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Abstract The traditional devices, used to measure the surface
roughness, are very sensitive, and they are obtained by scratching
the surface of materials. Therefore, the optic systems are used as
alternatives to these devices to avoid the unwanted processes that
damage the surface. In this study, face milling process was
applied to American Iron and Steel Institute (AISI) 1040 carbon
steel and aluminium alloy 5083 materials using the different
tools, cutting speeds and depth of cuts. After these processes,
surface roughness values were obtained by the surface roughness
tester, and the machined surface images were taken using a
polarise microscope. The obtained images were converted into
binary images, and the images were used as input data to train
network using the MATLAB neural network toolbox. For the
training networks, log-sigmoid function was selected as transfer
function, scaled conjugate gradient (SCG) algorithmwas used as
training algorithm, and performance of the trained networks was
achieved as an average of 99.926 % for aluminium alloy (AA)
5083 aluminium and as an average of 99.932 % for AISI 1040
steel. At the end of the study, a prediction programme for optical
surface roughness values using MATLAB m-file and GUI pro-
gramming was developed. Then, the prediction programme and
neural network performance were tested by the trial experiments.
After the trial experiments, surface roughness values obtained
with stylus technique for the carbon steel and aluminium alloy
materials were compared with the developed programme values.
When the developed programme values were compared with the
experimental results, the results were confirmed each other at a
rate of 99.999 %.
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1 Introduction

Surface quality is an important indicator of the engineering
material quality, and the main indicator of the surface quality
of the machined workpieces is surface roughness. The accu-
rate measurement of the surface roughness is of great impor-
tance for the area of the precision engineering andmanufactur-
ing industry. Surface roughness is commonly measured me-
chanically with a stylus device [1–3]. For many years, the
stylus device has been widely used for measuring surface
roughness parameters with high reliability. The vertical move-
ment of tip of the stylus is measured for a prespecified length
horizontally. The stylus tip, however, could not reach into all
the valleys of the surface [4]. On the other hand, the conven-
tional method for measuring surface roughness is to pass a
stylus probe across the surface and to monitor its movement
such that the surface micro-profile can be traced. These de-
vices are very sensitive. However, some of them, such as the
diamond stylus, could scratch the surface, particularly when
the material is soft [5]. Measurements using the stylus tech-
nique (contact system) can damage the surface because it
contacts the material surface, and this technique is suitable
only for point measurement. Therefore, the instrument must
be handled carefully in a fairly clean environment. Another
problem with the stylus measurement technique is the size of
the stylus radius and the crevices on the surface. If the crevices
are narrow such that the stylus cannot penetrate all the way to
the bottom, the measurement will not be accurate and a true
representation of the surface [6]. Accordingly, measuring of
the surface roughness with optical systems (non-contact) can
eliminate these problems [7–10]. Although there are many
methods using the optical systems to measure the surface
roughness, newmethods are also being developed to eliminate
the faced problems.

Some researchers have worked in the area of classification
and assessment of textures using machine vision in the past

G. Samtaş (*)
Engineering Faculty, Department of Mechatronics, Düzce
University, 81620, Beci Yorukler Düzce, Turkey
e-mail: gurcansamtas@duzce.edu.tr

Int J Adv Manuf Technol (2014) 73:353–364
DOI 10.1007/s00170-014-5828-1



years [11–13]. Dhanasekar and Ramamoorthy [5] grabbed the
images using a vision system and evaluated the statistical
roughness parameters of image textures as spatial frequency
and arithmetic average of grey level. Then, these parameters
were used as input values to train neural network. The surface
roughness values obtained from training network were com-
pared with the stylus roughness values [5]. Tsai et al. [14]
assessed the surface roughness of machined parts produced by

the shaping and milling processes and extracted features of
surface roughness in the spatial frequency domain using the
2D Fourier transform. These roughness features were taken as
input to artificial neural networks (ANNs) to categorise the
surface of interest among a set of standard surfaces of known
roughness values.

The application of dynamic speckle technology has been
mostly focused on the measurements. A speckle pattern image

Fig. 1 Flow chart of experimental set-up, captured image and programming section

Table 1 The selected cutting pa-
rameters for face milling process Materials Parameters Levels

1 2 3

AISI 1040 Cutting depth (mm) 0.3 0.6 0.9

Cutting tools (coated/uncoated) Uncoated TiN-TiCN-Al2O3 TiAlN

Cutting speed (m/min) 160 180 220

Feed rate (mm/tooth) 0.10 0.15 0.30

AA 5083 Cutting depth (mm) 0.08 0.12 0.25

Cutting tools (coated/uncoated) Uncoated TiAlN TiB2

Cutting speed (m/min) 450 550 650

Feed rate (mm/tooth) 0.08 0.12 0.25
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is generally obtained from a He-Ne laser beam. It is produced
from a stationary surface carrying the micro-structure informa-
tion of the surface and can be recorded in image for prediction of
surface roughness [15]. Fuh et al. [16] developed a method of
intensity distribution of binary image and an adaptive optics
integrated system for measuring the surface roughness under
dynamic turbulence. Hamed et al. [17] evaluated the object
surface roughness of aluminium surfaces using a technique based
on computing the signal to noise ratio of the obtained numerical
speckle images. Kayahan et al. [18] presented the results from an
optical technique for measuring surface roughness using image
analysis of speckle pattern images. In this study, the speckle
patterns obtained with a He-Ne laser were binarised and
analysed. Persson [19] examined the measurement of surface
roughness using an angular speckle correlation on machined
surface, and a new technique to achieve increased repeatability
by using an angle detection unit was presented. Meireles et al.
[20] conducted an experimental investigation of speckle pattern
formation from metallic surfaces at diffraction plane.

Many statistical and structural texture analysis methods
were used for the evaluation of machined surfaces. In addi-
tion, first-, second- and higher-order statistical textural analy-
ses were used to evaluate the quality of machined surfaces.
One of the second-order statistical techniques is grey level co-
occurrence matrix (GLCM) technique. This technique gives
the information about the relative occurrence of pixel intensi-
ties between two pixels in a special spacing or pixel pair
spacing and pixel pair direction. Moreover, GLCM can be
used as an image analysis of surface texture of resulting
machined surface images [21]. Gadelmawla [22] implemented
a vision system to capture images for surfaces to be charac-
terized and developed software to analyse the captured images
based on the GLCM. Wang et al. [23] presented the grey
reference line for surface roughness evaluation based on grey

system theory. These techniques are a wide range of applica-
tion of digital image processing, and it can be integrated and
applied in many industrial applications [24–29].

The aim of this paper is to present an optical technique
including statistical properties of binary image method [18,
30] to detect surface roughness values. This technique used
the ANNs for the surface roughness measurement based on
binary digitised images from a digital microscope on the face-
milled surfaces of carbon steel and aluminium alloy. In this
study, a total of 162 experiments were conducted with two
materials for face milling process, and a total of 648 images,
four images for each experiment, were taken using a digital
microscope from the material faces (Fig. 1).

The captured images were converted into the binary images,
which were used as input parameters to train neural networks
using the logistic sigmoid curve and the scaled conjugate
gradient method. At the end of this paper, a prediction pro-
gramme was developed to obtain vision surface roughness
values from the images, and trial experiments were performed
to test performance of the prediction programme, comparing
stylus values and vision surface roughness values. Coding of
the prediction programme, image processing and training neu-
ral networks processes were conducted by MATLAB.

2 Experimental procedures

2.1 Machining of the materials

In this study, American Iron and Steel Institute (AISI) 1040
carbon steel and aluminium alloy (AA) 5083-H111-tempered
aluminium alloy blocks were used as the workpiece materials.
Uncoated, TiALN-coated, TiN-TiCN-Al2O3-coated and TiB2-
coated carbide cutting inserts were used in the experiments.

Fig. 2 Taking photos and surface
roughness measurements

Fig. 3 Binary files converting
using image processing toolbox
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Before the experiments, workpieces were created having three
different machining faces and two channels in accordance
with ISO 8688-1 using the end mill tool. Test specimens were
prepared using the Jetco JVM-2 milling machine. The face
milling experiments were performed using the first model
MCV-300 three-axes CNC vertical machine centre (Fanuc
Oi Mate MC) having a maximum spindle speed of
8,000 rpm, a pneumatic pressure of 5.5 bar and a 12-kW drive
motor. To determine the cutting parameters for experimental
procedures, manufacturer’s data of cutting tool and the rec-
ommendations contained in the ISO 8688-1 standard were
taken into consideration. The experiments, for the two select-
ed materials, were conducted by using the parameters given in
Table 1.

In this study, a total of 162 experiments were performed
with two materials for face milling process using cutting
parameters.

2.2 Captured images and surface roughness measurements

After experiments, surface images were taken from four dif-
ferent regions of machined surface using a digital microscope
for each test, and then, surface roughness measurements were
conducted by using a surface roughness tester using middle
regions of the machined faces (Fig. 2). Total of 648 surface
images of 1,280×1,024 resolution were obtained using the

Dino-Lite Pro2 brand AMT413ZT model polarised micro-
scope with a magnification of up to 240 times. The surface
roughness of the machined faces was measured using a
Mitutoyo portable surface roughness tester (Mitutoyo Surftest
SJ-301, Product No. 99MBB035A1, Series No. 178;
Mitutoyo Corporation, 20-1, Sakado 1-chome, Takatsu-ku,
Kawasaki, Kanagawa 2002; 213-0012, Japan).

3 Image processing and training networks

The obtained images from the surfaces were analysed by
MATLAB image processing toolbox. Neural network toolbox
was also used to train the networks. Surface images were
evaluated by the test programme coded using MATLAB m-
file for different resolutions (800×640, 700×560, 500×400,
400×320, 240×300 and 300×240) as binary format.
MATLAB can use all types of images by converting them to
the matrix format. Therefore, these resolutions were evaluated
for the maximum matrix size that can be handled by the
programme during the training networks.

3.1 Image processing and creating matrices

A 1,280×1,024-resolution image corresponds to 1,280 hori-
zontal and 1,024 vertical pixels on a computer display.

Fig. 4 Converting to binary image and experimental measurement direction for stylus method

Fig. 5 Applied processes to images
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However, this colour image is coded in MATLAB as red,
green and blue (RGB) colour-coding system based on
1,024×1,280×3 (rows×columns×layer). In this study, the
obtained images from the experiments were used by
converting binary formats in MATLAB (Fig. 3).

The images converted to binary format, pixels in binary
images with a value of 0, were displayed as black, and pixels
with the value of 1 were displayed as white. In statistics, binary
data is a statistical data type defined by binary variables, which
can take only 0 and 1 as possible values. Statistical property
modelling with the binary images could be effectively used for
surface roughness, and it has a great potential in process mea-
surements [18]. When the images defined in binary format are
converted into two-dimensional matrices, a black and a white
(B/W) image of 1,280×1,024 resolution will have
1,310,720 pixels that is a matrix units of 0 and 1.

In Fig. 4, the black areas on the binary image are the low
levels that are created after the face milling process. The white

areas define the high levels. The linear tracks in both material
surfaces are formed due to the milling process. In experimen-
tal measurements, surface roughness measurement stylus was
moved as perpendicular to these tracks. On the other hand, this
direction was considered as an important criterion in terms of
image processing for detecting fluctuations in the appropriate
colour. Most of the non-contact methods are based on statis-
tical methods and the other method, as Machine Vision Sys-
tem uses optical surface roughness features of the surface

Fig. 6 Neural network structure for the processed images

Table 2 Neural network parameters for AA 5083 material

Transfer
functions

Number
of neurons

Training algorithms

SCG (R2) CGB (R2) GD (R2) CGF (R2)

Logsig 50 0.02592 0.00099 0.00208 0.00717

100 0.03855 0.56432 0.00053 0.23215

125 0.97383 0.37929 0.00254 0.00113

160 0.99921 0.00273 0.00172 0.50207

Radbas 50 0.67130 – 0.00632 –

100 0.71367 – – –

125 0.71459 – 0.00300 –

160 0.66666 – 0.00117 –

Pureline 50 0.56077 0.55239 – 0.55480

100 0.79305 0.78766 – 0.78461

125 0.88313 0.87575 – 0.88199

160 0.99647 0.95861 – 0.98206

Table 3 Neural Network parameters for AISI 1040

Transfer
functions

Number
of neurons

Training algorithms

SCG (R2) CGB (R2) GD (R2) CGF (R2)

Logsig 50 0.43428 0.23630 0.00030 0.00156

100 0.99829 0.51402 0.00440 0.00285

125 0.99973 0.56010 0.00460 0.43203

160 0.99977 0.64647 0.00287 0.26657

Radbas 50 0.59211 – 0.00073 –

100 0.82648 – 0.00174 –

125 0.74428 – 0.00140 –

160 0.74530 – 0.00033 –

Pureline 50 0.56077 0.55475 – 0.55238

100 0.79305 0.78532 – 0.78703

125 0.88666 0.87199 – 0.88104

160 0.99938 0.93375 – 0.97054

Table 4 Samples codes related to the developed programme

Sample codes for the
matching columns

Giris(:,1)=AISI1_1;
Giris(:,2)=AISI1_2;
Giris(:,3)=AISI1_3;
Giris(:,4)=AISI1_4;
Giris(:,5)=AISI2_1;
Giris(:,6)=AISI2_2;
…

Sample codes for the
training networks

net=newff(minmax(Giris), [160160],
{‘logsig’ ‘logsig’}, ‘trainscg’);

net.LW{2,1}=net.LW{2,1}*0.01;
net.b{2}=net.b{2}*0.01;
net.trainParam.perf=‘sse’;
net.trainParam.epochs=500;
net.trainParam.goal=1e-5;
…

Sample codes for the GUI set(handles.unitgroup, ‘SelectedObject’,
handles. AISI)

run Program_AA_Son
set(handles.deger, ‘String’, Ra_1);
function steel_Callback(hObject,
eventdata, handles)

set(handles.unitgroup, ‘SelectedObject’,
handles. AISI)

run Program_AISI_Son
set(handles.deger, ‘String’, RaAISI_1);
…
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image such as image major peak frequency, central power
spectrum percentage, etc., with artificial neural networks.
Machine vision and ANN approaches could be used for
estimation and prediction of roughness of components [31].
Binary image matrices were also used as surface roughness
features. The main criterion of this study was to determine the
matrix size as a memory capacity of MATLAB. Therefore,
after the coded software, 1,280×1,024-resolution images were
evaluated at different resolutions (800×640, 700×560, 500×
400, 400×320, 300×240) using ten samples for each image.
These samples were used to train neural networks, and then,
the trained samples were compared with their network

parameters (number of iteration, R2 value and training time).
While increasing the number of the used samples, the error
‘out of memory’ was received from MATLAB for some
resolutions (800×640, 700×560, 500×400, 400×320).
Therefore, the best performance was obtained from 300×
240-resolution images, and these images were selected to train
networks. The selected resolution had 300 pixels in rows and
240 pixels in columns. This image size (300×240) was con-
verted into binary format in MATLAB and was transformed
into the matrix with 72,000 pixels (Fig. 5).

In Fig. 5, the process converted images into a binary file
format, and all surface images added each other as binary

Fig. 7 Performance of the trained networks for AA 5083

Fig. 8 Performance of the trained networks for AISI 1040
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codes are shown. Images were evaluated by dividing into two
groups as 160 and 164, taking into account the maximum
virtual memory of the MATLAB. As a first step, the first
group consisting from 1 to 160 images was processed, and
72,000×1-sized image matrices combining side by side and
72,000×160-sized first-portion matrices were created. The
remaining images from 161 up to 324 were processed in the
same way, and the images created 72,000×164-sized second-
portion matrices. While combining the location of each image
matrix to be introduced in the programme, image name was

matched with location of matrix. In addition, 160×160- and
164×164-sized unit matrices were also created to train net-
works. After these processes, a total of four artificial neural
networks were obtained (72,000×160 and 72,000×164 for
AISI 1040 and 72,000×160 and 72,000×164 for AA 5083).

3.2 Training networks

In total, four pieces of networks for two materials were
trained. Before the training networks, pretest was applied to

Fig. 9 The algorithm structure for developing programme and programming flows

Fig. 10 Searching input image to
find its similar image in learned
networks
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select the appropriate training algorithms and to transfer func-
tions. In this study, the used neural network structure for the
processed images is shown in Fig. 6.

The first 160 pieces of images of the two materials were
used. Regression values were compared with three different
transfer functions, four different numbers of neurons and four
different training algorithms (Tables 2 and 3). As a result of
these comparisons, log-sigmoid (logsig) transfer function and
scaled conjugate gradient (SCG) back propagation algorithm
were selected as network parameters for both materials.

In Tables 2 and 4, SCG back propagation, conjugate gra-
dient back propagation with Powell-Beale restarts (CGB),
gradient descent back propagation (GD) and conjugate gradi-
ent back propagation with Fletcher-Reeves updates (CGF)
were selected as training algorithms. Coefficients of determi-
nation (R2) for the material images of AA 5083 and AISI 1040
were 0.99921 and 0.99977, respectively (Table 2). Therefore,
SCG training algorithm, the maximum neurons and logsig
transfer function were selected to use in training networks.
Network performance results of AA 5083 and AISI 1040

materials for the trained networks according to the selected
network parameters are shown in Figs. 7 and 8.

3.3 Improving a prediction programme

In the stage of programme development, the algorithm struc-
ture was adapted as shown in Fig. 9, and samples’ codes for
this programme are shown in Table 4.

After the experiments, the measured surface roughness
values and images taken from material surfaces were used in
preparation of the prediction programme. Moreover, two dif-
ferent algorithms were coded for two materials with
MATLAB m-file programming editor. In the written codes
for algorithm, the obtained values for the stylus technique
were matched with the position of the relevant images.

When the first command of the programme is executed, it
writes the virtual memory reading trained networks in the
background for the related material. The programme reads
the image from the defined file location, and the 1,280×
1,024-resolution image is firstly converted into binary format
and then is changed into 300×240 resolution and, finally, into
a single-column matrix, which is named as reference image,
having 72,000×1 size. This single-column matrix file is com-
pared with the learned network models in the image matrices,
and the compliance status is checked. As an outcome, the
programme gives a value between 0 and 1 (0–100 %). For
example, if a result gives a value of 0.987, the evaluated image
is similar to the corresponding column as 98.7 % (Fig. 10).
The programme performs this search along the searching
direction, and two artificial neural network files are prepared

Fig. 11 The interface of developed programme

Table 5 The comparison of ex-
perimental and programme sur-
face roughness values for AISI
1040 material

Exp. Cutting parameters Surface roughness values

No. Measure Cutting tools Cutting
speed
(m/min)

Feed rate
(mm/tooth)

Cutting
depth
(mm)

Exp.
values
(μm)

Programme
values
(μm)

Delta
(μm)

72 3 TiALN 180 0.3 0.9 0.77 0.769 0.001

81 2 TiALN 220 0.3 0.9 0.89 0.888 0.002

80 1 TiALN 220 0.3 0.6 0.62 0.619 0.001

56 2 TiALN 160 0.1 0.6 1.47 1.470 –

58 1 TiALN 160 0.15 0.3 2.49 2.486 0.004

49 3 TiN-TiCN-Al2O3 220 0.15 0.3 2.47 2.471 0.001

45 2 TiN-TiCN-Al2O3 180 0.3 0.9 1.80 1.798 0.002

45 3 TiN-TiCN-Al2O3 180 0.3 0.9 1.84 1.840 –

50 4 TiN-TiCN-Al2O3 220 0.15 0.6 2.51 2.511 0.001

42 1 TiN-TiCN-Al2O3 180 0.15 0.9 3.06 3.059 0.001

26 1 UC 220 0.3 0.6 1.39 1.385 0.005

21 4 UC 220 0.1 0.9 1.30 1.295 0.005

19 1 UC 220 0.1 0.3 1.40 1.398 0.002

1 1 UC 160 0.1 0.3 1.28 1.275 0.005

14 3 UC 180 0.15 0.6 1.51 1.511 0.001
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for the relevant material. In this search, MATLAB holds the
matching highest value as a temporary variable. Finally, this
value is multiplied with the experimentally measured value of
the roughness of the image of the corresponding column, and
the obtained surface roughness value is displayed as an output
on the screen (Fig. 11). The programme uses the following
equation for this process:

Raimg ¼ CimgRsty ð1Þ

where Cimg is the image matching ratio (0<Cimg<1), Rsty is the
experimentally measured value with surface roughness device,
and Raimg is roughness value obtained from the surface image.

4 Result and discussion

4.1 Programme tested

At the end of the study, the experimental surface roughness
values were compared with the programme values to test the
accuracy of the programme and developed algorithm

structure. Experimental values obtained from the first experi-
ment performed to train networks were compared with the
programme values shown in Tables 5 and 6. The experimental
values were randomly selected as 15 pieces within the 81
pieces of experiments. The different cutting parameters were
taken into account in these selections.

In Tables 5 and 6, UC is uncoated cutting inserts; TiN-
TiCN-Al2O3 is multi-layer titanium nitride, titanium carbo-
nitride and aluminium oxide-coated cutting inserts; TiALN is
titanium aluminium nitride-coated cutting inserts; and TiB2 is
titanium-diboride-coated cutting inserts. Table values are
ranging from 0.001 to 0.003 μm. Therefore, there is very little
difference between these two values. As a result of verifica-
tion, values of the developed programmewere confirmed with
99.999 % confidence.

4.2 Trial experiments

In the final stage of the study, nine pieces of experiments were
conducted using different cutting parameters for both mate-
rials (Table 7).

Table 6 The comparison of ex-
perimental and programme sur-
face roughness values for AA
5083 material

Exp. Cutting parameters Surface roughness values

No. Measure Cutting
tools

Cutting
speed
(m/min)

Feed rate
(mm/tooth)

Cutting
depth
(mm)

Exp. values
(μm)

Software
values (μm)

Delta
(μm)

81 2 TiB2 650 0.25 0.25 0.69 0.691 0.001

60 1 TiB2 450 0.12 0.25 0.39 0.392 0.002

56 2 TiB2 450 0.08 0.12 0.33 0.333 0.003

67 1 TiB2 550 0.12 0.08 0.3 0.302 0.002

72 2 TiB2 550 0.25 0.12 0.43 0.430 –

52 4 TiALN 650 0.25 0.08 0.60 0.601 0.001

47 2 TiALN 650 0.08 0.12 0.33 0.330 –

35 3 TiALN 450 0.25 0.12 0.73 0.732 0.002

36 3 TiALN 450 0.25 0.25 0.65 0.652 0.002

44 3 TiALN 550 0.25 0.12 0.53 0.532 0.002

22 4 UC 650 0.12 0.08 0.29 0.292 0.002

19 1 UC 650 0.08 0.08 0.27 0.271 0.001

3 3 UC 450 0.08 0.25 0.22 0.221 0.001

15 4 UC 550 0.12 0.25 0.37 0.371 0.001

11 3 UC 550 0.08 0.12 0.32 0.321 0.001

Table 7 Cutting parameters for
the test experiments AISI 1040 AA 5083 H111

Cutting tools Uncoated, CVD/TiN-TiCN-Al2O3,
PVD/TiAlN Nano

Uncoated, PVD/TiAlN Nano,
PVD/TiB2

Cutting speeds (m/min) 100, 125, 150 200, 250, 300

Feed rates (mm/tooth) 0.05, 0.15, 0.2 0.05, 0.15, 0.2

Cutting depths (mm) 0.2, 0.4, 0.6 0.1, 0.2, 0.3
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In test experiments, 72 pieces of surface roughness mea-
surements and 72 pieces of surface images were obtained.
These experiments experimentally measured four surface
roughness values, and surface images were taken from mate-
rial surface for each measurement. Finally, average surface
roughness values obtained from the surface roughness device
and values of the prediction programme were compared with
each other. The results of the average experimental and pro-
gramme values are shown in Tables 8 and 9.

Changing the cutting parameters is very important in
obtaining different surface roughness values, because there
are more than one parameter that affect the surface roughness
[32]. Consequently, parameters in the last test were selected as
different from the initial cutting parameters, and then, the last
test results were obtained from the prediction programme. The
achieved surface roughness differences for average values
were greater than those of the first test as shown in Fig. 12.

In Fig. 12, the comparison of the last test results is given for
both materials. The minimum differences were determined in
AISI 1040 steel. Hardness of the AISI 1040 material is 149 HB
(Brinell), and it is harder than aluminium material [33].

Therefore, surface roughness values obtained from AISI 1040
material were larger than the others, and the rougher surface
image gave a better result. On the other hand, AA 5083 is also
highly resistant to be attacked by seawater and industrial chem-
ical environments, and it is used in the shipbuilding, mine skips
and cages, pressure vessels, rail cars, vehicle bodies and tip
truck bodies. The hardness of AA 5083 material is 75 HV
(Vickers). Since its material structure has softer than AISI
1040 material, and its surface lines are not obvious [34–36].

The quality of surface roughness significantly affects many
machining operations and manufacturing processes [37–40].
Contact techniques to measure surface roughness such as stylus
technique damages the machined surfaces and ruins surface
quality after the measurement. Measurement techniques can be
classified into two categories according to whether or not the
measuring probe touches the test workpiece. Conventionally,
the commonly used method in an industrial environment is the
direct method through a profile meter or a measuring stylus.
Even if the stylus device is still considered to be the accepted
standard for measurement of surface roughness, the method has
several disadvantages. The non-contact methods may present

Table 8 The testing programme
algorithm with different cutting
parameters for the AISI 1040
material

Exp.
no.

Cutting parameters Surface roughness values

Cutting tools Cutting
speed
(m/min)

Feed rate
(mm/tooth)

Cutting
depth (mm)

Exp. values
(μm)

Software
values (μm)

Delta
(μm)

1 TiALN 100 0.05 0.2 2.59 2.558 0.030

2 TiALN 100 0.05 0.4 2.50 2.678 0.180

3 TiALN 100 0.05 0.6 2.66 2.533 0.128

4 TiN-TiCN-Al2O3 125 0.15 0.2 3.29 2.528 0.763

5 TiN-TiCN-Al2O3 125 0.15 0.4 3.15 2.490 0.655

6 TiN-TiCN-Al2O3 125 0.15 0.6 3.05 3.046 0.004

7 UC 150 0.2 0.2 1.46 1.850 0.390

8 UC 150 0.2 0.4 1.51 1.503 0.005

9 UC 150 0.2 0.6 1.47 1.013 0.452

Table 9 The testing programme
algorithm with different cutting
parameters for the AA 5083
material

Exp.
no.

Cutting parameters Surface roughness values

Cutting
tools

Cutting
speed (m/min)

Feed rate
(mm/tooth)

Cutting
depth (mm)

Exp. values
(μm)

Software
values (μm)

Delta
(μm)

1 TiB2 200 0.05 0.1 0.71 0.551 0.159

2 TiB2 200 0.05 0.2 0.65 0.941 0.296

3 TiB2 200 0.05 0.3 0.80 0.592 0.209

4 TiN 250 0.15 0.1 0.46 0.472 0.009

5 TiN 250 0.15 0.2 0.44 0.450 0.010

6 TiN 250 0.15 0.3 0.51 0.762 0.249

7 UC 300 0.2 0.1 0.47 0.611 0.141

8 UC 300 0.2 0.2 0.42 0.684 0.269

9 TiB2 300 0.2 0.3 0.41 0.563 0.150
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an alternative to permit the surface roughness to be measured
rapidly and with an acceptable accuracy. One of the most
promising non-contact methods, with regard to speed and
accuracy, is the computer vision technique [41–44]. Especially,
when robotic technology is adapted to the manufacturing pro-
cess, artificial vision and image processing methods provide
practical solutions for these areas.

5 Conclusions

In this study, a prediction programme was developed for the
measurement of surface roughness as a non-contact method,
using two materials for the process. The selected materials
were machined using different cutting parameters affecting
the surface roughness in a CNC milling machine. The obtain-
ed surface images were processed and used in training artifi-
cial neural networks. A programme was created in MATLAB
to measure surface roughness of the images obtained from
machined surfaces and to use artificial neural networks in the
algorithm. In final stages of this study, test experiments were
performed, and the following steps were completed:

– In determining the matrix size of binary images used in
training networks, direction of the black and white lines
on the surface image is an important criterion. Selection
in the outnumber direction of these lines extended parallel
to the horizontal direction increases the recognition per-
formance of the training network.

– The best results were obtained from 300×240-resolution
images.

– For the training networks, log-sigmoid function was se-
lected as transfer function, scale conjugate gradient
(SCG) algorithm was used as training algorithm, and
the maximum number of neurons was selected in training
networks.

– Performance of the trained networks was achieved as an
average of 99.926 % for AA 5083 aluminium and as an
average of 99.932 % for AISI 1040 steel.

– When test results obtained from the first images were
compared with experimental results, they confirmed each
other in a rate of 99.999 %.

– Even if the differences of surface roughness in test results
for both materials are close, the best result is achieved by
the AISI 1040 material. Therefore, when the surface
roughness increases, better results are obtained by the
prediction programme.

The degree of accuracy of the programme decreased in
different cutting parameters. Better results may be achieved
with the new experiments and by the new network learning
ability. Furthermore, the conducted tests for different materials
can improve further learning algorithm of the programme.
Behaviour of the programme in different cutting parameters
can be increased again by using a 300×240-resolution image in
the training network. For this condition, decreasing the
number of images used for training network will suffice.
In future studies, the programme performance can be
enhanced with the new experiments and studies of new
materials. Additionally, this research by adapting a robot
arm system can be evaluated in a larger study, and the
used method and the created algorithm structure will
benefit the new studies on non-contact systems. In this
study, the use of the machined surface obtained from optic
microscope and the developed algorithm structure for other
machining processes such as turning and grinding are poten-
tial areas for future research.
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