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Abstract As a complex mechatronic system, the running
stability, safety, and comfort of high-speed train are affected
by many design variables. It is of great difficulty to identify a
set of effective design parameters to optimize its running
performance. The current simulation systems like the
SIMPACK can simulate the running dynamics, but cannot
be used effectively for optimal design of the train and rail
system because there are too many design variables being
supposed to be dealt with. Therefore, there is a need to make
a software solution from simulation analysis to optimal design
so that the computer-aided design (CAD) and engineering
(CAE) can be integrated into an integral design process.
This paper presents a new method to identify the key design
variables against the running performance indicators based on
the sensitivity analysis, which in turn bases itself on
simulation-oriented surrogate models. In this way, the optimal
design of a high-speed train can be successfully conducted
because (1) the surrogate model can reduce the simulation
time greatly and (2) the design variable space with the key
variables will be reduced significantly. The research shows
that this method is of practical significance for speeding up the
design of high-speed train or similar complex mechatronic
systems.

Keyword High-speed train . Surrogatemodel . Design
variable reduction . Sensitivity analysis . Neural network

1 Introduction

High-speed railway has been developing rapidly in many
countries because it is a fast and safe transportation tool with
larger capacity, greater comfort, and less environmental im-
pact and CO2 emissions. As a complex mechatronic system, a
high-speed train is composed of control, mechanical, electri-
cal, and communication systems, and its physical performance
is determined by the running dynamics, fatigue strength,
acoustic, aerodynamic, and other mechanical, especially the
dynamic behaviors. Therefore, the relevant structural and
functional requirements for its running stability, safety, and
comfort performances have to be met by optimizing a big set
of design variables. However, the running performances
(indicators) are not only related to structural and functional
design parameters but also coupled with dynamic interaction
between the high-speed train itself and the rail via the
wheel rail contact. This system is always associated
with high-order nonlinearity, extremely complicated sim-
ulation and calculation, long calculation time, large re-
source consumption, and many difficulties to find rea-
sonable optimization solution. Therefore, the optimal
design of high-speed train involves the integration of a
very large number of design variables and comprehen-
sive engineering design simulations such as stability
analysis and wheel-rail contact dynamics analysis, which
are greatly time-consuming and labor-intensive. Decreasing
the complexity of design space is becoming a bigger problem
in performance design of high-speed train.

This paper presents a neural network-based surrogate mod-
el, “the model of models,” to identify key design variables
from their sensitivity evaluation so as to greatly reduce the
design space, the simulation and calculation difficulties, and
significantly shorten the design cycle. This technology means
to use a small number of sample data, obtained through
simulation computation based on SIMPACK, to build a
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relatively simple mathematical approximation model without
any reduction of the accuracy. This simple mathematical
model can be continuously updated in the optimization itera-
tion process and the accuracy of surrogate model will be
improved as well. The method has such advantages as small
amount and short period of calculation, which help to signif-
icantly improve the efficiency of optimization.

In this paper, the main contributions are as follows.

1. The 29 CHST’s input variables and 7 performance indi-
cators as response outputs are determined. The Latin
hypercube sampling design is carried out and the corre-
sponding 97+6 sample points are generated with
SIMPACK software for surrogate model generation. A

Table 1 Physical abstraction of high-speed train model

The physical system description (number of each car) The simulation system description (number of each car) Notes

Car body (10) Car body (1) The body

Framework (2) Framework (2) The body

Axle box (8) Axle box (8) The body

Wheel set (4) Wheel set (4) The body

Axle box spring of primary system (8) Three direction force element (No. 05) (8) Force element

Vertical damping of primary system (8) Springs in series—damping force element (No. 06) (8) Force element

Tumbler joint of primary system (8) Tumbler joint of primary system (No. 05) (8) Force element

Air spring of secondary system (4) Three direction force element (No. 05) (4) Force element

Vertical damping of secondary system (4) Springs in series—damping force element (No. 06) (4) Force element

Lateral damping of secondary system (4) Springs in series—damping force element (No. 06) (4) Force element

Yaw damper (4) springs in series—damping force element (No. 06) (4) Force element

Pull rod spring (2) Three direction force element (No. 05) (4) Force element

Lateral backstop (4) Springs in series—damping force element (No. 06) (4) Force element

Joint between can box and wheelset (8) Revolute joint (8) Joint

Fig. 1 Track condition and
computational simulation model
with topological relations of
CHST
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neural network surrogate model is established for the
replacement of the original complex simulation models
such as SIMPACK to reduce the computing time and cost.
The accuracy of the model is satisfactorily verified with
evaluations.

2. Sensitivity analysis is conducted based on the surrogate
model. Then, a set of the key parameters for CHST has
been identified. Thus, the design space is greatly
decreased.

3. This new design and optimization strategy has been evalu-
ated initially and it is suitable for other complicated systems.

2 Related works

The surrogate model is also named as meta-model, which is
frequently used by many scholars to solve some engineering

Table 2 Design variables

Variable Meaning Unit Basic value range Belong to

x1 Distance between bogie centers mm 17,000–18,000 Body

x2 Train body quality Kg 28,000–40,000 Body

x3 Moment of inertia -X Kg m2 70,000–120,000 Body

x4 Moment of inertia -Y Kg m2 1,200,000–1,700,000 Body

x5 Moment of inertia -Z Kg m2 1,100,000–1,500,000 Body

x6 The height from the rail surface to the center of gravity mm 1,400–1,600 Body

x7 Fixed wheel base mm 2,400–2,600 Framework

x8 The architecture quality Kg 2,100–3,100 Framework

x9 Scroll wheel diameter (nominal diameter ) mm 790–860 Wheel set

x10 Wheel back distance mm 1,351–1,355 Wheel set

x11 Wheel set quality Kg 1,800–2,200 Wheel set

x12 Moment of inertia -X Kg m2 500–750 Wheel set

x13 Moment of inertia -Y Kg m2 65–100 Wheel set

x14 Moment of inertia -Z Kg m2 500–800 Wheel set

x15 Longitudinal stiffness of the round spring (per box) KN/m 800–1,150 Primary suspension system

x16 Lateral stiffness of the round spring (per box) KN/m 800–1,200 Primary suspension system

x17 Vertical stiffness of the round spring (per box) KN/m 1,000–1,500 Primary suspension system

x18 Vertical damping (per box) kN s/m 10–30 Primary suspension system

x19 Vertical damping joint stiffness (per box) MN/m 3–6 Primary suspension system

x20 Longitudinal stiffness of axle box tumbler joint (per box) MN/m 5–10 Primary suspension system

x21 Lateral stiffness of axle box tumbler joint (per box) MN/m 4–10 Primary suspension system

x22 Air spring lateral span mm 2,400–2,500 Secondary suspension system

x23 Yaw damper lateral span mm 2,400–2,800 Secondary suspension system

x24 Air spring longitudinal stiffness (per spring) KN/m 100–200 Secondary suspension system

x25 Air spring lateral stiffness (per spring) KN/m 100–200 Secondary suspension system

x26 Air spring vertical stiffness (per spring) KN/m 120–300 Secondary suspension system

x27 Vertical damper KN s/m 20–60 Secondary suspension system

x28 Lateral damper KN s/m 30–50 Secondary suspension system

x29 Yaw damper joint stiffness (per joint) MN/m 5–13 Secondary suspension system

Table 3 Dynamics indexes

No. 1 2 3 4 5 6 7

Indexes Lateral
stability

Vertical
stability

Derailment
coefficient

The ratio of wheel
load reduction

Lateral wheelset
force

Overturning
coefficient

Critical
speed

Unit KN Km/h
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problems and has achieved significant effects. Wang [1],
Forrester [2], Simpson [3], and other scholars summarized
surrogate model technology and its application in engineering
field, many examples among which are related to aerospace
applications. Golovidov and Hosder etc. [4, 5] established a
response surface model for optimization design of high-speed
passenger aircraft flight, and obtained the good result; Unal
et al. [6] solved layout optimization problems of a spacecraft
by using the response surface surrogate model; Knill et al. [7,
8] predicted the aircraft Euler solution of supersonic drag with
the response surface model. Yan [9] predicted and improved
combustion rate of natural gas/diesel dual fuel engine. Yi and
Malkawi [10] utilized computational fluid dynamics with
neural network model to predict site-specific wind parameters
for energy simulation. Jiang et al. [11] effectively optimized
high-pressure die-casting process parameters by artificial neu-
ral network. Yao et al. [12, 13] have done a lot of similar
researches. Gorissen [14] had a detailed study of the
computer-aided modeling technology-surrogate model in his

doctoral dissertation, developed ToolBox SUMOwhich could
be used in MATLAB [15], and provided the development
tools for the engineering application technology.

In surrogate model-based researches, the sampling strategy
is of great importance, which focuses on how to design the
required number of sample points of surrogate model and the
multidimensional distribution of these data. Experimental de-
sign methods are commonly used, such as orthogonal exper-
imental design [16] and Latin hypercube experimental design
[17]. Lee put forward the theory of maximum entropy to select
sample points, and applied boundary constraint surrogate
model to the reliability optimization [18]. A sequence of
exploring experimental design method was put forward by
Lin [19] to produce new sample points. Jin et al. used simu-
lated annealing method to generate optimal samples quickly
[20]. Surrogate model design space exploration technologies
can help engineers not only to determine whether targets or
constraints can be ignored, combined, or corrected, but also to
reduce the design variables and their value range, and these

Fig. 2 Design flow
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X29
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1
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coefficient/wheel weight ratio of load
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Fig. 3 The structure of neural
network
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technologies need less training samples to build accurate
surrogate model. Latin hypercube experimental design is
widely applied to uncertainty analysis and computer simula-
tion experiment design. Latin hypercube sampling (LHS) [21]
is a statistical method to generate samples of plausible collec-
tions of parameter values from a multidimensional distribu-
tion. The technique was first described by McKay in 1979
[22] and then was further elaborated by Iman et al. [23] in
1981. Detailed computer codes and manuals were later pub-
lished [24]. There are a lot of relevant review articles, such as
[25] and [26].

Surrogate model itself is a key factor to be considered in
this kind of research. Response surface method, Kriging
method, radial basis function, and neural network method
are frequently-used surrogate models. Neural network method
has the characteristics of simple and mapping ability. As long
as the neural network structure is set, the training process will
be done automatically by the network. This model can ap-
proximate arbitrary function theoretically. Any continuous
function can be made by a three-layer forward artificial neural
network, and input can be either a discrete function or a
continuous variable. However, there are defects such as “over

Fig. 4 Correlation coefficient of lateral stability r1

Fig. 5 Correlation coefficient of vertical stability r2

Fig. 6 Correlation coefficient of derailment coefficient r3

Fig. 7 Correlation coefficient of ratio of wheel load reduction r4
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learning” and “black box” for the neural network mode.
Artificial neural networks (ANN) are widely applied in
the global approximate model. Most applications of
feedback neural network are related to back-propagation
neural network (BPN), which is the most mature and widely
used neural network technology. By combining the differen-
tial method and genetic method, Kim et al. [27] optimized and
validated the BNP structure, and used it in CAE design
optimization of suspension with an optical flying head. Lee
et al. [28] explored the development of the efficient back-
propagation neural network (BPN)-based meta-model that

ensured the constraint feasibility of approximate optimal
solution. Due to the fact that a “black box” effect of a
neural network model could not explain the process to
make the decision, many commercial companies are
originally doubtful about this method. Through the ex-
periment in [29], a method was provided to find the
relationship between the input and output and to make
sensitivity analysis possible.

A lot of hybrid innovative or novel approaches, such as
Cuckoo search, differential evolution algorithm, colony algo-
rithm, particle swarm optimization algorithm, Taguchi’s

Fig. 8 Correlation coefficient of lateral wheelset force r5

Fig. 9 Correlation coefficient of overturning coefficient r6

Fig. 10 Correlation coefficient of critical velocity r7

Fig. 11 Numerical comparison of lateral stability
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method, and immune algorithm, have been developed and
applied in the structural optimal design of vehicle components
[40–47] for better performance and lower computational cost.
However, the application of surrogate model in high-speed
train is very limited. Based on Kriging model, Ding [30]
solved bogie fatigue structure optimization. Cheng studied
the robust design of suspension system parameters for high-
speed trains with Kriging model [31]. Kim used a surrogate
model of high-speed train of South Korea (KHST) to study the
optimization design and sensitivity analysis [32, 33], respec-
tively. These seem very similar to the method proposed in this

paper, but there are some obvious difference in model, design
strategy, variable selection, boundary conditions, and design
objectives. Sensitivity analysis is very useful for complex
engineering design [34–39]. This paper takes into consider-
ation not only the suspension systems but also the body,
framework, and wheelset to build model, which makes the
original variable set much bigger. Besides the derailment
coefficient, stability, the ratio of wheel load reduction, and
ride comfort, overturning coefficient and critical velocity are
also selected to be taken as safety indexes. Thus, the sensitiv-
ity between variables and response performance indexes of

Fig. 12 Numberial comparison of vertical stability

Fig. 13 Numberial comparison of derailment coefficient

Fig. 14 Numberial comparison of the rate of wheel load reduction

Fig. 15 Numberial comparison of lateral wheelset force
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high-speed train should be discussed and built first, and then
the key parameters can be identified and evaluated for the later
optimization design.

Chinese high-speed train (CHST) are developing fast, and
its running speed can exceed 350 km/h. Therefore, it is
very necessary to find some ways to guide the optimal
selection of design parameters. This paper aims to de-
crease design complexity and is trying to find out the
key performance design parameters and finally to improve
the design performance, to reduce the design iterations, and to
save design cost.

3 Design space descriptions

For some type of CHST, the dynamic analysis model is mainly
composed of car body, bogie (frame, axle, and wheel),
and force elements of the primary suspension system
and the second suspension system. Physical demonstra-
tion of the dynamic simulation model is shown below
(Table 1).

From Table 1, the characteristics of the design space can be
found as follows:

1. The whole vehicle system is described as a rigid yet
flexible multibody system, of which the body, frame,
and wheel can be considered flexible to increase the
accuracy of calculation. Thus, the freedom and the calcu-
lation complexity are greatly increased.

2. Part of the structure is considered as a nonlinear model,
such as the air spring, rubber mats, and so on. Therefore,
the computational complexity of the system is increased.

3. The inherent wheel-rail system is muchmore complicated
and accurate at a higher speed, which can be calculated by
finite element method. The difficulty of the system calcu-
lation is increased.

4. The track contains a vibration system with complex de-
gree of freedom, which also increases the difficulty for
calculation.

Fig. 16 Numberial comparison of overturning coefficient

Fig. 17 Numberial comparison of critical velocity

Table 4 Sensitivity values on lateral stability

x1 x2 x3 x4 x5 x6 x7 x8

0.553068 −0.18516 −0.09401 0.212025 −0.57596 0.093828 0.347285 0.160732

x9 x10 x11 x12 x13 x14 x15 x16

−0.081 −0.56868 −0.29709 −0.07118 0.418756 0.190382 0.575498 −0.1654
x17 x18 x19 x20 x21 x22 x23 x24

0.202027 −0.39208 0.043349 −0.0476 0.23383 −0.37717 0.260376 0.045056

x25 x26 x27 x28 x29

0.955629 0.213424 −0.17297 0.651861 0.144135
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From the above analysis, we can see even without consid-
ering the influence of air dynamics, the dynamic system of
high-speed train is so complex and the optimization of perfor-
mance parameters is of great difficulty. Therefore, it is very
meaningful and useful to study the feasibility of a surrogate
model-based design method in order to figure out the sensi-
tivity relationship between the vehicle performance parame-
ters and dynamic responses in a multidimensional space to
establish a global optimization model, and to find the solution
to parameter optimization and improvement for the CHST
design.

4 Design methodologies

4.1 Design modeling

Based on the physical model of a high-speed train, a simula-
tion model is built with SIMPACK V8.904 software. The
running speed is set at 300 km/h for simulation. The rail line
is set to consist of a 500-m long straight line segment, a 290-m
long easement curve, and a 150-m long circular curve with an
orbit high line of 102.6 mm. Activation condition is the actual
test track spectrum. Tread shape is LAM. The track condition
and computational simulation model with the topological
relations of CHST is shown in Fig. 1.

4.2 Design strategy and process

To reduce the design space and complexity of optimization,
first, some field experts are invited to have a focus group study
to identify an initial set of important variables needed to be
taken into account. All members have their expert knowledge
and experience in high-speed railway design. As a result, 29
design variables (Table 2) are found from a wide range of
variables based on some type of CHST. They influence greatly
on the performance indicators such as safety, stability,
comfort, and so on (Table 3). The relationship between
the 29 design parameters (Table 2) and 7 performance
indicators (Table 3) are then modeled with neural
network-based surrogate models, and finally from the
surrogate models, sensitivities of the 29 design variables
on each performance indicator are analyzed, which are
synthesized for the key design parameters identification,
design space reduction, and improvement of design
performance.

Because of the complexity and time cost of simulation
analysis model for each performance indicator, there is a need
for establishing a surrogate model (such as neural network-
based) with a small amount of simulation sample points in
order to conduct sensitivity analyses between each design
variable and a performance indicator. With the established
surrogate model, the sensitivity analysis can be conducted to
identify the key design parameters which are most sensitive to

Table 5 Sensitivity values on vertical stability

x1 x2 x3 x4 x5 x6 x7 x8

−0.11026 −0.26768 0.165961 0.079206 −0.11236 −0.25663 −0.41095 −0.23455
x9 x10 x11 x12 x13 x14 x15 x16

0.086186 0.081418 0.172164 0.271894 0.138432 −0.1703 −0.37253 −0.13008
x17 x18 x19 x20 x21 x22 x23 x24

0.377495 −0.00369 0.02351 0.079619 −0.05032 −0.00316 0.068953 −0.39967
x25 x26 x27 x28 x29

−0.39939 0.360948 1.021231 0.125493 −0.39795

Table 6 Sensitivity values on derailment coefficient

x1 x2 x3 x4 x5 x6 x7 x8

−0.28851 0.118128 −0.40208 −0.28359 −0.1391 −0.37688 −0.28342 −0.28004
x9 x10 x11 x12 x13 x14 x15 x16

0.133628 −0.16204 0.270299 0.00514 0.056794 −0.444214 −0.05221 0.160779

x17 x18 x19 x20 x21 x22 x23 x24

0.110178 −0.01557 −0.04688 −0.25194 −0.3524 −0.29869 0.471582 0.242644

x25 x26 x27 x28 x29

0.093611 −0.70535 0.152008 0.135359 0.008344
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the performance. As a result, some less sensitive parameters
can be taken out of the design iterations afterward. Thus, the
design space will be reduced. This design strategy can be
shown in Fig. 2.

The initial set of design parameters for China high-
speed train (CHST) design is derived from the train
topological relationship analysis, and then these param-
eters are used to establish simulation models in connec-
tion with track condition. In order to perform simulation
studies, domain experts provide advice on the range of
each parameter and which parameter should be active
and then the corresponding performance indicators from
the simulation studies are obtained. The mapping be-
tween the parameters and the performance indicators are
finally used to establish a surrogate model for conducting
the sensitivity analysis and identifying a set of key
parameters.

4.3 Surrogate model

4.3.1 Simulation calculation sample design of CHST vehicle
dynamics based on Latin hypercube function

In order to construct a neural network-based surrogate model,
a set of input data and the corresponding output data are
needed to train and evaluate the neural network. Therefore,
the simulation calculation sampling design is conducted

based on the initially selected 29 design parameters
and 7 performance indicators. The sampling design is
based on Latin hypercube sample design method and
the sample data are produced with SIMPACK software. The
process is as follows:

1. Take the initial 29 design variables as input in an initial
design space and take the preidentified performance indi-
cators as evaluation outputs.

2. A basic value range of each design parameter is suggested
by the experts in the group study. Use Latin hypercube
sample design method to normalize the 29*100 parame-
ters. Then the range of value is evenly put into 100
divisions. From the 100 divisions, 3 divisions are re-
moved because they give worse performance responses.
As a result, there are 29 variables in total and each has 97
divisions. In this way, the initial value ranges are refined
and corrected.

3. After using Latin hypercube sample design method to
normalize the final 29*97 parameters, each parameter is
divided into 6 levels in the normalized space (i.e., nor-
malized with 97 divisions and clustered into 6 levels). The
verification sampling space is 29*6 and generated with
the MATLAB standard Latin hypercube sampling
function.

4. With SIMPACK software, conduct 97 plus 6 (in total 103)
simulation analyses with the sampling parameters as

Table 7 Sensitivity values on the rate of wheel load reduction

x1 x2 x3 x4 x5 x6 x7 x8

−0.5628 −0.52574 0.409342 −0.22393 0.338866 0.141708 0.231543 −0.37955
x9 x10 x11 x12 x13 x14 x15 x16

0.177526 0.310217 0.836211 0.398576 0.122738 0.841346 −0.85626 0.562881

x17 x18 x19 x20 x21 x22 x23 x24

0.182546 −0.71756 0.117753 0.11272 0.257886 −0.11586 −0.39315 0.644711

x25 x26 x27 x28 x29

−0.13578 −0.48712 0.293608 −0.01054 −0.52786

Table 8 Sensitivity values on lateral wheelset force

x1 x2 x3 x4 x5 x6 x7 x8

−1.5747 −1.94638 0.024928 −1.31955 0.961355 0.470232 −1.26579 0.239503

x9 x10 x11 x12 x13 x14 x15 x16

0.069955 0.271103 −0.61365 1.296224 −0.10191 −0.03598 −0.18304 −0.60379
x17 x18 x19 x20 x21 x22 x23 x24

−0.29683 −1.40372 0.521793 −2.29671 −0.84849 −2.10043 −0.92088 −0.32664
x25 x26 x27 x28 x29

2.998878 0.603372 0.193924 −1.05531 −1.30514
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inputs and generate the corresponding outputs of
key performance indicators for establishing the surrogate
model.

4.3.2 Build a high-speed train neural network surrogate
model

In this study, a neural network model consists of an input
layer, a hidden layer, and an output layer (shown on Fig. 3).
The number of neurons in the input layer and the output layer
are, respectively, set according to the number of design vari-
ables and the performance responses (indicators). The inputs
and outputs for 97 simulations are used to train the BP neural
network by regression algorithm. In total, there are seven
neural network models being established to study the sensi-
tivities of design parameters against each key performance
indicators (indexes), namely the lateral stability, vertical sta-
bility, derailment coefficient, the ratio of wheel load reduction,
lateral wheelset force, overturning coefficient, and critical
velocity, all of which are related to the stability, comfort, and
safety of this type train.

4.4 Verification and evaluation

In the 97+6 group data built by Latin hypercube function, the
97 groups are used to establish BP neural network surrogate

models, and the 6 groups are used to verify the correctness of
the models.

The validation formula is as follows (X1 is simulation
values, and X2 is model values):

AbsoluteerrorE ¼ X 1−X 2j j ð1Þ
TherelativeerrorΔε ¼ E=X 1 ð2Þ

For the lateral stability, the number of hidden layer neurons
in the corresponding model is set at 12 after continuous
debugging, and then a BP neural network with the 29-12-1
neuron structure is established. The corresponding BP neural
networks with the 29-10-1 neuron structure are built by con-
tinuous debugging for other indicators, namely the vertical
stability, derailment coefficient, the ratio of wheel load reduc-
tion, lateral wheelset force, overturning coefficient, and criti-
cal velocity. The correlation coefficients r1, r2… r7, gained
from the training, are close to 1, as shown from Figs. 4, 5, 6, 7,
8, 9 to 10. The comparison between the performance values
obtained by the surrogate models and experimental values by
SIMPACK simulation experiments are shown from Figs. 11,
12, 13, 14, 15, 16 to 17.

The error values of the 97 groups between experimental
values and response values of the surrogate model are relatively
small, e.g., the maximum relative error of lateral stability is
0.18%. The maximum relative errors are, respectively, 0.22,
1.50, 0.30, 0.11, 4.72, and 0.32 % for vertical stability,

Table 9 Sensitivity values on overturning coefficient

x1 x2 x3 x4 x5 x6 x7 x8

0.58394 −0.85565 0.580239 −0.72968 −0.20726 0.409222 0.24316 0.484439

x9 x10 x11 x12 x13 x14 x15 x16

−0.24057 0.052536 0.373142 1.567612 0.13685 0.420285 0.12467 −0.46934
x17 x18 x19 x20 x21 x22 x23 x24

0.006769 0.095373 0.15215 0.990946 0.537664 −0.86491 −1.02585 0.068676

x25 x26 x27 x28 x29

0.022446 −0.16306 −0.9974 1.25568 0.245026

Table 10 Sensitivity values on critical velocity

x1 x2 x3 x4 x5 x6 x7 x8

−0.17982 0.142401 −0.14187 −0.05709 0.331733 −0.26248 −0.18909 −0.33921
x9 x10 x11 x12 x13 x14 x15 x16

0.669435 −0.82283 −0.20049 −0.06745 0.047772 −0.05848 −0.21411 0.139287

x17 x18 x19 x20 x21 x22 x23 x24

−0.00868 0.209083 0.084324 0.83001 −0.65628 0.269717 0.103244 0.224015

x25 x26 x27 x28 x29

0.359262 −0.33035 0.221772 −0.38468 0.601366
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derailment coefficient, the rate of wheel load reduction, lateral
wheelset force, overturning coefficient, and the critical velocity.

The six group experimental values from SIMPACK, which
are not a part of the training data, are compared with the
response values directly from each surrogate model. The
maximum relative errors are, respectively, 6.09, 5.88, 7.88,
8.56, 9.38, 9.61, and 4.27 % for the lateral stability, vertical
stability, derailment coefficient, the rate of wheel load reduc-
tion, lateral wheelset force, overturning coefficient, and the
critical speed. The errors of seven surrogate models are less
than10 %, and all of average relative errors are no more than
6%. Therefore, the precision of the models is good enough for
identifying sensitivities.

5 Sensitivity analysis

According to the [33], the sensitivity calculation formula is

Sik ¼ xi
ok

X

j¼1

n

wijwjk ð3Þ

Sik is the input variable xi’s (1≤ i≤29) sensitivity on
the output neuron (response indicator) Ok (1≤k≤7), wij

(1≤ j≤n, in which n is number of hidden layer neurons)
is the weighting matrix from input layer neurons to
hidden layer neurons, and wjk is the weighting matrix
from neurons in hidden layer to output layer neuron. The
bigger |Sik| is, the stronger the correlation is. If |Sik| <0, it is a
negative correlation.

Take the weighting matrixes of the BP neural network into
the formula 4, then 29 input variable’s sensitivity values are
received to the 7 performance outputs, respectively (shown as
Tables 4, 5, 6, 7, 8, 9, and 10).

6 Key parameter identification

From the formula 4 (below), the relative sensitivity Sik
′ can be

calculated from Tables 4, 5, 6, 7, 8, 9, and 10.

S
0
ik ¼ Sik=Sikmax ð4Þ

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

x1 x3 x5 x7 x9 x1
1

x1
3

x1
5

x1
7

x1
9

x2
1

x2
3

x2
5

x2
7

x2
9

re
la

ti
ve

 s
en

si
ti

vi
ty

 o
f 

ve
rt

ic
al

 s
ta

bi
lit

y

Fig. 18 Relative sensitivity on vertical stability
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Fig. 20 Relative sensitivity on derailment coefficient
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Fig. 19 Relative sensitivity on lateral stability
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Fig. 21 Relative sensitivity on the rate of wheel load reduction
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Sikmax is the biggest sensitivity value in the corresponding
table. According to the calculated values, relative sensitivity
line chart of 29 input variables on the 7 performance indicators
are obtained separately. Figures 18, 19, 20, 21, 22, 23, and 24
show relative sensitivities in terms of lateral stability, vertical
stability, derailment coefficient, the rate of wheel load reduc-
tion, lateral wheelset force, overturning coefficient, and criti-
cal velocity.

With the experience, we set up the key parameter selection
criteria as follows: variables with the top five absolute values
of relative sensitivity and greater than 65 %, then the table of
key effective parameters for each performance is as below
(arranged in the correlation order). Only one parameter is
suitable under this condition for the vertical stability, so an-
other design parameter is added for more coordination.

The data from the table are analyzed, and the key param-
eters for the overall design are identified in order to help the
further design.

1. The key parameters for the overall design are X9, X10,
X11, X12, X14, X15, X18, X20, X21, X24, X25, X26,

X27, X28, and X29, which correspond to Scroll wheel
diameter, the wheel back distance, wheelset quality, mo-
ment of inertia –X, moment of inertia –Z, longitudinal
stiffness of the round spring, vertical damping, longitudi-
nal stiffness of axle box tumbler joint, lateral stiffness of
axle box tumbler joint of primary suspension, air spring
longitudinal stiffness, air spring lateral stiffness, air spring
vertical stiffness, vertical damper, lateral damper, and yaw
damper joint stiffness of secondary suspension system,
respectively. The number of key design variables is re-
duced from 29 to 15, which greatly reduces the design
space.

2. X9, X10, and X11 are structural design parameters, while
the others are performance design parameters. This shows
that both the input parameters and the structural design
parameters have influence on comfort, stability, and safety
of the train. But the effect of performance parameters on
the high-speed train is much stronger. This is recognized
and accepted by mostly relevant field experts. Besides,
in this recommendation table, without the structure
factor being considered, the key parameters of lat-
eral stability, vertical stability, and critical velocity al-
most are the same as the analysis in [39]. Therefore, the
results are reliable.
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Fig. 22 Relative sensitivity on lateral wheelset force
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Fig. 23 Relative sensitivity on overturning coefficient

Table 11 Key effective parameters

Key parameters
Performance indexes

1 2 3 4 5

Lateral stability X25 X28

Vertical stability X27 X18

Derailment coefficient X26 X23

The rate of wheel load reduction X15 X14 X11 X18 X24

Lateral wheelset force X25 X20

Overturning coefficient X12 X28

Critical velocity X20 X10 X9 X21 X29
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Fig. 24 Relative sensitivity of critical velocity
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3. According to Table 11, the key parameters are figured out
according to the correspondent response indicators. The
design can be adjusted reasonably based on the sensitivity
in order to achieve the optimal effect. For example, the
weight value should be increased according to the big
sensitivity value for the design optimization, i.e., the
greater sensitivity is, the greater the weight value will
be. At the same time, X18, X20, X25, and X28, corre-
sponding to vertical damping, longitudinal stiffness of
axle box tumbler joint of primary suspension system, air
spring lateral stiffness, and lateral damper of secondary
suspension system, have great influence on more than one
response indicator. So, the optimization design should be
adjusted with much greater weight values.

7 Conclusion

During the design of a high-speed train or a similar complex
mechatronic system, the practical test/running data cannot be
reached. Therefore, simulation experiments are widely used to
verify the feasibility of a design at the conceptual design stage.
However, building up various complex simulationmodels and
running them require a large amount of calculation, time, and
cost. Thus, if all design variables are considered in all design
iterations, the optimal design process will be extremely slow.
There is a need to identify a set of key design variables based
on their sensitivity analysis to participate in the optimal design
process to reduce time and complexity.

This paper demonstrates the feasibility to simplify complex
simulation models by using neural network-based surrogate
models and the possibility to find out the key design variables
from the surrogate models based on sensitivity analysis.
Consequently, a set of key design variables can be identified
and the design parameters spacewill be reduced. These identified
key design variables can be used effectively in an optimal design
process at the conceptual design stage with less time and higher
efficiency. The surrogate models are useful and effective to
replace many cross-domain simulation models, which can speed
up the design process with many design iterations. The proposed
design method of using surrogate models generated from
multiple-domain simulation models and the key design variables
identified from sensitivity analysis based on the surrogatemodels
is applicable to many similar design applications and scenarios.

During the model building process, experience is still
needed in such aspects as the number of level set, the number
of hidden layer neurons and evaluation standard, etc.
Meanwhile, the neural network itself is “over-learnt,” so the
accuracy of the surrogate model needs to be improved. In the
further study, different agent model should be used to make a
comparison and test the results or to feedback the analysis by
further optimization computation. In this way, the accuracy
will be continuously increased.
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