations. He concluded
that this approach could be used as an alternative to the
traditional machining handbooks. A neural network was used
by Zain et al. [8] to predict the surface roughness performance
in milling processes. They used different network topologies
for the input, hidden, and output layer. They found that the 3-
1-1 structure is the best artificial neural network structure to
predict the surface roughness.

Surface finish is mainly used for predicting machining
quality. Mechanical properties such as wear and corrosion
are highly affected by the surface finish. Many product prop-
erties such as surface friction, heat transmission, fatigue resis-
tance, and coating acceptance are affected by the quality of the
surface finish [9]. Average surface roughness is one of the
main components used to quantify surface finish.

There are many parameters that can affect the value of the
surface roughness, which Benardos and Vosnaikos [10] have
listed in a fishbone diagram. The most important machining
parameters that affect the machining process are the spindle
speed, feed rate, and depth of cut. Rashid et al. [11] used the
Taguchi method to determine the optimal cutting parameters
(feed, speed, depth of cut, and tool diameter) for AL 6351-T6
using a CNC vertical milling machine. Ozcelik and
Bayramoglu [12] developed a statistical method for estimating
the surface roughness in a high-speed flat end milling under
wet cutting conditions. They ranked the spindle speed, feed
rate, depth of cut, and step overmachining variables according
to their significance in determining the surface roughness.
Ghani et al. [13] used the Taguchi method to optimize the
end milling parameters. They found that the optimal solution
is guaranteed by running the milling process at a high cutting
speed, a low feed rate, and a low depth of cut. Vivancos et al.
[14] showed that speed, feed, and depth of cut are the most

influential factors affecting the surface roughness in a high-
speed side milling of a hardened die steel.

Reducing the energy consumption by the manufacturing
processes has been driven by the increasing awareness of
environmental concerns. The electrical energy consumed by
the manufacturing processes has a considerable effect on the
environment [15]. Different approaches have been investigat-
ed to estimate the energy consumption in a manufacturing
environment. Some approaches estimate the energy consump-
tion during the life cycle of a product. Pineda-Henson and
Culapa [16] used the analytical hierarchy technique (AHP) to
estimate the energy consumption of products throughout the
entire manufacturing process. Heet al. [17] proposed a model-
ing method to determine task-oriented energy consumption.
They used an event graph approach to model the energy
consumption as discrete events driven by task flow.
Rahimifard et al. [18] presented an approach to energy-
efficient manufacturing where they suggested a detailed
breaking down of the energy usage of products throughout
the entire production process. Fang et al. [19] used a mixed
integer programming formulation of the job shop scheduling
problem to minimize energy consumption and the associated
carbon footprint.

In addition, the energy consumed due to the cutting forces
required to accomplish machining processes has also been
studied. Kara and Li [20] used the design of experiments to
model the energy requirements for the material removal based
on the process variables of speed, feed, and depth of cut under
wet and dry cutting conditions. Newman et al. [21] developed
a theoretical framework to include the energy consumption
produced from cutting processes in a multi-criteria process
planning. Bhushan [22] used the response surface methodol-
ogy to optimize the cutting conditions of speed, feed, depth of
cut, and nose radius in a CNC turning of 7075 Al alloy by
power consumption and tool life.

Different conventional and nonconventional techniques
have also been used to optimize cutting conditions in milling
operations. Soft computing approaches such as genetic algo-
rithms (GAs) are more recent trends for optimizing the ma-
chining process [23]. GA is a technique that mocks the pro-
cess of natural evolution to optimize multidimensional non-
linear problems.

Optimizingmachining parameters using genetic algorithms
has been reported by different researchers. The technique was
used for different machining processes such as end milling
[24, 25], turning [26–28], drilling [29], electrochemical ma-
chining [30], grinding [31], and electrical discharge machin-
ing [32]. The researchers investigated different machining
parameters to form the optimization objective functions. The
feed, speed, and depth of cut are mainly the process parame-
ters used in the end milling and turning optimization. Other
parameters were used such as rake angle in end milling and
coolant pressure in turning. Different objective functions were
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used such as machining time, surface roughness, production
cost, cutting temperature, torque, and tool wear.

This work is different than previous works as it attempts to
optimize two conflicting criteria in milling AISI D2 steel. It
aims to maximize surface quality while minimizing electrical
energy consumption. It combines two objective functions to
solve for the optimal machining conditions. The objective
functions are simultaneously optimized to reduce the cost
associated with a poor surface finish and the energy consump-
tion of milling AISI D2 steel. Optimization is performed using
genetic algorithm. A predictive model for each of the objec-
tive functions is obtained using multiple regressions.

2 Methodology

Experimental results were used to model the average surface
roughness and energy consumption. Two regression models
were built based on the experimental data collected for the
regressor variables feed, speed, and depth of cut and the two
responses average surface roughness and energy consump-
tion. A cost objective function combining the two regression
models was also constructed and optimized using a genetic
algorithm.

2.1 Case study

A CNC machine was used to perform the end milling process
on AISI D2 steel. The AJAX AJ540 CNC machine was used
with a maximum cutting speed of 5,000 rpm. Ceramic cutting
inserts (TCMT16T308E PFZ) were used to conduct the ma-
chining operations and a double-insert tool holder with a 6-cm
diameter was used.

The data were collected for four levels of the machining
factors under consideration as shown in Table 1. The levels are
deterministic and selected based on a common range used in a
milling process. More levels of machining variables are pre-
ferred to increase the regression model accuracy. From a
practical point of view, only four levels of each variable are
considered to reduce the experimental runs. A 43 full factorial
design of experiment with three replicates is prepared ran-
domly for each run. A total of 192 observations were collected
on 12×10×3 cm D2 steel samples using different cutting
speeds, feed rates, and depths of cut in a dry environment.

The target depth of cut (D) for each experimental run was set
to 0.6 mm.

A force dynamometer was used to measure the torque on
the cutting tool. The dynamometer was attached to the cutting
tool and connected to a data acquisition system. The torque
acquired by the data acquisition system is represented by a
cloud of points as shown in Fig. 1. Each point in the cloud
represents the torque recorded at a specific time based on a
sampling rate set by the user. A smaller sampling rate pro-
duces denser cloud but requires more time to collect and
analyze. The sampling rate was selected to acquire a reason-
able amount of data without sacrificing accuracy. Variations in
the torque data are caused by different factors such as material
resistance to torque and the degree of insert wear. To reduce
the effect of insert wear, a new insert was used every 20 runs.
The average torque from the cloud was recorded as a response
for each experimental run. A dynamometer calibration was
performed at each run. The datum of the torque was set to
30 N cm.

The machine tool removes material of a 50×60 mm area at
each pass. The schematic of the machining process is shown
in Fig. 2. Machining was interrupted periodically to measure
the average surface roughness using a stylus-type
profilometer.

2.2 Calculations of the energy consumption

To find the relationship between the input variables (d, f, w)
and the energy E consumed during the machining, the torque
(T) in newton centimeter was transformed into electrical en-
ergy in kilowatt-hour using the following calculations:

Pd ¼ Tw ð1Þ

Where Pd is the power and can be expressed in watt as:

Pa wattð Þ ¼ T N:cmð Þw rpmð Þ2π radiane=revð Þ
60 sec=minð Þ100cm=meter

¼ πTw
3; 000

ð2Þ

E ¼ Pdt=1; 000 ð3Þ

t is the machining time in hours and can be calculated as:

t ¼ Ntp ð4Þ

Table 1 Machining factors and
their levels Level Depth of cut “d” (mm) Feed rate “f ” (mm/min) Cutting speed “w” (rpm)

I 0.05 25 500

II 0.10 50 750

III 0.15 75 1,000

IV 0.20 100 1,250
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N is number of passes and tp is the time per pass and can be
calculated as:

N ¼ D=d ð5Þ

D is the target depth and d is the depth of cut

tp ¼ travel distance=feed rate ð6Þ

The travel distance for each pass is 60 mm, so tp can be
rewritten as:

tp ¼ 60= f ð7Þ
Since the travel distance in millimeter and the feed rate in

millimeters per minute, tp is in minutes. It can be expressed in
hours as:

tp ¼ 60= fð Þ 1=60ð Þ ¼ 1= f ð8Þ

Fig. 1 Torque cloud at each run

Hole

10 cm 
12 cm

3 cm
5

6 cmFeed 

2 inserts

Tool holderFig. 2 Machining process
schematic
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The machine time t can be rewritten as:

t ¼ D

fd
¼ 0:6

fd
ð9Þ

The energy consumed in kilowatt-hour is:

E ¼ πTw
5; 000; 000fd

ð10Þ

The electrical energy consumed is the pure mechanical
energy due to machining without regarding the machine
efficiency.

2.3 Regression model

A multiple regression analysis was carried out on both the
surface roughness and energy consumption as a function of
feed, speed, and depth of cut. Different models were tested to
select the best predictive model. The full quadratic model was
used to represent the surface roughness and energy consump-
tion. The terms in the quadric model include linear terms (f, w,
d) square terms ( f *f, w*w, d*d) and interaction terms (f *w,
f *d, w*d). The F test is used to determine the contribution of
these terms to the model. Each term is considered insignificant
if the p value of the test is greater than a significant level (α).
At a significant level α of 0.1, some of the terms are found to
be insignificant and dropped from the models. Table 2 Shows
the Minitab regression’s output for the surface roughness. As
can be seen, the p values of the quadratic term (d*d) and the
intersection (w*f, w*d) terms are greater than 0.10. All these
terms were dropped from the model, and Table 3 shows the
ANOVA output of the least square coefficients estimates and
their corresponding confidence intervals. The final predictive

model is presented in Eq. 11. Using the same procedure, the
energy consumption predictive model is found with ANOVA
output shown in Table 4 and the model is presented Eq. 12.

Ra ¼ 6:25763−0:00479592w−0:0360092 f −1:53167d þ 2:175� 10−6w2

þ 2:3548 � 10−4 f 2 þ 0:090827 fd

ð11Þ

E ¼ 0:076699þ 0:000293871w−0:00412254 f −1:4275� 10−7w2þ
0:00002309 f 2

ð12Þ

The energy consumption is based on material removal of
0.003 m2 (60×50 mm). The energy consumption for remov-
ing 1 m2 is calculated by multiplying Eq. 12 by 1,000/3.

2.3.1 Model verification

Several assumptions of the regression model are needed to be
verified before building the cost function. A residual analysis
and mutli-colinearity test is used to check for model adequacy.
Figure 3 shows the residual plots of the surface roughness.
Residuals appear to be normally distributed as shown by the
normal and histograms plots and are largely random (shown
by residuals against their fitted values and in their observation
order). The variance inflation factor (VIF) is used as an
indicator for mutli-colinearity. Mutli-colinearity exists when
VIF is greater than 4. As shown in Table 2, all VIF values are
less than 4 for all significant terms. The coefficient of deter-
mination R2 of the surface roughness model is 82.8 % indi-
cating that the mode has a good fit. Model adequacy for the

Table 2 Regression output of the
surface roughness quadratic
model

Source df Adj SS Adj MS F p VIF

Regression 9 195.161 21.6846 95.9470 0.000

Linear 3 125.504 41.8346 185.1044 0.000

W 1 73.621 73.6212 325.7496 0.000 2.11

F 1 13.072 13.0723 57.8406 0.000 1.57

D 1 38.810 38.8104 171.7230 0.000 1.88

Square 3 48.392 16.1307 71.3729 0.000

w*w 1 23.979 23.9790 106.0991 0.000 12.53

f *f 1 23.893 23.8930 105.7186 0.000 10.87

d*d 1 0.519 0.5190 2.2964 0.130 3.64

Interaction 3 21.265 7.0884 31.3637 0.000

w*f 1 0.497 0.4970 2.1991 0.140 3.21

w*d 1 0.521 0.5210 2.3053 0.130 5.36

f *d 1 20.247 20.2471 89.5868 0.000 1.82

Residual error 179 40.455 0.2260

Total 188 235.616

R2 82.8 %
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energy regression model is verified using the same procedure.
The results are omitted to avoid repetition.

2.4 Objective function

The objective function is the combined cost based on
the energy consumption and the extra machining re-
quired due to a poor quality of the surface roughness.
Extra machining cost can be seen as the cost to reduce
the surface roughness. The combined cost Cc (US$/m2)
can be expressed as:

Cc ¼ K1 Ra−Ra0ð Þ þ K2Eð Þ ð13Þ

where Ra0 is the target value of surface roughness at
which the product is considered with acceptable quality
in terms of surface finish. The extra machining cost
factor K1 can be defined as the machining cost of
reducing the surface roughness of 1 m2 of the AISI
D2 steel by 1 μm. K2 is the cost factor associated with
the energy consumption E. It is the cost in dollars of
1 kWh paid for the electric power company. While Ra0

is specific for a job order, K1 and K2 are specific for a
machining center.

3 Optimization by genetic algorithm

Genetic algorithms are heuristic search algorithms used for
optimization by mimicking the processes of natural evolution.

They perform a random search within a defined search space
to solve a problem. The searching procedure starts with an
initial set of random solutions represented by binary strings
called chromosomes.

3.1 Parameter bounds

Genetic algorithms require boundary constraints. The lower
and upper limits of the parameters were selected for the
material and cutting tool to simulate the actual production.
The constraints for feed, speed, and depth of cut are as
follows:

25≤ f ≤100 ð14Þ

500≤w≤1250 ð15Þ

0:05≤d≤0:2 ð16Þ

One more constraint was added to avoid a negative cost is:

Ra−Ra0 > 0 ð17Þ

3.2 Encoding

Each solution point is encoded in a string (chromosome). The
chromosomes consist of bits of binary numbers. In this
work, a binary chromosome of three genes is construct-
ed with a total length of 30 bits. Each machining

Table 3 ANOVA table for the
surface roughness least square
predictive model

Term Coef SE Coef T p 95 % CI

Constant 6.25763 1.04591 5.982953 0.000 4.19405 8.32121

w −0.0047959 0.00213 −2.2516 0.026 −0.009 −0.00059
f −0.0360092 0.01639 −2.19702 0.029 −0.06835 −0.00367
d −1.53167 0.753774606 −2.032 0.043 −3.01887 −0.04447
w*w 0.000002175 9.8312E−07 2.212345 0.028 2.35E−07 4.11E−06
f *f 0.00023548 0.000088 2.675909 0.008 6.19E−05 0.000409

f *d 0.09332 0.03801 2.455143 0.015 0.018326 0.168314

Table 4 ANOVA table for the
energy consumption least square
predictive model

Term Coef SE Coef T p 95 % CI

Constant 0.07769 0.0377 2.060743 0.0400 0.003277 0.152072

w 0.0002938 0.000084 3.497619 0.0006 0.000128 0.00046

f −0.004122 0.000603 −6.83582 0.0000 −0.00531 −0.00293
w*w −0.00000014 6.034E−08 −2.32 0.0201 −2.6E−07 −2.1E−08
f *f 0.00002309 0.0000048 4.810417 0.0000 1.36E−05 3.26E−05
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variable is represented by 10 bits. Figure 4 shows an
example of a chromosome.

3.3 Generations of initial population

In this step, a population of a fixed number of chromo-
somes is defined. Each bit in every chromosome is
assigned randomly by a 0 or 1. The current chromo-
somes are considered the initial solutions for the objec-
tive function. In this research, the population size is
limited to 20 chromosomes.

3.4 Decoding

Chromosomes in the initial population are decoded to
decimal values. The decimal values are transferred to
the actual values between the upper and lower values of
the machining variables using the following formula
[33]:

X act ¼ XL þ XU−XLð Þ
2n−1

Decoded valueð Þ ð18Þ

where:

Xact The actual value of the variable
XL The lower limit of the variable
XU The upper limit of the variable

N The substring length (=10) for each variable
Decoded value The transformed decimal value of the

binary numbers

3.5 Evaluation

Evaluation is the step to find the chromosomewith the optimal
fitness function f(x). In maximization problems, f(x) is the
same as the objective function g(x). For minimization prob-
lems, the fitness function is transformed to:

f xð Þ ¼ 1

1þ g xð Þ ð19Þ

To minimize the combined machining cost Cc, the fitness
function can be written as:

f xð Þ ¼ 1

1þ Cc
ð20Þ

The maximum value of f (x) occurs when Cc is at its
minimum and the minimum value occurs when Cc is at its
maximum value. As Cc goes to 0, f (x) goes to 1. On the other
hand, as Cc goes to∞, f (x) goes to 0. The range of f (x) will be
between 0 and 1 with 1 being the best possible machining
quality (minimum surface roughness and energy
consumption).

420-2-4

99.9
99

90

50

10

1
0.1

R esidua l

P
er

ce
nt

4.54.03.53.02.5

2

0

-2

F itted V a lue

R
es

id
ua

l

2.251.500.750.00-0.75-1.50-2.25

30

20

10

0

R esidua l

Fr
eq

ue
nc

y
180160140120100806040201

2

0

-2

Obser v a tion Or der

R
es

id
ua

l

No rmal P ro babilit y  P lo t Versu s  Fit s

Hist o gram Versu s Order

R es idua l  P lots  for  R a  ( mm)Fig. 3 Residual plot for surface
roughness

1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1

Feed Rate Depth of CutCutting SpeedFig. 4 An example of a
chromosome

Int J Adv Manuf Technol (2014) 73:1201–1212 1207



3.6 Selection method

In this step, chromosomes from the current population are
selected for the reproduction of the next generation.
Different selection methods are listed in the literature which
includes proportional selection, tournament selection, trunca-
tion selection, roulette wheel selection, and ranking selection
[33]. The ranking selection method is used in this research.
Populations are ranked based on the order of its fitness.
Chromosomes with higher ranks have a higher probability to
be selected as parents to produce the next generation.

3.7 Reproduction (crossover and mutation)

New generations of chromosomes are reproduced from par-
ents’ chromosomes by crossover and mutation operation.
Generally, crossover involves exchanging bits to selected
parents at a single point randomly chosen along the bit strings.
Figure 5 shows an example of a random crossover. The bits on
the right side of the mating point are exchanged forming new
chromosomes.

Mutation is the alteration of the value of a string position. A
portion of the new individuals will have some of their bits
swapped from 1 to 0 or vice versa. The mutation process is
only performed randomly on the child chromosomes using a
certain probability distribution. Figure 6 shows an example of
a mutation operation.

The new offspring obtained from the crossovers and mu-
tations are treated as parents for the second iteration. The
objective function and the corresponding fitness value are
calculated for the new generation. The procedure is repeated
until the termination criteria are satisfied.

3.8 Algorithm termination

Termination is the step by which the genetic algorithm stops
and returns the current chromosomes as the optimal solution.
It can be performed by different methods such as number of
generations limit, time limit, and fitness threshold. In this
research, fitness threshold of 1×10−6 is used to terminate the
algorithm within a maximum of 10,000 generations.

4 Results and discussion

To implement the methodology, K1, K2, and Ra0 should be
identified. These factors depend on the machining cost for a
particular machining center and the acceptable surface finish
of a particular job order. The range of optimal machining
parameters was found using different values of K1, K2, and
Ra0. K1 was selected from US$0.2 to US$100/m2 as the cost
for reducing the surface roughness by 1 μm while K2 was
selected from US$0.05 to US$0.3 kWh. The range of K2 is
selected to cover the common electricity cost charged by the
electric power companies worldwide. The optimal solutions
for all combinations were investigated. The combined cost
was optimized using a genetic algorithm simulator designed in
this research. The genetic algorithm parameters such as pop-
ulation size, number of generations, mutation probability, and
crossover were set by the user. Different parameter values
were tested and reached the same optimal solutions with
negligible variations. The final crossover and mutation prob-
abilities were set to 0.6 and 0.2, respectively. A large number
of optimum machining parameters were found for different
combinations of K1, K2, and Ra0. Figure 7 shows an example
of these combinations for the feed. Other examples for the
feed and the speed produced similar results with relatively
small variations. It was found that the number of optimal
solutions can be limited as explained below. The results are
obtained as follows:

1. Target surface roughness (Ra0): It was found that Ra0

should be less than 2.4 μm to meet the positive cost
constraint.

2. Depth of cut: The optimum depth of cut is 0.05 mm for all
combinations regardless the value of K1, K2, and Ra0.

The optimum value of the speed and feed varies based
on the values ofK1 and K2. However, many combinations
produce similar optimum solutions within a US$0.3/m2

difference of the total cost.
3. Feed: In all combinations, the optimum feed ranges from

70 to 90 mm/min. Figure 8 shows the optimum solutions
for the feed at different values of K1 and K2 within a
US$0.3/m2 difference of the total cost. The optimum
value of the feed decreases as K1 increases and remains

Fig. 5 An example of a random
crossover
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constant at a value of 70 mm/min for K1 greater than
US$25.

4. Speed: The optimum value of the speed is defined based
on two distinctive cases. For the value of K2 [0.05 0.3]

(a) The optimum value of the speed is 500 rpm when K1

is less than 0.5 and 1,250 rpm when K1 is between
0.5 and 2.

(b) The optimum value of the speed is distributed be-
tween 1,100 to 1,250 rpm when K1 is greater than 2.
Figure 9 shows the optimum solutions for the speed
at different values of K1 and K2 within a US$0.3/m

2

difference of the total cost. The optimum value of the
speed decreases as K1 increases and remains

constant at a value of 1,100 rpm for K1 greater than
US$40.

The above results represent compromised solutions for the
energy consumption and the surface quality. While a high
speed and a low feed are expected to produce a high-quality
surface finish, high energy consumption is required. To deter-
mine the effect of the energy consumption without the effect
of the surface roughness,K1 was set to 0 andK2 was set to 0.3.
The optimum solution of the speed was at the lowest level
(500 rpm), and the optimum solution of the feed was at the
highest level (100 mm/min). On the other hand, settingK2 to 0
cancels the effect of energy consumption. A high speed and a

Fig. 6 An example of a mutation
operation
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relatively low feed were obtained based on the surface rough-
ness alone. Testing other levels outside the range of the
machining variables used in this research produced the same
results. However, this conclusion should be interpreted with
caution since the regression models were developed based on
these levels.

The results can be accepted worldwide since it covers a
wide range of electricity cost per kilowatt-hour. It was found
that the same results are still valid up to an electricity cost of
US$0.70/kWh. This figure is less than the current maximum
cost of electricity for industrial applications worldwide.

The above results can be utilized by machine opera-
tors to set up machining parameters based on different
surface finish requirements. For example, an operator
who wants to improve the surface quality when the cost
of reducing the surface roughness by 1 μm is US$3/m2

and the cost of electricity is within US$0.3 kWh will
find that the optimal feed is about 73 mm/min based on
Fig. 8 and the optimal speed is about 1,150 rpm based
on Fig. 9. The optimal values are valid up to 2.4 μm of
surface roughness reduction. Running the machine under
these conditions with a low value of depth of cut

Fig. 8 Optimum solutions for the
speed at different values ofK1 and
K2

Fig. 9 Optimum solutions for the
feed at different values of K1 and
K2
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insures the minimum cost associated with extra machin-
ing and electricity consumption.

The proposed methodology can be used for future
work to investigate the optimal machining parameters
for different materials and manufacturing processes. The
generalized methodology is summarized as follows:

& Select a machining process (milling turning, drilling, etc.).
& Identify machining performance criteria to optimize

(surface roughness, energy consumption, tool wear,
production cost, etc.).

& Identify machining parameters that control the machining
performance (feed, speed, flow rate, etc.).

& Measure and collect data under different machining
parameters and machining performance criteria.

& Find predictive functions that relate machining parameters
and the machining performance criteria.

& Form one objective function that includes predictive
functions for (multi-criteria optimization).

& Optimize the objective function using genetic algorithm.

5 Conclusion

In this paper, a multi-criteria approach for machining param-
eter optimization of AISI D2 during the end milling process is
introduced. A genetic algorithm approach is used to optimize
two conflicted objectives. A cost function is formed based on
the cost associated with extra machining required to reduce
the surface roughness and the energy consumption. Feed,
speed, and depth of cut are the machining parameters used
for optimization. Different scenarios that simulate the actual
machining costs are investigated. A range of optimum solu-
tions for the feed and speed has been found and documented
in graphs. Machine operators can use these graphs to deter-
mine the optimal machining parameters. It was found that the
optimal values of the feed and speed decreases as the cost of
extra machining increases. Moreover, it was found that min-
imizing the cost function can be achieved by running the
machine with the lowest possible value of depth of cut. As
an extension of this work, the same procedure can be adopted
for other materials, machining processes, and machining
conditions.
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