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Abstract In this paper, a cost–tolerance model based on
neural network methods is proposed in order to provide prod-
uct designers and process planners with an accurate basis for
estimating the manufacturing cost. Tolerance allocation
among the assembly components is carried out to ensure that
the functionality and design quality are satisfied considering
the effect of dimensional and geometric tolerance of various
components of the assembly by developing a parametric com-
puter aided design (CAD) model. In addition, deformations of
various components of mechanical assembly due to inertia
and temperature effects are determined and the same is inte-
grated with tolerance design. The benefits of integrating the
results of finite element simulation in the early stages of
tolerance design are discussed. The proposed method is ex-
plained with an application example ofmotor assembly, where
variations due to both dimensional and geometric tolerances
are studied. The results show that the proposed methods are
much effective, cost, and time saving than the ones considered
in literature.

Keywords Tolerance allocation . Neural network . Inertia .

Temperature effects . Finite element simulation . Deformation

1 Introduction

The primary objective of tolerance design is to distribute
assembly tolerances between components. Applications of
tolerance design require mathematical modeling of cost–tol-
erance relationships. Distinct operations have different cost-
tolerance relationships. Most researchers agree that there is an
inverse relationship between tolerance and cost [1]. Numerous
cost-tolerance functions for various machining operations,
which include turning, milling, drilling, grinding, casting,
etc., are given in the literature [2–5]. They include exponen-
tial, reciprocal squared, reciprocal power, reciprocal, discrete,
polynomial, B-spline, and hybrid form, etc., functions. These
functions are established by regression analysis using empir-
ical data from the real manufacturing. Tolerance synthesis is
more complicated in an assembly due to the fact that a
manufacturing process for an assembly consists of placing
various components and subassemblies jointly to establish a
finished product with an expected functionality. Once the
cost-tolerance relationships have been generated, mathemat-
ical models for tolerance synthesis can be built to obtain the
optimal tolerance design. In real manufacturing environ-
ments, the cost–tolerance relationship exits. However, it is
quite difficult to obtain the parameters of cost–tolerance
functions. Using traditional methods of regression analysis,
one must make assumptions about the form of the regres-
sion equation or its parameters, which may not be valid in
practice. Regression analysis may be inclined to generate
numerous tables of results. These results are frequently
difficult for design engineers to interpret without a statistics
background. In addition, the previously developed forms of
cost–tolerance relationships may not be suitable for consid-
ering quality loss [6]. Quality loss is the cost incurred in a
product life that occurs after the product is sold. The quality
loss is also ideal function for establishing practical
manufacturing tolerances.
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Neural network approach though regarded as a statistical
method, it is used to learn a feature hidden within the design
experiment. Chen and Chan [7] presented a procedure that
included a neural network and a fine tuning algorithm to
optimize the tolerance allocations for achieving minimum
cost. Kopardekar and Anand [8] presented a neural network
based method for the tolerance allocation, which took the
machinability and the machine tool inaccuracy into consid-
eration. In addition, neural network can be constructed
without any assumptions concerning the functional form
of the relationship between predictors and responses [9].
Therefore, the neural network approach outperforms the
conventional statistical modeling approach in terms of an-
alyzing experimental data [10]. Mu-Chen chen et al. [11]
used neural network to develop cost–tolerance function.
Lin [12] developed cost–tolerance analysis model based
on a neural network method. Yang [13] used neural network
approach to optimize tolerance design to determine com-
ponent tolerance of assemblies.

When designers are performing tolerance design, they
generally assume that the parts for assembly are not geo-
metrically perfect with regard to their nominal geometry. It
is also assumed that they have no flexibility. The assump-
tion that parts and therefore mechanisms are rigid forces us
to solve hyper-statically, thereby increasing precision, as
well as to add manufacturing constraints. Thus, the price
will increase, in this case, an iso-static solution can be
used, or clearance can be increased, which makes good
geometrical defects. Today, part sizes are optimized as
much as possible. Therefore, the sizes of parts are decreas-
ing. Thus, the flexibility of parts increases. Moreover, the
elastic displacements are not negligible or comparable to
dimension tolerances of many parts. It is also observed that
elastic displacements of parts and joints are of same nature.
Therefore, it is necessary to build models where elastic
displacements and joints are mixed with tolerancing.

In general, the component variation is recognized as a
major problem in elastic assembly processes. A number of
methods and tools have been developed to simulate the as-
sembly processes and to analyze the assembly variation.
Currently, the variation analysis of non-rigid assemblies has
attracted many researchers. Liu and Hu [14] considered the
compliant nature of sheet metal parts and proposed an influ-
ence coefficients method to analyze the effect of component
variation and assembly spring-back on the assembly variation
by applying linear mechanics and statics. The influence coef-
ficients method was a key technique to get the component
stiffness matrix. Camelio et al. [15] successfully extended this
approach to model the product variation in multi-station as-
sembly systems. Hu [16] set up the “stream of variation”
theory for the automotive body assembly variation analysis.
Ceglarek and Shi [17] proposed a new variation analysis
methodology for the sheet metal assembly based on

physical/functional modeling of the fabrication error using a
beam-based model. Hu et al. [18] developed a numerical
simulation method for the assembly process incorporating
compliant non-ideal components. The effects of various
variation sources were analyzed. In addition, Heieh and
Oh [19] represented a procedure for simulating the com-
bined effects of deformation and dimensional variation in
the elastic assembly. Sampers and Giordano [20] consid-
ered elastic displacements in 3D tolerancing models, where
they proposed four models and carried out synthesis of
displacements by adding clearance displacements, distor-
tion displacements and elastic displacements. Liao and
Wang [21] proposed a novel method to investigate the
influence of the component surface micro-geometry on
the assembly dimensional variation by applying the finite
element method and fractal geometry. Manarvi and Juster
[22] used finite element simulation as a virtual tool for
tolerance allocation in assembly design. Pierre et al. [23]
has integrated thermo-mechanical strains into tolerance
analysis, where he has used finite element method to deter-
mine the strains. The effect of inertia on tolerance design of
mechanical assembly has been studied [24]. In addition to
inertia, even the effect of temperature on tolerance design
has been investigated [25].

An extensive review of previous works in applications
of neural network and finite element simulation in toler-
ance design are presented. Major conclusions of this
review are summarized as follows: (1) A couple of efforts
in the literature addressed the usage of neural network to
develop cost–tolerance function of tolerance design.
However, neural network models have to be used in
conjunction with intelligent optimization technique,
which is absent in the literature; (2) Finite element simu-
lation has been used by a few researchers in tolerance
design to determine the effect of deformation of sheet
metal parts in the assembly. However, usage of finite
element simulation to consider the effect of deformation
of all parts of the assembly due to inertia and change in
operating temperature, is absent in the literature; (3) An
integrated tolerance design approach, considering the
effect of deformation of all parts of the assembly due
to inertia and change in operating temperature, using
finite element simulation and intelligent optimization
technique is absent in the literature.

To overcome limitations of the existing works and ad-
vance the knowledge base of tolerance design, this work
aims at establishing an integrated tolerance design ap-
proach to investigate the effect of deformation of all parts
of the assembly using finite element simulation and intelli-
gent optimization technique. By using finite element simu-
lation, the dimensional variations of final assembly can be
predicted during the design and process planning stage
itself thereby minimizing its effect on final quality of the
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assembly. Intelligent optimization technique is used to op-
timize tolerance design process where the objective is to
minimize total manufacturing cost. The deformation has
been included in the functional constraint equation in order
to ensure that the optimal tolerance values obtained as end
product of optimization satisfies functional requirements.

The rest of this study is organized as follows: Section 2
deals with effect of temperature and gravity on parts of the
mechanical assembly. Section 3 deals with modeling and
simulation of the assembly components Section 4 presents
the tolerance design problem formulation to obtain the
optimal solutions. Section 5 presents results obtained by

various approach and discussions on the same. The conclu-
sions are given in Section 6.

2 Thermal impact and gravity effect

As temperature increases, size increases. This phenome-
non is known as thermal expansion. The increase in
length ΔL caused by the change in temperature ΔT is α
L ΔT. α is the average coefficient of linear expansion for
given material. Thermal expansion plays an important role
in many applications. For example, thermal expansion
joints must be installed in buildings, concrete highways,
and bridges to compensate for change in dimensions ow-
ing to temperature variation. Power lines are hung slack to
prevent the thermal shrinkages caused by cold weather
from increasing the tension on the lines to breaking point.
Generally, the amount of compensation or slack in the
above example is calculated “roughly” to achieve the
objectives because designing for thermal impact is not
well understood technology, except for those who practice
it on regular basis. There is a tendency to over design, just
to be on the safe side. However, in situation in which a
precise design compensation, slack, dimension or toler-
ance is required in order for the product to function
properly, thermal impact must be taken into effect during
the design process, particularly when a complicated prod-
uct with multiple components and various materials

Crank

Motor 
base

Motor

x - base

Shaft

Fig. 1 Motor assembly

Fig. 2 Components of motor
assembly
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operates under a wide range of temperature. Thermal
effect can be reduced either by thermal control, which
provides cooling or heating devices as part of product
to regulate the operating temperature or by selecting ma-
terials which have small coefficient of thermal expansion.
In addition to thermal effect, gravity effect also results in
deformation (change in length) of a component. Gravity
effect like self weight, angular velocity produces signifi-
cant amount of deformation on the component. The
amount of deformation produced by the gravity effect is
directly proportional to density of the material. In this
work, the deformation due to thermal impact and gravity
effect are determined using finite element analysis (FEA)
and they are suitably incorporated in the tolerance stack
up equation of tolerance design, thereby loosening toler-
ance requirement of critical components. Since the defor-
mation is included in the early stages of design, the
optimal tolerance values of some critical components of
the assembly obtained are higher than that of those vales
obtained by conventional method, resulting in reduction
of the total manufacturing cost of the assembly.

3 Modeling and finite element simulation

This application is related to motor assembly (Fig. 1)
which consists of an x-base, crank, shaft, and motor base.
Figure 2 shows the graphical representation of the motor
assembly with dimensioning and tolerancing schemes.
Table 1 provides some relevant information regarding
various components of the motor assembly. The ordering
number in the first row of Table 1 is also given in the
component drawings for the purpose of easy association.
The objective is to allocate appropriate tolerance so that
there is sufficient clearance between the crank and x-base,
as shown in Fig. 1.

In order to determine the features which have an
effect on clearance measurement, an abstracted feature
parameter model was developed [26]. In this model, all
the features potentially involved in the stack are initially
abstracted to the very basic geometric entities. Then,
these features are represented by corresponding parame-
ters. Finally, a standard set of distance and angular rela-
tion between the simplified feature entities are used to
build a constraint model. Since an assembly consists of
many components connected together by various types of
kinematic joints, the effect of the geometric feature tol-
erances associated with each of the joints may result in
translational variation or rotational variation [27], which
is usually smaller than the size tolerances on the same
parts.

Table 2 [27] lists the rotational and translational var-
iations associated with corresponding geometric feature T
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tolerance-kinematic joint combinations in 2-D. The ex-
treme magnitude of tolerance variation dα for transla-
tional variation is given by Eq. 1 [27]. The extreme
magnitude of tolerance variation dβ for rotational varia-
tion is given by Eq. 2 [27].

dα ¼ � 1

2
tol zoneð Þ ð1Þ

dβ ¼ �tan−1
tol zone

contact length

� �
ð2Þ

In this motor assembly, the critical assembly feature is the
clearance between the crank and x-base (Fig. 3). The assembly
is of reasonable complexity, with about one dimensional

variation and nine geometric variations as contributing
sources. One of the geometric variations, x-base flatness is
modeled as follows: The components x-base and motor base
constitute a planar joint. From Table 2, the associated toler-
ance variation is found to be rotational variation. The extreme
magnitude of tolerance variation dβ for the rotational variation
is calculated as follows:

dβ ¼ �tan−1
0:1

40

� �
¼ 0:150� ð3Þ

The x-base flatness is modeled as angle between two planes
as shown in Fig. 4. Similarly, another geometric variation, the
motor shaft perpendicularity is modeled as follows. The com-
ponents motor shaft and motor constitutes cylinder slider
joint. From Table 2, the associated tolerance variation is found
to be translational variation. The extreme magnitude of

Table 2 Rotational and translational variations associated with corresponding geometric feature tolerance-kinematic joint combinations in 2D [25]

GeomTol 

 joints 

Planar R R   R R R R RT RT  

Cyl slider T T T T T T T T T

Edge slider T T T T T T T T T T T

Revolute          T T 

Par cylind T T T T T

Fig. 3 Critical assembly feature—the clearance Fig. 4 x-base flatness feature
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tolerance variation dα for the translational variation is calcu-
lated as follows:

dα ¼ � 1

2
0:10ð Þ ¼ �0:050cm ð4Þ

The motor shaft perpendicularity is modeled as angle be-
tween two planes as shown in Fig. 5. Similarly, the remaining
seven geometric variations have been modeled in addition to
one dimensional variation. Once the model has been devel-
oped, the next step is to determine the contribution by each

variation source towards variation of the critical assembly
feature. It depends upon the sensitivity of the clearance to
each component variation. Based on sensitivity analysis, x-
base flatness, motor base flatness, motor shaft size and motor
shaft perpendicularity are the features which have an effect on
clearance measurement.

Once a three-dimensional model of the assembly is cre-
ated, the next step is to develop a finite element model of
the same to determine deformation of various components
and their effects on the clearance. The assembly consists of
five components and there are four contact pairs between
them. Coupled field analysis has to be carried out to com-
bine static and contact analysis together. The coupling is
accomplished by direct coupling method using couple field
elements suitable for both static and contact analysis. The
elements used in the analysis are SOLID 92 and elements
used to define the four contact pairs are CONTA173 and
TARGE170. Contact occurs when the element surface pen-
etrates one of the target segment elements on a specified
target surface. The finite element model generated (Fig. 6)
has 100,016 elements. Out of this 95,066 are SOLID 92,
2,298are CONTA173 and 2,652 TARGE170. Once a finite
element model is generated, the next step is to determine
deformation due to gravity and temperature effect. Material
properties required for this analysis are modulus of elastic-
ity, Poisson’s ratio density and thermal coefficient of ex-
pansion. The material properties of various elements of the
analysis are listed in Table 3. The next step is to define loads
and constraints required for the analysis. The major con-
straints in the presented design are variation of thermal
environment both within and among various application
categories and inertia effects. Hence, the design which
withstands temperature variation and inertia must be con-
sidered in the present case. If the temperature is 25 °C when
the motor is assembled and then varies between 10 and
40 °C during application; if the self weight of the shaft is
considered and inertia effect due to angular velocity of the
shaft is considered, then the deformation is determined
using FEA. In order to account for inertia effect like gravity
appropriate values for g (9.81 m/s2) is given. Then the
deformation is calculated for three levels of temperature
within the operating range (i.e., 10, 25 and 40 °C). In order
to prevent rigid body motion, all degrees of freedom of

Fig. 5 Motor shaft perpendicularity feature

Fig. 6 Finite element model of the motor assembly

Table 3 Material properties of various components of the assembly

Sample no Material property x-base Motor base Motor Shaft Crank

1 Modulus of elasticity, E (N/mm2) 1E05 1E05 1E05 2.060E05 2.060E05

2 Poisson’s ratio (ν) 0.23 0.23 0.23 0.30 0.30

3 Density (kg/mm3) 7200E−09 7200 E−09 7200 E−09 7840 E−09 7840 E−09
4 Coefficient of linear expansion per °C 9E−06 9E−06 9E−06 11.1E−06 11.1E−06
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nodes defining the bottom surface of the x-base are
constrained.

Once the loads and constraints are applied on the finite
element model, the next step is to begin the solution phase.
During the solution phase, the governing algebraic equa-
tions are assembled in matrix form and the unknown value
of the primary field variable has been computed. The mass
properties of all the components and the assembly have also
been computed which are shown in Table 4. Among the
mass properties, the mass of every component plays an
important role while determining deformation due to inertia
effect because the components undergo deformation due to
self weight. In addition to mass, mass moment of inertia
about centroid Ixx also affects the deformation. Figure 7
shows the deformation along Y direction (vertical direction)
of various components of the assembly due to gravity
effect. Figure 8 shows the variation of deformation along
the length of the crank. The deformation is maximum at the
free end as the crank is similar to cantilever beam fixed at

the shaft end. Similarly, Fig. 9 shows the variation of
induced von Mises stress along the length of the crank.
The stress is maximum at the shaft end because in a
cantilever beam stress will be maximum at support. The
maximum value of deformation along Y direction (δg) is
found to be −0.2525 cm and the maximum value of
induced von Mises stress is found to be 1,883 N/cm2. In
order to determine the deformation along the Y direction
due to effect of angular velocity, a subassembly model has
been developed. The subassembly has the two rotating
components of the main assembly. They are the crank
and the motor shaft. Figure 10 shows the finite element
model of crank and shaft subassembly. The finite element
model generated (Fig. 10) has 42,157 elements. Out of
this, 41,099 are SOLID 92, 398 are CONTA173 and 660
are TARGE170. In this analysis, the applied load is an-
gular velocity which is determined as follows:

ω!¼ ω� λ
! ð5Þ

Table 4 Mass properties of components and assembly (Motor assembly)

Sample no Mass property x-base Motor base Motor Shaft Crank Assembly

1 Volume in mm3 5.204E+07 1.015E+07 5.017E+07 1.910E+05 1.330E+06 1.139E +08

2 Mass in kg 374.699 73.060 361.226 1.497 10.430 820.914

3 IXX about C.G in kg m2 7.234E+06 1.147E+06 8.435E+06 6.764E+01 2.761E+03 3.207E +07

4 IYYabout C.G in kg m2 7.903E+07 2.899E+06 8.435E+06 5.690E+04 1.522E+05 9.802E+07

5 IZZ about C.G in kg m2 7.524E+07 2.098E+06 7.238E+06 5.690E+04 1.523E+06 1.080E+08

6 Principal M.I-I1 in kg m2 6.676E+06 1.147E+06 7.238E+06 6.747E+01 2.738E+03 3.031E+08

7 Principal M.I-I2 in kg m2 7.524E+07 2.098E+01 8.435E+06 5.690e+04 1.522E+06 9.979E+07

8 Principal M.I-I3 in kg m2 7.958E+07 2.899E+01 8.435E+06 5.690E+04 1.523E+06 1.08E+08

9 Radius of gyration—R1 in mm 133.479 125.312 141.555 6.711 16.200 1.921E+02

10 Radius of gyration—R2 in mm 448.099 169.442 152.814 194.913 381.974 3.487E+02

11 Radius of gyration—R3 in mm 460.842 199.184 152.814 194.913 382.172 3.627E+02

Fig. 7 Deformation along Y direction due to gravity effect Fig. 8 Deformation-Y plot due to gravity effect
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ω ¼ 2� π� N

60
rad=sec ð6Þ

where N=100 rpm. The unit vector λ
!

is calculated as
follows.

λ
!¼

x2−x1ð Þ i!þ Y 2−Y 1ð Þ j
!þ Z2−Z1ð Þ k!

h i

x2−x1ð Þ2 þ Y 2−Y 1ð Þ2 þ Z2−Z1ð Þ2
h i

8<
:

9=
; ð7Þ

Once the loads and constraints are applied on the finite
element model, the next step is to begin the solution phase.
The mass properties of all the components of the assembly
have also been computed which are shown in Table 5. Among
the mass properties, the mass, mass moment of inertia and
radius of gyration plays an important role while determining
deformation due to angular velocity as the formula for cen-
trifugal force=mω2r. Then, the deformation along the Y direc-
tion (vertical direction) due to angular velocity effect (δv)

obtained by this analysis is +0.049442 cm (Fig. 11). The
positive sign of deformation shows that the crank has been
thrown upwards due to centrifugal force. Figure 12 shows the
variation of deformation along the length of the crank. The
deformation is maximum at the free end of the crank because
the centrifugal force is directly proportional to radius of gyra-
tion. Similarly, Fig. 13 shows the variation of induced von
Mises stress along the length of the crank. The stress is
maximum at the shaft end (fixed support end). The maximum
value of induced von Mises stress is found to be 1,771 N/cm2.
The total deformation due to inertia and temperature effect δ is
obtained from Eq. 8 and the same is listed in Table 6. The
relationship between total deformation δ and temperature is
determined from deformation vs temperature plot (Fig. 14).
The relationship is given by Eq. 9.

δ ¼ δg þ δv ¼ −0:2525þ 0:049442 ¼ −0:20305cm ð8Þ

Fig. 9 von Mises stress plot due to gravity effect

Fig. 10 Finite element model of the crank and shaft subassembly

Table 5 Mass properties of components crank shaft sub assembly

Sample no Mass property Value

1 Volume in mm3 1.493E+06

2 Mass in kg 11.707

3 IXX about C.G in kg m2 4.462E+05

4 IYYabout C.G in kg m2 1.660E+06

5 IZZ about C.G in kg m2 2.102E+06

6 Principal M.I-I1 in kg m2 1.417E+05

7 Principal M.I-I2 in kg m2 1.965E+06

8 Principal M.I-I3 in kg m2 2.102E+06

9 Radius of gyration—R1 in mm 110.016

10 Radius of gyration—R2 in mm 409.658

11 Radius of gyration—R3 in mm 423.734

Fig. 11 Deformation along Y direction due to angular velocity effect at
25 °C
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δ ¼ 0:0007ð ÞTempþ 0:1863ð Þ ð9Þ

4 Tolerance design

The tolerance allocation of the motor assembly is carried out
as follows. The response variable is total cost [28, 29] which is
the sum of manufacturing cost and quality losses and it is
expressed as:

TCi ¼
X
j¼1

q

k j Uij−T j

� �2 þ σ2
ij

h i
þ
X
k¼1

m

CM tikð Þ; ð10Þ

where m is the total number of components from q assembly
dimensions in a finished product, kj the cost coefficient of the
jth resultant dimension for quadratic loss function, Uij the jth
resultant dimension from the ith experimental results, σij the

jth resultant variance of statistical data from the ith experi-
mental results, Tj the design nominal value for the jth assem-
bly dimension, tik the tolerance established in the ith experi-
ment for the kth component, and CM(tik) the manufacturing
cost for the tolerance tik.

The variables are x1 (motor shaft size), x2 (motor shaft
perpendicularity), x3 (x-base) and x4 (motor base flatness).
Table 7 shows the range of tolerance and respective cost for
each variable. The constraint equation for stack up toler-
ance is obtained by performing sensitivity analysis on the
developed computer-aided design (CAD) model. Based on
the sensitivity analysis, the clearance is found to be a
function of the following feature tolerance. They are x-base
flatness, motor base flatness, motor shaft size, and motor
shaft perpendicularity.

F xð Þ ¼ x1; x2; x3; x4ð Þ≤0:89 cm ð11Þ

The value of clearance for any combination of x1, x2, x3,
and x4 values can be retrieved from the CAD model. Table 8
shows the different values of cost for a set of 27 variables.
Then neural network model of cost–tolerance function is
developed as follows. A Back Propagation (BP) network
which has been widely applied to fit the cost–tolerance rela-
tionship [11] has been used. The procedure for developing the
model is as follows. First, two thirds of experimental results
drawn randomly from Table 8 are used to train the neural
network. Before applying the neural network for modeling,
the architecture of the network has been decided; i.e. the
number of hidden layers and the number of neurons in each

Fig. 12 Deformation-Y plot due to angular velocity effect at 25 °C

Fig. 13 von Mises stress plot due to angular velocity effect at 25 °C

Table 6 Total deformation for various temperatures

S.No Temperature (°C) Deformation (cm)

1 10 °C 0.19301

2 25 °C 0.20305

3 40 °C 0.21311
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0.195

0.2

0.205

0.21

0.215
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Fig. 14 Deformation vs temperature
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layer. As there are four inputs and one output, the numbers
of neurons in the input and output layer have to be set to 4
and 1 respectively. Also, the BP architecture with one
hidden layer is enough for majority of the applications.
Hence, only one hidden layer has been adopted. The opti-
mum value of learning rate and momentum coefficient for a
network is determined as follows. Initially the momentum
coefficient is kept constant and training is carried out for

different values of learning rate say 0.5, 1, 1.5 and so on.
Once the optimum value of learning rate is determined
based on error value, the optimum value of momentum
coefficient is determined by training the network with dif-
ferent values of momentum coefficient. Figures 15 and 16
gives error value vs learning rate plot and error value vs
momentum coefficient plot for 4-7-1 architecture.

A procedure was employed to determine the optimum
number of neurons in the hidden layer. Accordingly, an
experimental approach was adopted, which involved test-
ing the trained neural networks against the remaining one
third of experimental results. Experimental and predicted
outputs for different number of neurons have been
compared.

The regression statistics for different architectures are de-
termined and listed in Table 9 and the same have been plotted
against the number of neurons as shown in Fig. 17.

It is observed that the regression statistics were mini-
mized with 7 neurons. Hence, 4-7-1 is the most suitable
network for the task under consideration. The training
function used in this research is gradient descent with
momentum back propagation. The transfer function used
in this research is tan-sigmoid and gradient descent weight/
momentum weight/bias learning function has been used.

Table 7 Tolerance costs for each factor at various levels

Variable Lower limit Cost $ Upper limit Cost $

x1 0.1 18.07 0.2 12.82

x2 0.05 35.18 0.1 21.90

x3 0.05 279.61 0.1 108.57

x4 0.04 29.87 0.08 17.98

Table 8 Cost–tolerance relation

Experiment
number

x-base
flatness
(x1)

Motor
base
flatness
(x2)

Motor
shaft
size (x3)

Motor shaft
perpendicularity
(x4)

Total
cost in $
TC(X)

1 0.15 0.075 0.1 0.08 228.9

2 0.15 0.075 0.1 0.04 239.5

3 0.15 0.075 0.05 0.08 361.3

4 0.15 0.075 0.05 0.04 373.0

5 0.15 0.1 0.075 0.08 266.1

6 0.15 0.1 0.075 0.04 277.6

7 0.15 0.05 0.075 0.08 277.2

8 0.15 0.05 0.075 0.04 289.0

9 0.15 0.1 0.1 0.06 228.4

10 0.15 0.1 0.05 0.06 361.1

11 0.15 0.05 0.1 0.06 240.8

12 0.15 0.05 0.05 0.06 372.5

13 0.2 0.075 0.075 0.08 274.6

14 0.2 0.075 0.075 0.04 286.3

15 0.1 0.075 0.075 0.08 267.0

16 0.1 0.075 0.075 0.04 278.7

17 0.2 0.075 0.1 0.06 236.3

18 0.2 0.075 0.05 0.06 369.9

19 0.1 0.075 0.1 0.06 228.6

20 0.1 0.075 0.05 0.06 362.0

21 0.2 0.1 0.075 0.06 274.6

22 0.2 0.05 0.075 0.06 290.9

23 0.1 0.1 0.075 0.06 266.7

24 0.1 0.05 0.075 0.06 278.3

25 0.15 0.075 0.075 0.06 271.2

26 0.15 0.075 0.075 0.06 268.4

27 0.15 0.075 0.075 0.06 269.9
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Fig. 15 Error value vs learning rate plot
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Figure 18 shows the schematic diagram of the neural
network.

The learning rate=0.4, momentum=0.2 and training
epochs=2000. The weights (and biases) are randomly initial-
ized between −0.5 and 0.5. Figure 19 shows the performance
of 4-7-1 architecture training.

Once the neural network gets trained, it can provide the
result for any arbitrary value of input data set. Table 10 shows
the experimental result and the model prediction. It is ob-
served that the prediction based on an artificial neural network
(ANN) model is quite close to the experimental observation.

The neural network model for the above problem is
developed as per the approach discussed previously.
Based on those discussions, the BP network of 4-7-1
architecture produces the best performance (refer to
Table 11) and the same is adopted to generate the neural
network based cost–tolerance function under this case
study. Comparison of experimental results with artificial
neural network model prediction for other architecture is
shown in Table 12.

The optimization problem is solved by nondominated
sorting genetic algorithm II optimization algorithm (NSGA
II). The solution of the motor assembly case can be found by
solving the following mathematical models.

fMaximizeTCi ¼
X
j¼1

q

k j U ij−T j

� �2 þ σ2
ij

h i
þ
X
k¼1

m

CM tikð Þ

subject to
clearance F xð Þ ¼ x1; x2; x3; x4ð Þ≤0:89cm

0:1≤x1≤0:2;
0:05≤x2≤0:1;
0:05≤x3≤0:1;
0:04≤x4≤0:08:

ð12Þ

The outline of the proposed optimization strategy is shown
in Fig. 20. Once a set of tolerance corresponding to minimum
cost has been determined byNSGA II, the tolerance values are
fed in to the interactive CAD model in order to determine the
clearance value. The results of FEA show that the various
components of the assembly undergo deformation due to the
inertia effect, thereby reducing the clearance by 0.20305 cm.
The reduction in clearance caused by the deformation is
independent of tolerance values. So the deformation can be
included in the constraint equation (Eq. 13), which in turn

Table 9 Regression statistics for each network architecture

Network
architecture

Mean prediction
error %

R square value Standard error

4-4-1 4.498492501 0.943112 12.06117

4-5-1 2.035675506 0.987509 6.426893

4-6-1 4.100965211 0.902752 16.94439

4-7-1 1.735294596 0.989658 5.608395

4-8-1 3.495912167 0.96686 10.32931

4-9-1 5.935647182 0.725488 33.33576

4-10-1 4.749441739 0.850217 22.10918
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Fig. 17 Error versus the number of neurons in a hidden layer

Fig. 18 Schematic diagram of the neural network

Fig. 19 Performance of 4-7-1 architecture
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increases the tolerance values, thereby reducing the
manufacturing cost. The modified constraint equation for
stack up tolerance is given as follows:

F xð Þ ¼ x1; x2; x3; x4ð Þ≤0:89þ δ ð13Þ

where δ is total deformation which is a function of tempera-
ture (Eq. 9). The least cost is found to be $ 230.3739. The
solution converges in the 38th generation. The NSGA II

optimization results for the proposed method are given in
Table 12.

5 Results and discussions

The solution of the motor assembly process was found by
solving the mathematical model (Eq. 12) using NSGA II.
Initially, the problem is solved for rigid body condition, in
which all the components in the assembly are considered as
rigid body. The NSGA II specific parameters for the tolerance
design problem are listed in Table 13. The optimal values of
tolerance and total cost obtained are compared with corre-
sponding values obtained by response surface method [29]
(Table 14). The total cost obtained by the NSGA II is found to
be less than those values. Due to considerable saving in cost,
NSGA II is selected as optimization tool for the proposed
methodology. The optimal values of tolerance, manufacturing
cost and quality loss determined using NSGA II for rigid body
approach are compared with those values obtained for the
proposed method (Table 15). By comparing the optimal
values, considerable cost savings are obtained for the pro-
posed methodology than the rigid body approach. The reasons
for the cost savings are as follows.

In the proposed methodology, BP neural network is used to
develop the cost–tolerance model. The neural network model

Table 10 Comparison of experimental results with the ANN model
prediction

Total cost in $ TC(X)
Experimental results

Predicted value
by ANN

Prediction error (%)

239.517 233.5125993 2.506878729

373.02 370.1791799 0.761573146

228.449 229.8694101 0.621762439

361.1 353.4342438 2.12289012

266.993 269.1789878 0.818743499

236.277 234.1075089 0.918198157

274.648 270.9355255 1.351720937

266.679 251.1227928 5.833307915

271.192 269.3409074 0.682576422

Maximum prediction error for each output
in this row in %

5.833307915

Minimum prediction error for each output
in this row in %

0.621762439

Mean prediction error for each output in
this row in %

1.735294596

Table 11 Comparison of experimental results with the ANN model
prediction for 4-7-1 network architecture

Total cost in $ TC(X)
Experimental results

Predicted value by
ANN

Prediction error
(%)

239.517 233.5125993 2.506878729

373.02 370.1791799 0.761573146

228.449 229.8694101 0.621762439

361.1 353.4342438 2.12289012

266.993 269.1789878 0.818743499

236.277 234.1075089 0.918198157

274.648 270.9355255 1.351720937

266.679 251.1227928 5.833307915

271.192 269.3409074 0.682576422

Maximum prediction error for each output in this
row in %

5.833307915

Minimum prediction error for each output in
this row in %

0.621762439

Mean prediction error for each output in this row in % 1.735294596

Table 12 NSGA II optimization result for proposed method

Gen. no Min. objec. Gen. no Min. objec.

1 383.8660 21 275.8378

2 365.5328 22 269.6216

3 350.3704 23 268.9944

4 345.4331 24 266.7900

5 345.0194 25 266.7900

6 332.4663 26 259.6442

7 328.0760 27 256.3991

8 324.6031 28 253.2321

9 323.9611 29 252.3969

10 321.5415 30 250.2312

11 321.1886 31 248.3452

12 312.0675 32 248.0548

13 309.5702 33 245.8765

14 307.6479 34 240.6544

15 299.1952 35 237.2133

16 299.1520 36 235.1236

17 288.4992 37 231.3478

18 286.0766 38 230.3739

19 283.3560 39–100 230.3739

20 276.3634
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developed is found to have better regression statistics due to
less fitting error. Table 10 shows the comparison of experi-
mental results with the artificial neural network model predic-
tion, where mean prediction error for each output is found to
be 1.735 %. The optimization of the above model has yielded
better result due to less fitting error.

In the proposed methodology, all the components are con-
sidered as deformable bodies and the deformations are deter-
mined by FEA. The predetermined values of deformation are
suitably incorporated in the constraint equation of the

tolerance design problem. Due to this, the tolerance require-
ments of the given assembly are relaxed to certain extent for
critical components, resulting in reduced manufacturing cost.

The optimal tolerance values obtained for the proposed
methodology are higher than those obtained by the rigid body
approach. This results in higher quality loss than that of the
rigid body approach. The increase in the quality loss is much
less compared to the decrease in the manufacturing cost. Thus,
the total cost, which is the sum of manufacturing cost and
quality loss cost, is less than that of the rigid body approach.

Start

Set initial population of tolerance

Evaluate the Neural network based cost - tolerance 
function

Improve population using NSGA II

Find the set of tolerance with minimum cost

Determine the clearance value from the 
CAD model

Clearance is less 
than the desired 

one

End

Deformation
Obtained
from FEA

No

Yes

Fig. 20 Proposed optimization
strategy

Table 13 NSGA II spe-
cific data Parameter Value

Variable type Real variable

Population size 100

Cross over type Binomial

No of difference vector 1

Vector to be perturbed Random

Total no of generation 100

No of variables 4

Table 14 Comparison of optimal value of tolerance and total cost

Sample
no

Variable Optimal value of
tolerances in cm

Total cost in $ % Cost
savings

RSM NSGA II RSM NSGA II

1 x1 0.14181 0.1 238.5191 232.1907 2.65 %
2 x2 0.080894 0.081125

3 x3 0.098334 0.1

4 x4 0.064308 0.07799
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In the rigid body approach, an additional quality loss is
generated due to actual deformation of the components. When
the components are assembled into a product, some of the
flexible components like shaft, bearing, etc., in this applica-
tion problem, are more flexible than the other components and
they undergo significant deformation due to thermal and
gravity effects. In the proposed methodology, there is no
additional quality loss due to deformation as the deformations
are included in the constraint equations of the tolerance design
problem.

Due to the above reasons, the proposed methodology is
found to produce assemblies of less cost than that of the rigid
body approach.

Similarly, the optimal values of tolerance can be obtained
for operating temperature 10 and 40 °C. In case of 10 °C, the
operating temperature being 15 °C less than the room temper-
ature results in contraction of length of gear shaft compared to
its length at room temperature. This in return reduces the value
of δ, thereby tightening the tolerance requirement than that of

the room temperature, which results in increase of total
manufacturing cost. In case of 40 °C, the gear shaft expand
to a length more than the room temperature, thereby loosening
the tolerance requirement resulting in decrease of total
manufacturing cost. Table 16 shows the optimal values of
tolerances obtained for operating temperature 10 and 40 °C.

6 Conclusion

In this work, an integrated tolerance design approach was
adopted where the effect of deformation of all parts of the
assembly due to inertia and change in operating temperature
has been considered. A parametric CAD model of the assem-
bly has been developed by including dimensional and geo-
metric tolerances in addition to effect of geometric tolerance
on various kinematic joints of the assembly (Figs. 4 and 5).
Then, sensitivity analysis is carried out on the model to
determine critical features of the assembly. The deformation
of the assembly model is determined using FEA. The defor-
mation of the assembly due to inertia effect has been deter-
mined (Fig. 7). The deformation of rotating parts of the sub
assembly due to angular velocity and change in temperature
has also been determined (Fig. 11). The values of total defor-
mation have been determined for different operating temper-
ature (Table 6). The total deformation is found to have a linear
relationship with operating temperature (Eq. 9). Due to this
deformation, the critical assembly feature is reduced. So, the
tolerance of the critical assembly feature has been increased.
Instead of regression model, artificial neural network model
has been used to develop cost–tolerance relationship thereby
reducing fitting error. Optimization of tolerance design has
been carried out where the value of critical assembly feature
has been retrieved from the CAD model. By this method, the
total manufacturing cost has been reduced by 12.77 %.
Significant reduction of total manufacturing cost has been
obtained using this methodology. This methodology can be
adopted for development of a customized software program
which paves the way for futuristic tolerance design of me-
chanical assemblies in industries.
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